Please use this identifier to cite or link to this item: https://dr.ddn.upes.ac.in//xmlui/handle/123456789/3949
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPurohit, Ayush-
dc.date.accessioned2022-07-01T12:08:10Z-
dc.date.available2022-07-01T12:08:10Z-
dc.date.issued2016-04-
dc.identifier.citationUnder the guidance of Dr. Venkatadri Marriboyina, Assistant Professor, UPESen_US
dc.identifier.urihttp://hdl.handle.net/123456789/3949-
dc.descriptionSubmitted in partial fulfillment of the requirements for the degree of M. Tech (Artificial Intelligence and Artificial Neural Network)en_US
dc.language.isoenen_US
dc.publisherDepartment of Computer Science & Engineering, UPES, Dehradunen_US
dc.subjectDissertationen_US
dc.subjectComputer Science Engineeringen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectArtificial Neural Networken_US
dc.subjectHuman Action Recognitionen_US
dc.titleHuman action recognition using multi-channel spatio-temporal interest pointsen_US
dc.typeThesisen_US
Appears in Collections:Post Graduate

Files in This Item:
File Description SizeFormat 
R102214002.pdf14.79 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.