
Energy Efficient Container Placement and

Consolidation Technique in Cloud Data

Center

A thesis submitted to the

UPES

For the Award of

Doctor of Philosophy

in

Computer Science & Engineering

By

Avita Katal

Under the Supervision of

Supervisors

Dr. Tanupriya Choudhury

Dr. Susheela Dahiya

School of Computer Science

UPES

Energy Acres, P.O. Bidholi via Prem Nagar, Dehradun, 248007:
Uttarakhand, India

Energy Efficient Container Placement and

Consolidation Technique in Cloud Data

Center

A thesis submitted to the

UPES

For the Award of

Doctor of Philosophy

in

Computer Science & Engineering

By

Avita Katal

(SAP ID. 500057714)

Under the Supervision of

Internal Supervisor

Dr. Tanupriya Choudhury

Ex-Professor, UPES & Professor, Symbiosis International University

External Supervisor

Dr. Susheela Dahiya

Associate Professor, Graphic Era Hill University

School of Computer Science

UPES

Energy Acres, P.O. Bidholi via Prem Nagar, Dehradun, 248007:
Uttarakhand, India

Declaration

I, the undersigned, hereby state that the research work titled “Energy

Efficient Container Placement and Consolidation in Cloud Data

Center” has been conducted by me under the supervision of Dr. Tanupriya

Choudhury, Ex-Professor, UPES, Dehradun & Professor, Symbiosis Inter-

national University, Pune and Dr. Susheela Dahiya, Associate Professor,

Department of Computer Science and Engineering, Graphic Era Hill Uni-

versity, Dehradun, Uttarakhand. No part of this thesis has formed the

basis for the award of any degree or fellowship previously.

AVITA KATAL

School of Computer Science,

UPES,

Energy Acres, P.O. Bidholi, via Prem Nagar, Dehradun, 248007:

Uttarakhand, India

ii

UPES, DEHRADUN

INDIA

Certificate

I hereby certify that the thesis titled “Energy Efficient Container Place-

ment and Consolidation in Cloud Data Center” authored by Avita

Katal (SAP ID: 500057714), a research scholar at the UPES, Dehradun,

Uttarakhand, represents original research conducted under my supervision

and guidance in partial fulfillment of the requirements for the Doctor of

Philosophy degree in School of Computer Science. I further attest that this

work has not been submitted for the attainment of any other diploma or

degree from this university or any other institution.

Internal Supervisor

Dr. Tanupriya Choudhury

Professor

Symbiosis International University, Pune, Maharashtra, 412115.

Ex-Professor

School of Computer Science,

UPES, Dehradun, Uttarakhand, 248007

Dated: 13th December, 2023

iii

GRAPHIC ERA HILL UNIVERSITY, DEHRADUN

(INDIA)

Certificate

I hereby certify that the thesis titled “Energy Efficient Container Place-

ment and Consolidation in Cloud Data Center” authored by Avita

Katal (SAP ID: 500057714), a research scholar at the UPES, Dehradun,

Uttarakhand, represents original research conducted under my supervision

and guidance in partial fulfillment of the requirements for the Doctor of

Philosophy degree in School of Computer Science. I further attest that this

work has not been submitted for the attainment of any other diploma or

degree from this university or any other institution.

External Supervisor

Dr. Susheela Dahiya

Associate Professor

Department of Computer Science and Engineering

Graphic Era Hill University, Dehradun.

Uttarakhand, 248002

Dated: 13th December, 2023

iv

Abstract

Cloud Computing (CC) is a revolutionary computing model wherein

consumers may dynamically expand or decrease computer resources based

on their demands. Users only need to pay for the services they have re-

ally utilized. Cloud companies have lately provided Container as a Service

(CaaS) as a new delivery model in addition to standard cloud services. The

majority of current CC is based on Virtual Machine (VM) technology that

is a cloud platform in the form of VM images with varying configurations

and resources. Although VMs are often employed in the cloud, a new CC

paradigm based on containers has progressively grown in past years as a

versatile and economical approach of distributing energy-efficient resources.

The advancement of Docker has greatly accelerated container-based virtu-

alization. Reduced data center power usage is one of the primary difficulties

that cloud providers confront. So far, current study has concentrated on

energy-aware management of resources via the Infrastructure as a Service

(IaaS) concept and VM aggregation. Containers, on the other hand, are

gaining traction and will be a key installation mechanism in the cloud,

notably in Platform as a Service (PaaS). This research work focusses on

energy efficient container placement and consolidation in cloud data center.

This research work focusses on identification and implementation of best-

suited workload categorization technique followed by development of energy

v

efficient techniques for containers placement and consolidation onto phys-

ical machines while maintaining Quality of Service (QoS) in cloud data

centers (DC).

The first part of the research included clustering cloud workloads (Bits

Brain dataset) of various types using two distinct clustering techniques (K

means and Gaussian Mixture Model). The two techniques are compared

in terms of Calinski-Harabasz Index, Davies-Bouldin Index and execution

time. To further evaluate the efficiency of the approach used for workload

management and resource utilization, the number of VMs used were cal-

culated. According to the experimental results, there was a notable differ-

ence in the number of virtual machines (VMs) used in VM clusters created

using K-means clustered workload data in comparison to the number of

randomly sized VMs created. Following the clustering phase, classifica-

tion was performed using several classification algorithms. Random Forest

(RF), Logistic Regression (LR), K Nearest Neighbor (KNN), Support Vec-

tor Machine (SVM), Decision Tree (DT), Multi-Layer Perceptron (MLP),

and Back Propagation Neural Network classification algorithms were com-

pared. The classification of workloads is an important step in workload

analysis. The accuracy of the models built is crucial for workload analy-

sis, resource usage prediction and provisioning. The classification accuracy

analysis aids us in determining which algorithm is best for a given data

center workload. Among these techniques, the decision tree achieved the

highest accuracy, reaching 99.18%.

The second part of the research focused on design and development ef-

ficient cloud container placement and consolidation algorithms. Optimal

vi

placement strategy for containers i.e. Discrete Firefly algorithm (DFF) and

Discrete Firefly algorithm using Local Search Mechanism (DFFLSM) have

been proposed. The proposed versions of firefly algorithm are compared

with First Fit (FF), First Fit Decreasing (FFD), Random algorithm and

Ant Colony algorithm (ACO). The comparison is done based on average

energy consumption, average active VM, average active PM and average

overall Service Level Agreement (SLA) violations in the cloud DC. The

results show that DFFLSM performs better than all pre-existing container

placement algorithms in terms of energy efficiency. It reduces average en-

ergy consumption of DC by 9.32% and 40.85% and average active PM

by 18.30% and 21.89% in homogenous and heterogeneous environment re-

spectively. Also, two optimized metaheuristic algorithms named Energy

Efficient Ant Colony Optimization (EEACO) and Energy Efficient Firefly

Optimization (EEFFO) that selects the hosts/PMs to consolidate contain-

ers are proposed to increase data center energy savings. The algorithms

are compared with the pre-existing algorithms i.e. Random Host Selec-

tion Algorithm (RHS), First Fit Host Selection Algorithm (FFHS), Least

Full Host Selection Algorithm (LFHS) and Correlation Threshold Host

Selection Algorithm (CorHS) on the basis of energy efficiency, average ac-

tive VMs, average active PMs, average container migrations and average

overall SLA violations. The energy efficiency results show that proposed

algorithms EEFFO and EEACO outperforms all preexisting host selection

algorithms for container consolidation. However, EEFFO is better than

EEACO. EEFFO reduces energy consumption of data center by 8.34% and

9.38% in homogenous and heterogenous environment respectively as com-

vii

pared to all other algorithms. It also reduces the average PM used by

16.35% and 11.65% in homogenous and heterogenous environment respec-

tively as compared to the pre-existing algorithms and proposed algorithms.

The SLA violations for EEFFO and EEACO algorithms is less in compar-

ison to pre-existing ones, thus improving QoS also.

viii

Acknowledgement

“Success is a tapestry woven with the threads of collective effort and

unwavering support. It is a testament to the belief and contributions of

those who accompany us on our journey, recognizing and nurturing our

true potential. Together, we reach heights that surpass the bounds of

individual accomplishment.”

Embarking on the fulfilling path of a Ph.D. is a testament to the power

of support and inspiration. As I near the end of this remarkable journey,

I would like to extend my heartfelt appreciation to the exceptional indi-

viduals who have accompanied me through the ups and downs, providing

unwavering encouragement and guidance. Their presence has been instru-

mental in shaping this memorable experience, and I am forever grateful for

their inspiring influence.

I would like to take this opportunity to express my sincere gratitude to

all those who have supported and contributed to the completion of my

Ph.D. thesis. First, I would like to extend my heartfelt appreciation to my

supervisors, Dr. Tanupriya Choudhury and Dr. Susheela Dahiya. Their

exceptional guidance, unwavering support, and valuable insights have been

invaluable throughout this research endeavor. I am truly grateful for their

expertise, patience, and dedication in mentoring me and shaping the tra-

ix

jectory of my research.

I would like to express my heartfelt gratitude to Dr. Sunil Rai, Chancel-

lor, UPES, Dehradun, Uttarakhand for his unwavering support during my

Ph.D. journey at UPES. His guidance, encouragement, and leadership has

been invaluable to me, and I am deeply appreciative of the opportunities

and resources he has provided.

I want to express my deep appreciation to Dr. Ram Sharma, Vice Chan-

cellor, UPES, Dehradun, Uttarakhand for the invaluable support and guid-

ance he has provided throughout my Ph.D. journey at UPES. Your excep-

tional leadership and unwavering dedication to uphold academic excellence

have consistently inspired me during my research pursuits.

I would like to extend my heartfelt appreciation to Dr. Ravi S Iyer, Dean,

School of Computer Science, UPES, Dehradun, Uttarakhand for his out-

standing leadership and support during my academic journey at the School

of Computer Science. His guidance and expertise have been instrumental

in shaping my educational experience.

I am immensely grateful to my parents, Mr. Daleep Singh Katal and Mrs.

Santosh Kumari for their unwavering support throughout my educational

journey. Their love and encouragement have been the pillars that have

guided me through every challenge and triumph. I am also indebted to

my siblings, Deepaish Katal and Himali Kotwal and for their unwavering

belief in my potential, their love, and their comforting words during times

of uncertainty. Their prayers have been my source of strength and have

propelled me forward on this remarkable path.

My heartfelt gratitude goes out to my students especially to Vitesh Sethi

x

for his invaluable support during my Ph.D. journey. Their relentless deter-

mination, infectious enthusiasm, and uplifting spirits have been a constant

reminder of the resilience and camaraderie that can be found in our aca-

demic community.

I am immensely thankful to the members of my research committee, for

their time, expertise, and valuable feedback. Their constructive criticism

and insightful suggestions have significantly enhanced the quality and rigor

of this work.

I would also like to express my deep appreciation to School of Computer

Science, UPES for providing a conducive academic environment and access

to resources that have facilitated my research journey.

Thanks to my friends and colleagues for their encouragement, support, and

intellectual exchanges.

I am deeply grateful to all those who have played a part, big or small, in

the completion of this Ph.D. thesis. Your support, guidance, and belief in

my abilities have been invaluable. Thank you all for being an integral part

of my academic journey and for making this achievement possible.

Avita Katal

Dehradun, India

13th December, 2023

xi

Contents

Declaration . ii

Certificate . iii

Certificate . iv

Abstract . v

Acknowledgement . ix

LIST OF FIGURES . xxii

LIST OF TABLES . xxvii

1 Introduction 1

1.1 Introduction . 1

1.1.1 Virtualization in Cloud 3

1.1.2 Container Perspective: Paradigm Shift 5

1.1.3 Energy Consumption in Data centre 7

1.1.4 Energy Efficient Techniques in Cloud Data Centers . 10

1.2 Research Problems and Objectives 11

1.2.1 Objectives . 12

1.2.2 Sub Objectives . 12

1.2.3 Research contribution 13

1.2.4 Thesis Organization 15

xii

2 Background and Literature Review 18

2.1 Background and Literature Review 18

2.1.1 Hardware based techniques 20

2.1.2 Software based techniques 32

2.2 Summary . 41

3 Workload Characterization and Categorization 42

3.1 Introduction . 42

3.2 Literature Review . 44

3.3 Methodology . 54

3.3.1 Dataset Characteristics 54

3.3.2 Clustering Algorithms 55

3.3.3 Classification Algorithms 55

3.3.4 Process Flow . 56

3.4 Experimental Setup . 58

3.5 Results . 59

3.6 Summary . 70

4 Container Placement in Cloud Data Center 72

4.1 Introduction . 72

4.2 Literature Review . 74

4.3 Methodology . 85

4.3.1 Problem formulation Container Placement in Cloud

Data Center . 85

4.3.2 Process Flow . 88

4.3.3 Algorithms . 89

xiii

4.4 Experimental Setup . 102

4.4.1 Scenario 1: Homogenous Environment 103

4.4.2 Scenario 2: Heterogenous Environment 103

4.5 Results . 104

4.5.1 Homogenous Environment 105

4.5.2 Heterogenous Environment 111

4.6 Summary . 114

5 Container Consolidation in Cloud Data Center 117

5.1 Introduction . 117

5.2 Literature Review . 119

5.3 Methodology . 129

5.3.1 Problem Formulation of Container Migration in Cloud

Data Center . 129

5.3.2 Process Flow . 131

5.3.3 Algorithms . 134

5.4 Experimental Setup . 142

5.4.1 Scenario 1: Homogenous Environment 142

5.4.2 Scenario 2: Heterogenous Environment 144

5.5 Results . 144

5.5.1 Homogenous Environment 146

5.5.2 Heterogenous Environment 155

5.6 Summary . 165

6 Statistical Analysis 167

6.1 Statistical Analysis . 167

xiv

6.1.1 Container Placement in Cloud Data Center 168

6.1.2 Container Consolidation in Cloud Data Center 171

6.2 Summary . 182

7 Discussion 183

7.1 Discussion . 183

8 Conclusion and Future Work 191

8.1 Conclusion and Future Work 191

8.2 Limitations and Future Work 193

9 References 195

9.1 References . 195

List of Publications . i

Plagiarism Report . ii

xv

List of Figures

1.1 Comparison between traditional, hypervisor and container

architecture . 8

1.2 Data Center demand of global electricity 2010–2030 9

1.3 Breakdown of data center energy demand modeling at the

hardware level based on taxonomies. 12

1.4 An overview of data center energy consumption modeling at

the software level based on taxonomy. 13

3.1 Categories of Workload . 44

3.2 Methodology for categorization and characterization for work-

load . 58

3.3 Attribute score of different attributes 60

3.4 Value of K vs inertias on high significant attributes 60

3.5 K vs Inertia (CPU usage) 61

3.6 K vs Inertia (Memory usage) 61

3.7 K vs Inertia (Disk usage) . 62

3.8 K vs Inertia (Network usage) 63

3.9 AIC and BIC plot for all attributes 65

3.10 AIC and BIC plot (CPU usage) 66

xvi

3.11 AIC and BIC plot (Memory usage) 67

3.12 AIC and BIC plot (Disk usage) 67

3.13 AIC and BIC plot (Network usage) 67

4.1 Methodology for container placement in cloud data center . 86

4.2 Flowchart of FFD Container Placement algorithm 89

4.3 Flowchart of Random Container Placement algorithm 92

4.4 Flowchart of FF Container Placement algorithm 93

4.5 Flowchart of ACO Container Placement algorithm 94

4.6 Flowchart of DFF Container Placement algorithm 96

4.7 Flow chart of DFFLSM Container Placement algorithm . . . 101

4.8 Comparison of average energy consumption in homogenous

environment for different container placement algorithms . . 106

4.9 Comparison of average active VM in homogenous environ-

ment for different container placement algorithms 107

4.10 Comparison of average active PM in homogenous environ-

ment for different container placement algorithms 107

4.11 Comparison of average overall SLA violations in homogenous

environment for different container placement algorithms . . 109

4.12 Impact of different container placement algorithms on data

center (a) average energy consumption and (b) average ac-

tive VM for different values of overbooking factor (RAM

Threshold= 80 percent) in homogenous environment 110

xvii

4.13 Impact of different container placement algorithms on data

center (a) average active PM and (b) average overall SLA

violations for different values of overbooking factor (RAM

Threshold= 80 percent) in homogenous environment 110

4.14 Comparison of average energy consumption in heterogenous

environment for different container placement algorithms . . 111

4.15 Comparison of average active VM in heterogenous environ-

ment for different container placement algorithms 112

4.16 Comparison of average active PM in heterogenous environ-

ment for different container placement algorithms 114

4.17 Comparison of average overall SLA violations in heteroge-

nous environment for different container placement algorithms114

4.18 Impact of different container placement algorithms on data

center (a) average energy consumption and (b) average ac-

tive VM for different values of overbooking factor(RAM

Threshold= 80) in heterogenous environment 115

4.19 Impact of different container placement algorithms on data

center average active PM (a) and average overall SLA vio-

lations (b) for different values of overbooking factor (RAM

Threshold= 80) in heterogenous environment 115

5.1 Host status module and its components in Cloudsim 4.0 (Pi-

raghaj et al., 2015b) . 132

5.2 Consolidation Module and its components in Cloudsim 4.0

(Piraghaj et al., 2015b) . 133

xviii

5.3 Impact of host selection algorithms on average energy con-

sumption for different OL combinations (a) MU and (b)

MCor in homogenous environment 147

5.4 Impact of Host selection algorithms on average energy con-

sumption for different UL combinations (a) MU and (b)

MCor in homogenous environment 148

5.5 Impact of Host selection algorithms on average container

migration for different OL combinations (a) MU and (b)

MCor in homogenous environment 148

5.6 Impact of Host selection algorithms on average container mi-

gration for different UL combinations (a) MU and (b) MCor

in homogenous environment 150

5.7 Impact of Host selection algorithms on average VMs used

for different OL combinations (a) MU and (b) MCor in ho-

mogenous environment . 150

5.8 Impact of Host selection algorithms on average VMs used

for different UL combinations (a) MU and (b) MCor in ho-

mogenous environment . 152

5.9 Impact of Host selection algorithms on average PMs used

for different OL combinations (a) MU and (b) MCor in ho-

mogenous environment . 152

5.10 Impact of host selection algorithms on average PMs used for

different UL combinations (a) MU and (b) MCor in homoge-

nous environment . 153

xix

5.11 Impact of host selection algorithms on average overall SLA

violations for different OL combinations (a) MU and (b)

MCor in homogenous environment 153

5.12 Impact of host selection algorithms on average overall SLA

violations for different UL combinations (a) MU and (b)

MCor in homogenous environment 154

5.13 Impact of host selection algorithms on (a) average energy

consumption of data center and (b) average active VM for

different values of overbooking factor in homogenous envi-

ronment (UL=70 percent, OL=80 percent and MU CS algo-

rithm) . 154

5.14 Impact of host selection algorithms on (a) average active

PM and (b) average container migrations for different values

of overbooking factor in homogenous environment (UL=70

percent, OL=80 percent and MU CS algorithm) 155

5.15 Impact of host selection algorithms on average overall SLA

violations for different values of overbooking factor in ho-

mogenous environment (UL=70 percent, OL=80 percent and

MU CS algorithm) . 155

5.16 Impact of host selection algorithms on average energy con-

sumption for different OL combinations (a) MU and (b)

MCor in heterogenous environment 157

5.17 Impact of host selection algorithms on average energy con-

sumption for different UL combinations (a) MU and (b)

MCor in heterogenous environment 157

xx

5.18 Impact of Host selection algorithms on average container

migration for different OL combinations (a) MU and (b)

MCor in heterogenous environment 158

5.19 Impact of Host selection algorithms on average container mi-

gration for different UL combinations (a) MU and (b) MCor

in heterogenous environment 158

5.20 Impact of Host selection algorithms on average VMs used

for different OL combinations (a) MU and (b) MCor in het-

erogenous environment . 160

5.21 Impact of Host selection algorithms on average VMs used

for different UL combinations (a) MU and (b) MCor in het-

erogenous environment . 160

5.22 Impact of Host selection algorithms on average PMs used

for different OL combinations (a) MU and (b) MCor in het-

erogenous environment . 161

5.23 Impact of Host selection algorithms on average PMs used

for different UL combinations (a) MU and (b) MCor in het-

erogenous environment . 162

5.24 Impact of host selection algorithms on average overall SLA

violation for different OL combinations (a) MU and (b) MCor

in heterogenous environment 162

5.25 Impact of host selection algorithms on average overall SLA

violation for different UL combinations (a) MU and (b) MCor

in heterogenous environment 163

xxi

5.26 Impact of host selection algorithms on (a) average energy

consumption of data center and (b) average active VM for

different values of overbooking factor in heterogenous envi-

ronment (UL=70 percent, OL=80 percent and MU CS algo-

rithm) . 163

5.27 Impact of host selection algorithms on (a) average active

PM and (b) average container migrations for different values

of overbooking factor in heterogenous environment (UL=70

percent, OL=80 percent and MU CS algorithm) 164

5.28 Impact of host selection algorithms on average overall SLA

violations for different values of overbooking factor in het-

erogenous environment (UL=70 percent, OL=80 ercent and

MU CS algorithm) . 164

xxii

List of Tables

1.1 Difference between Virtualization and Containerization . . . 8

3.1 Comparison of work done in the domain of workload char-

acterization . 48

3.2 Percentage of tasks in each cluster (K Means) 64

3.3 Percentage of tasks in each cluster (GMM) 68

3.4 Scores for performance evaluation parameters 69

3.5 Accuracy percentage of classification algorithms 70

4.1 Comparison of work done in the domain of container place-

ment in cloud data centers 78

4.2 Objectives and Experiment sets for Container Placement . . 102

4.3 Parameter values used in algorithms (ACO, DFF and DF-

FLSM) . 103

4.4 PM configurations in homogenous environment for Container

Placement . 103

4.5 VM and container configurations in homogenous environ-

ment for Container Placement 104

4.6 PMs configurations in heterogenous environment for Con-

tainer Placement . 104

xxiii

4.7 VMs and container configurations in heterogenous environ-

ment for Container Placement 104

4.8 Percentage Reduction in average energy consumption, aver-

age active VM and average active PM of DFFLSM in com-

parison to other container placement algorithms in homoge-

nous environment . 108

4.9 Percentage reduction in average energy consumption, aver-

age active VM and average active PM of DFF in comparison

to other container placement algorithms in homogenous en-

vironment . 108

4.10 Percentage reduction in average energy consumption, aver-

age active VM and average active PM of DFFLSM in com-

parison to other container placement algorithms in heteroge-

nous environment . 113

4.11 Percentage reduction in average energy consumption, aver-

age active VM and average active PM of DFF in comparison

to other container placement algorithms in heterogenous en-

vironment . 113

5.1 Comparison of work done in the domain of container consol-

idation . 121

5.2 Parameters of EEACO . 136

5.3 Objectives and Experiment sets for Container Consolidation 143

5.4 PM configurations in homogenous environment for Container

Consolidation . 144

xxiv

5.5 VM and container configurations in homogenous environ-

ment for Container Consolidation 144

5.6 PMs configurations in heterogenous environment for Con-

tainer Consolidation . 144

5.7 VMs and container configurations in heterogenous environ-

ment for Container Consolidation 145

5.8 Comparison of EEFFO for average energy consumption re-

duction in Homogenous environment (in percent) 146

5.9 Comparison of EEACO for average energy consumption re-

duction in Homogenous environment (in percent) 147

5.10 Comparison of EEFFO average active VM reduction in ho-

mogenous environment . 149

5.11 Comparison of EEACO average active VM reduction in ho-

mogenous environment . 149

5.12 Comparison of EEFFO average active PMs reduction in Ho-

mogenous environment (in percentage) 151

5.13 Comparison of EEACO average active PMs reduction in Ho-

mogenous environment (in percentage) 151

5.14 Comparison of EEFFO average energy consumption reduc-

tion in Heterogenous environment (in percent) 156

5.15 Comparison of EEACO average energy consumption reduc-

tion in Heterogenous environment (in percent) 156

5.16 Comparison of EEFFO average active VM reduction in het-

erogenous environment . 159

xxv

5.17 Comparison of EEACO average active VM reduction in het-

erogenous environment . 159

5.18 Comparison of EEFFO average active PMs reduction in Het-

erogeneous environment (in percent) 159

5.19 Comparison of EEACO average active PMs in Heteroge-

neous environment (in percent) 161

6.1 Tukey multiple comparisons of mean difference for energy

consumption and SLA violations in homogenous and het-

erogeneous data center for different container placement al-

gorithms . 169

6.2 Tukey multiple comparisons of significance values for energy

consumption and SLA violations in homogenous and hetero-

geneous data center for different container placement algo-

rithms . 170

6.3 Tukey multiple comparisons of mean difference for energy

consumption and SLA violations in homogenous data center

for different container consolidation algorithms with MU as

container selection algorithm 172

6.4 Tukey multiple comparisons of mean difference for energy

consumption and SLA violations in data center for different

container consolidation algorithms with MCor as container

selection algorithm . 173

xxvi

6.5 Tukey multiple comparisons of significance values for energy

consumption and SLA violations in data center for different

container consolidation algorithms with MU as container se-

lection algorithm . 174

6.6 Tukey multiple comparisons of significance values for energy

consumption and SLA violations in data center for different

container consolidation algorithms with MCor as container

selection algorithm . 175

6.7 Tukey multiple comparisons of mean difference for energy

consumption and SLA violations in heterogeneous data cen-

ter for different container consolidation algorithm with MU

as container selection algorithm 178

6.8 Tukey multiple comparisons of mean difference for energy

consumption and SLA violations in heterogeneous data cen-

ter for different container consolidation algorithm with MCor

as container selection algorithm 179

6.9 Tukey multiple comparisons of significance values for energy

consumption and SLA violations in heterogeneous data cen-

ter for different container consolidation algorithm with MU

as container selection algorithm 180

6.10 Tukey multiple comparisons of significance values for energy

consumption and SLA violations in heterogeneous data cen-

ter for different container consolidation algorithm with MCor

as container selection algorithm 181

xxvii

Chapter 1

Introduction

In this chapter, the concept of energy efficiency in cloud data centers

is introduced, highlighting its significance in today’s digital landscape. The

chapter provides a roadmap for the entire thesis, outlining research objec-

tives, discussing the contributions made by this study, and presenting the

organizational structure of the thesis to guide the reader through the re-

search journey.

1.1 Introduction

Cloud computing is the most innovative mechanism for delivering com-

puter resources as a service. It signifies a transition away from computing

as a bought product and approaching computation as a utility provided

to clients via the Internet by large data centres. It has grown into a new

computing paradigm that enables customers to have on demand access to

computer services such as CPU/GPU, RAM, and disk storage. The cloud

computing paradigm arose as a result of outsourcing and transformation

operations, as well as the adoption of virtualization technology. Cloud re-

sources were previously packed into several sorts of Virtual Machines (VMs)

to serve cloud users. This indicates that cloud adoption has hit a tipping

point, with cloud now hosting the vast majority of business workloads. To

carry out their everyday activities, any organisation, whether a corpora-

tion or an educational institution, needs IT infrastructure (hardware and

software) for computing and storage. Moreover, the cost of maintaining

1

both hardware and software is always significantly higher than the cost of

installing the same. Over time, it is possible that on-premises storage so-

lutions may struggle to accommodate the continuous generation of data at

high volumes. Even if they attempt to do things following the traditional

strategy, they will need to spend considerably in infrastructure to achieve

success. Most crucially, on-premises data warehouses may be incapable of

supporting modern analytics solutions that require rapid data processing.

As a result, there is a significant expense and stress load on the Information

Technology (IT) staff accountable for administering an organization’s IT

infrastructure leading to many organizations/enterprises adopting a multi-

cloud strategy. The amount of data and transaction volume stored in in-

stitutional data centres is continually expanding (Sahinaslan et al., 2022).

Cloud computing signifies a substantial shift in the approach to design,

create, deploy, expand, improve, monitor and manage IT solutions. The

current state of computing presents a paradox: computers are increasingly

becoming more efficient while the cost of computing per unit is rapidly

declining, to the extent that computing power is now widely regarded as

a utility(Lasica and Firestone, 2009) (Avram, 2014). Firms choose cloud

computing and data storage over traditional computing and data storage

approaches for a variety of reasons. Cloud migration, like any new tech-

nology, comes with risks and drawbacks, such as security issues. However,

the benefits greatly exceed the disadvantages. Cloud computing offers var-

ious advantages to IT professionals, including portability, upgradeability,

scalability, high availability, sharing resources, and, most crucially, cost ef-

fectiveness (Carroll et al., 2011). Because of these factors, operators and

software providers are migrating their architecture to the cloud in order to

gain greater flexibility while cutting costs. A corporation must examine

many things before moving to the cloud. To start, the client must follow

the current cloud system’s technical criteria. Second, data transmission

to the cloud must not break any national security legislation or jeopar-

dise client data privacy. Third, the internal environment must allow for

workload execution on the cloud.

2

1.1.1 Virtualization in Cloud

Virtualization allows a single physical system to host and manage several

virtual servers, increasing resource efficiency and decreasing total power

consumption (Barrett and Kipper, 2010; D. Huang and Wu, 2018; Jain

and Choudhary, 2016; Shroff and Shroff, 2011). A rising number of enter-

prises are moving to virtualization to streamline workloads and make IT

systems more adaptable and agile. Virtualization in computing refers to

the establishing a virtual (rather than a real) replica of a resource or item,

such as a server, OS, file server, or networking.

The roots of virtual memory extend to the late 1950s when the University

of Manchester’s Atlas system introduced automatic page replacement in

a transistorized mainframe (Campbell and Jeronimo, 2006). Atlas auto-

mated the existing concept of paging, becoming the first functional proto-

type for virtual memory. The 1960s witnessed the emergence of the term

“virtual machine” as IBM introduced the System/360 model 67, featuring

virtual memory and a self-virtualizing processor instruction set (Camp-

bell and Jeronimo, 2006). The accompanying CP-67 evolved into virtual

machine (VM) operating systems, allowing concurrent execution of mul-

tiple operating systems on a single processor. IBM’s mid-1960s M44/44X

project explored time-sharing with virtual machines, laying the groundwork

for widely used VM/timesharing systems like VM/370. Simultaneously,

hardware virtualization took shape, enabling virtual machine monitors to

run in isolated environments with minimal resource overhead. By the mid-

1970s, virtualization gained widespread acceptance, addressing challenges

like virtual storage and enhancing system capacity (Campbell and Jeron-

imo, 2006). The 1980s and 1990s saw a decline in hardware-level virtual

machines with the rise of affordable minicomputers and personal comput-

ers (Campbell and Jeronimo, 2006). However, the era introduced a new

category of virtual machines, exemplified by Sun Microsystems’ Java Vir-

tual Machine (JVM) and Microsoft’s Common Language Runtime (CLR).

These machines, emerging in the 1990s, operated in software, providing

portability across different hardware platforms and marking a significant

expansion of virtual machines into various domains, particularly in soft-

3

ware development (Campbell and Jeronimo, 2006).

The use of virtualization and virtual environments are essential concepts

in cloud computing for data transfer. It helps both the guest user and

the provider, while the former receives the components needed to complete

the request; the latter is able to lodge several guests at no additional cost.

Virtualization technology allows customers to easily abstract the physical

features of computer resources and effectively multiplex underlying hard-

ware resources. This service is provided by a hypervisor/Virtual Machine

Monitor (VMM), which is a software layer that allows many guests OS to

operate concurrently on a single physical host. Virtualization is required for

the management of resources in a cloud-based environment since it multi-

plexes the resources. The first and most crucial advantage of virtualization

is the isolation it provides. A flaw in one programme may cause other

applications on the same system to fail. Most malware operates in this

manner in order to crash other programmes, hack other programmes, and

steal sensitive data. Virtualization in cloud computing improves security

by safeguarding the integrity of cloud components as well as guest virtual

machines. The second benefit of virtualization is improved performance.

User-level sharing is possible in a classic multiuser system. In user-level

sharing, different programmes compete for processing resources, memory,

network bandwidth, and disk I/O. Cloud service providers also offers high

use of pooled resources, resource sharing, and fast provisioning. Because

VMs have exclusive access to resources, they offer stronger performance

guarantees than shared infrastructure. Virtualized cloud component ma-

chines may also be scaled up or down on demand and offer dependability.

Even in the case of application running within a virtual machine (VM), the

resources of the host computer are utilized. It requires a high configuration

host machine to efficiently run multiple virtual machines on a single host.

Inadequate power can lead to performance instability problems. A virtual

computer is less efficient in terms of hardware accessibility. It does not have

direct access to the hardware. Its speed is insufficient for most IT busi-

nesses. Because of the challenges outlined above, the paradigm has shifted

from virtualization to containerization. Containers are substantially lighter

4

than virtual machines and require much less time to boot up. This also al-

lows more applications to be packed into a server—hundreds or thousands

of containers may operate on a server, whereas just a couple dozen VMs

can run on the same hardware.

Virtualization plays a crucial role in optimizing resource management within

cloud computing environments, thereby improving overall operational ef-

ficiency. In the realm of cloud computing, it serves as a cornerstone for

streamlined resource maintenance. This technology substantially enhances

security by ensuring the integrity of both cloud components and guest

virtual machines. Moreover, the dynamic scalability of virtualized ma-

chines associated with cloud components supports reliable and on-demand

resource adjustments. In the context of cloud computing, the discourse

on virtualization is extensive, with businesses leveraging a combination of

servers for various applications. Virtualization becomes imperative in max-

imizing server utilization and efficiently servicing requests, ensuring that

a significant portion of server time is dedicated to productive tasks. This

approach provides transparency to applications running on virtualized en-

vironments, reducing maintenance costs and minimizing energy wastage.

The reduction in the number of physical servers through virtualization di-

rectly translates into energy savings. In desktop virtualization, updates can

be implemented swiftly, impacting multiple instances simultaneously. This

multifaceted approach not only makes server maintenance more economi-

cal but also aligns with sustainability goals by reducing the environmental

footprint associated with energy consumption and hardware disposal.

1.1.2 Container Perspective: Paradigm Shift

Cloud computing relies on virtualization technology, which partitions

physical assets like servers into virtual components referred to as VMs.

Certain extra degrees of abstraction in virtualization, on the other hand,

has lowered work performance. Containerization (Sturm et al., 2017) is a

novel virtualization technology paradigm that has received a lot of inter-

est recently. Containerization allows applications to share their host OS

kernel and only include the binaries and libraries required, resulting in a

5

lower footprint than a VM. While cloud-based VMs make it simple to grow

computing capacity on demand, clients must plan ahead of time since VMs

take time to spin up. Waiting until demand rises can result in revenue loss

due to unfulfilled demands, while acquiring too much in advance can result

in wasted capacity and greater non-revenue producing expenses - exactly

the situation that a cloud solution is designed to address. Containers are

a lightweight solution that keeps all of the benefits of VMs, such as user

and application separation in their own silos on a shared hardware plat-

form, while increasing speed and server resource consumption for fluctuat-

ing loads. Containerization allows various virtual instances and resources

to coexist on a single host operating system, sharing its associated libraries,

drivers, and binaries. It, therefore, reduces the number of resources wasted

during the computing process. Containers use the same host OS repeat-

edly, as opposed to installations. Containerization also makes it easier to

distribute and manage apps and services across multiple infrastructures,

such as edge/fog, cloud, and IoT. Containerization is revolutionizing how

companies function due to its benefits in the collection and efficient use

of resources, savings, mobility, reduced energy consumption, and speedy

startup. While traditional VMs enhance the efficiency of physical servers,

they come with significant cost and effort overhead. On the other hand,

a container-based approach allows data center owners to distribute only

the necessary code for an application’s functionality, eliminating unnec-

essary dependencies. As a result, data center systems are utilized more

efficiently. In typical VMs, it’s the guest operating system, rather than

the actual application, that consumes the majority of resources. The con-

tainers’ smaller footprint offers several advantages across the data centre.

Adopting a container-based approach results in several advantages, includ-

ing reduced rack space requirements, lower energy consumption for cooling

and electricity, decreased software licensing costs, and reduced maintenance

efforts. Containers outshine other virtualization solutions when it comes

to delivering high-quality services. Furthermore, due to their lower re-

source demands compared to virtual machines (VMs), more instances can

be hosted and consolidated on a single server. This efficiency leads to de-

6

creased energy usage since fewer servers are necessary to support the same

number of services. For instance, when configured with a maximum latency

of 3000 ms, Docker, a container engine, can run up to 21 percent more ser-

vices than KVM, a hypervisor. What’s more, Docker achieves this level of

performance while consuming 11.33 percent less energy compared to KVM,

as documented by Cuadrado et al. [Cordero et al. in 2017]. Figure 1.1 il-

lustrates the architectural contrast between traditional hypervisor-based

virtualization and container-based virtualization, while Table 1.1 provides

a comprehensive comparison between Virtualization and Containerization.

Mulahuwaish (Mulahuwaish, 2022) compared containerized microservice-

based architectures with monolithic applications, using the “EasyTravel”

application on AWS. The study included load generation, Dynatrace mon-

itoring, and automated scaling.

Results indicate the microservice architecture outperformed the mono-

lithic in key metrics:

� Throughput: Microservices handled nearly double the requests, out-

pacing the monolithic architecture.

� Response Time: Monolithic response time soared to almost 50 seconds

under load, while microservices maintained around 300 ms on average.

� Errors: Monolithic architecture showed increasing errors, while mi-

croservices had brief periods of 4xx errors and minimal 5xx errors.

The findings underscore the scalability, reliability, and performance advan-

tages of containerized microservices, emphasizing their efficiency in han-

dling high loads, maintaining response times, and managing errors. The

research provides a comprehensive methodology and implementation in-

sights, supporting the adoption of containerized microservice architectures

for modern datacenter deployment.

1.1.3 Energy Consumption in Data centre

The IT infrastructure of a business includes processing units, network-

ing, and data storage. The current cloud service design is very centralised,

which implies that several types of services may be run through a single

7

Figure 1.1: Comparison between traditional, hypervisor and container architecture

Table 1.1: Difference between Virtualization and Containerization

Parameters Virtual Machine Container

Guest Operat-
ing System

Hypervisor allows multiple and
distinct OS to run on the same
PM. A single VM is given a cer-
tain amount of RAM on which to
run the Kernel.

All the guests share the same
base OS and its Kernel. The im-
age of the Kernel is loaded into
the physical memory.

Security Security of the VMs depends
on how the hypervisor is imple-
mented.

Container software like Docker
have built-in security features
that can be leveraged.

Performance The VMs have a small overhead
when compared to containers as
the translation of machine in-
structions occurs from the host
OS to guest OS.

There is little to no overhead in
using containers as the applica-
tions are executed in the base OS
itself.

Isolation Hypervisor isolates each VM from
host OS as well as from other
VMs. This means files, libraries
etc. cannot be shared between
guests and the host.

Each container has its own set of
file systems that can be shared
between other applications.

Startup time VM takes sufficient time to boot. Containers take less time to boot
as compared to VMs.

Storage VMs take ample storage as the
whole Kernel and the secondary
programs associated with the OS
need to be installed.

Since the base OS is shared, con-
tainers require less storage.

8

Data Centre (DC). Because of the exponential development in data gath-

ering and consumption, the demand for data centres is increasing. Cloud

computing rapid advancement in turn increases the data centers. The de-

mand for data centre energy will rise from 200 TWh in 2016 to 2967 TWh in

2030 (Andrae, 2019). Figure 1.2 shows the DC demand of global electricity

2010–2030 (Andrae and Edler, 2015).

Figure 1.2: Data Center demand of global electricity 2010–2030

Cloud computing is heavily reliant on a multitude of data center servers

that are necessary to provide services to a vast clientele on a pay-per-use

basis. However, these servers consume a significant amount of energy and

produce heat that requires cooling measures to ensure their optimal func-

tioning. The physical space occupied by these resources, along with the

networking devices, cooling systems, displays, and server farms, among

other components, demands substantial electricity. As of now, cloud data

center power consumption accounts for approximately 1.1 to 1.5 percent

of global electricity usage, and this figure is expected to rise considerably

in the future (How Much Energy Do Data Centers Really Use? - En-

ergy Innovation: Policy and Technology, n.d.). As the number of Internet

of Things (IoT) based applications rises, the utilisation of cloud services

grows rapidly, increasing cloud DCs’ power consumption by 20 percent to

9

25 percent every year. Existing research estimates that data centres pro-

duce 78.7 million metric tonnes of CO2, accounting for 2 percent of world

emissions (Gill and Buyya, 2018). These concerning numbers need a re-

consideration of infrastructure’s energy efficiency. Making resources green

using green technology has therefore become a top priority for a number of

government and business organisations. Green IT, from an environmental

standpoint and to solve IT-related environmental problems, offers a diverse

set of strategies and practises through a variety of green initiatives. En-

ergy efficiency is one of the simplest and most efficient ways to save money,

reduce greenhouse gas pollutants, create jobs, and satisfy growing power re-

quirements. Energy usage in cloud DCs is inefficient owing to underloading

and overloading of infrastructure resources. Energy is utilised mostly while

certain resources are idle, raising the cost of cloud services. Furthermore,

data centres contribute to a number of environmental challenges related

to CO2 emissions. As a result, cloud DCs must provide low-carbon cloud

services that generate less heat in the form of greenhouse gas emissions.

1.1.4 Energy Efficient Techniques in Cloud Data Centers

Power saving has recently been a top priority for data centres. Accord-

ing to survey, an average data centre consumes the same amount of power

as 25,000 homes (Dayarathna et al., 2016). Clearly, the emergence of inno-

vative solutions suitable of efficiently reducing energy usage in data centres

is required for the future advancement of cloud computing. Many cloud

providers have promised to attain carbon neutrality and are researching

innovative methods to make cloud DCs and cloud-based services more eco-

logically friendly. Most of the current cloud computing infrastructure relies

on VM architecture, where cloud providers offer VM images with different

specifications and resource levels. While VMs are commonly utilized in

the cloud, a novel approach to cloud computing based on containers has

rapidly gained prominence in recent years. This container-based method-

ology offers a flexible and efficient solution for the distribution of resources

with a focus on energy efficiency. The power use of data centers is deter-

mined by a variety of factors, including hardware attributes, workload, net-

10

working infrastructure, application kinds, storage architecture, and many

more. By utilizing cutting-edge technologies like virtualization, resource

management, infrastructure auto-scaling, energy-aware scheduling, storage

space management, live migration of virtual machines, carbon footprint

reduction, and others, cloud computing can significantly enhance energy

efficiency. These techniques can be implemented at various levels of com-

ponents and can be integrated to create a comprehensive system referred

to as a green data center. A green data center not only addresses en-

vironmental concerns by reducing energy consumption but also delivers

financial benefits by enhancing cost-effectiveness in cloud computing oper-

ations. Every computer system comprises two fundamental components,

namely hardware and software. Similarly, a data center has two primary

elements: hardware and software, and both can be optimized to minimize

energy consumption. The software layer can be subdivided into three ad-

ditional levels: the operating system (OS) layer, the virtualization layer,

and the application layer. Energy usage in the data centre may be con-

siderably lowered by enhancing or altering these layers. Figure 1.3 and

figure 1.4 shows a taxonomical strategy for modelling data center energy

consumption at hardware and software level. To realize the objectives of

green cloud computing, it is essential to implement various techniques at

the individual program level. Apart from optimizing the software and hard-

ware components, external factors like the utilization of renewable energy

sources, adoption of sustainable organizational initiatives, and compliance

with government regulations are crucial in achieving the goals of green

cloud computing.

1.2 Research Problems and Objectives

Containerization technology introduced lately as a support of Virtualiza-

tion has led to better optimization of the resources. Still optimal placement

of containers onto the physical machines and server consolidation remains

an active research challenge where abstract level details of the resources

considered are not enough. Component level details of the resources should

be considered for offering better solutions.

11

Figure 1.3: Breakdown of data center energy demand modeling at the hardware level
based on taxonomies.

1.2.1 Objectives

Design and development of an energy efficient multicore-aware container

placement and container consolidation technique in cloud data centre that

incorporates all component level factors such as multiple cores, memory,

storage, and network while placing the containers on physical machines as

well as container migration to minimize energy usage within the cloud data

centre.

1.2.2 Sub Objectives

1. Identify and implement best-suited workload categorization technique.

2. Develop energy efficient techniques for placement of containers onto

physical machines considering CPU multi cores, memory, storage and

network together.

3. Container migration strategies are being developed in order to min-

12

Figure 1.4: An overview of data center energy consumption modeling at the software
level based on taxonomy.

imize energy usage while preserving the requisite Quality of Service

(QoS).

1.2.3 Research contribution

This research work focuses on identification and implementation of best-

suited workload categorization technique followed by development of energy

efficient techniques for containers placement and consolidation onto phys-

ical machines while maintaining QoS in cloud data centers (DC). The re-

search contribution of this work is discussed as below:

Workload characterization and categorization using the Bit Brains Trace

workload traces:

� Analyzed the BBT traces to gain insights into different types of work-

loads in cloud data centers.

� Characterized and categorized workloads by examining their resource

usage patterns (CPU usage, memory requirements, I/O operations,

and network traffic patterns).

� The workload characterization and categorization data has been used

to determine the most suitable VM size for each workload based on

13

its resource requirements and performance expectations.

� Implemented and compared different classification techniques for BBT

traces to find the most suitable model that can be used by researchers

help to build a prediction model for future workload.

Implementation of a proposed metaheuristic container placement algorithm

in CloudSim 4.0 for both homogenous and heterogenous environments.

� Designed and implemented container placement algorithms that opti-

mize energy consumption by leveraging metaheuristic techniques.

� Integrated the algorithm into CloudSim 4.0 environment, a popular

cloud simulation framework, to evaluate its performance and energy

efficiency in a realistic environment and compare the proposed algo-

rithms with pre-existing algorithms.

Implementation of a proposed metaheuristic container consolidation algo-

rithm in CloudSim 4.0 for both homogenous and heterogenous environ-

ments.

� Designed and implemented container consolidation algorithms in cloud

data centers utilizing metaheuristic approaches that dynamically re-

organizes containers across VMs and PMs aiming to minimize energy

consumption and cause least SLA violations.

� Integrated the algorithms within the CloudSim 4.0 framework to eval-

uate its effectiveness in achieving energy-efficient container consolida-

tion.

These detailed research objectives aim to provide a comprehensive under-

standing of workloads in cloud data centers, optimize VM sizing decisions,

and develop innovative container placement and consolidation algorithms.

By addressing these objectives, the study aims to contribute to the body

of knowledge on energy-efficient resource management in cloud comput-

ing, leading to improved sustainability and cost-effectiveness in data center

operations.

14

1.2.4 Thesis Organization

The thesis organization for the study on energy-efficient container place-

ment and consolidation in cloud data centers is structured as follows:

Chapter 1: Introduction

� Provides an introduction to cloud computing, virtualization, paradigm

shift to containerization and why energy efficiency is required in cloud

data centers.

� Presents an outline of the study subject, aims, and research questions.

� Outlines the significance and relevance of energy-efficient container

placement and consolidation in cloud data centers.

� Presents the structure and organization of the thesis.

Chapter 2: Background and Literature Review

� Provides a comprehensive review of the background and related liter-

ature on energy efficiency in data centers.

� Discusses the existing approaches, techniques, and algorithms for re-

source management, workload characterization, container placement,

and consolidation.

� Highlights the gaps and limitations in the current research and iden-

tifies the research opportunities in the field.

Chapter 3: Workload Characterization and Categorization

� Introduces the methodology used for workload categorization and char-

acterization.

� Describes the BBT dataset and its relevance to the research objectives.

� Presents the characterization and categorization techniques applied to

the workloads in the dataset.

� Analyzes the findings and provides insights into the different types of

workloads and their resource requirements.

15

Chapter 4: Container Placement in Cloud Data Centers

� Explores the theoretical foundation and principles of container place-

ment in cloud data centers.

� Discusses the proposed metaheuristic container placement algorithms.

� Describes the implementation details and integration of the algorithms

into the CloudSim 4.0 simulation framework.

� Evaluates the algorithm’s performance in terms of average energy con-

sumption, average active VMs used, average active PMs used and av-

erage overall SLA violations through simulation experiments.

Chapter 5: Container Consolidation in Cloud Data Centers

� Discusses the theoretical aspects and challenges of container consoli-

dation in cloud data centers.

� Presents the proposed metaheuristic container consolidation algorithms.

� Describes the implementation details and integration of the algorithm

into the CloudSim 4.0 simulation framework.

� Conducts simulation experiments to evaluate the algorithm’s efficiency

in achieving energy efficient resource consolidation, average active

VMs used, average active PMs used and average overall SLA vio-

lations.

Chapter 6: Statistical Analysis

� Discusses the theoretical aspects of statistical analysis.

� Presents the results obtained by the applying tukey HSD test to the

output of container placement and consolidation algorithms.

Chapter 7: Discussion

� Discusses the theoretical aspects of container placement and consoli-

dation algorithms.

� Discusses the results of container placement and consolidation algo-

rithms.

16

Chapter 8: Conclusion and Future Work

� Summarizes the main findings, contributions, and implications of the

research.

� Describes the study’s weaknesses and identifies topics for future inves-

tigation and improvement.

� Concludes the thesis with a reflection on the significance of energy-

efficient container placement and consolidation in cloud data centers

and its potential impact on the sustainability and efficiency of cloud

computing environments.

The organization of the thesis follows a logical flow, starting with the back-

ground and literature review, progressing through the different research as-

pects (workload characterization and categorization, container placement,

and container consolidation), and concluding with the evaluation of the

proposed algorithms and future research directions.

17

Chapter 2

Background and Literature

Review

In the realm of cloud data centers, achieving optimal energy efficiency

is paramount. This literature review chapter embarks on a comprehensive

exploration of the multifaceted approaches adopted to enhance energy ef-

ficiency. It traverses the landscape of hardware and software techniques,

providing a nuanced understanding of the myriad strategies employed to

minimize energy consumption in the dynamic and ever-evolving domain of

cloud data centers.

2.1 Background and Literature Review

Data centers are crucial infrastructure with high energy consumption

that deliver Internet-based services on a large scale. Power utilisation mod-

els are critical in developing and upgrading energy-efficient operations in

data centres with the goal of reducing excessive energy use. In recent years,

the importance of energy efficiency in data centers has significantly grown

and has become more complex. To ensure uninterrupted data availabil-

ity, every component of the data center design must effectively perform its

designated tasks to minimize downtime and necessitate appropriate energy

support. The infrastructure, including power supply, technical cooling, and

technical security, forms the foundation of all information technology (IT)

infrastructures. Any disruption in the physical infrastructure, no matter

how small, has a significant impact on the functionality of IT services. The

18

key attributes of a green data center lies in its energy efficiency and low

global environmental impact. A green or sustainable data center is a facility

for storing, managing, and distributing data, where all systems, including

the hardware and software components, are optimized for energy efficiency.

This approach leads to reduced carbon emissions, cost savings, and im-

proved operational efficiency. These eco-friendly data centers contribute to

the efforts of modern enterprises in conserving power and minimizing their

carbon footprint.

The literature review is structured into two primary categories: Hardware-

based techniques and Software-based techniques. 1. Hardware-based tech-

niques: This category encompasses methods and approaches that operate

at the physical hardware level of a data center. This includes considerations

and optimizations related to various hardware components such as CPUs

(Central Processing Units), GPUs (Graphics Processing Units), memory

(RAM), storage devices, and networking infrastructure. Techniques falling

under this category are concerned with how to enhance the performance,

efficiency, and utilization of these physical resources within a data center.

2. Software-based techniques: In contrast, this category comprises methods

that operate at higher levels of abstraction within the data center environ-

ment. These techniques are applied in the realm of software, virtualization,

and operating systems. They focus on optimizing the utilization and man-

agement of resources in a more abstract or virtualized manner. Examples

include strategies for efficient virtual machine management, containeriza-

tion, orchestration, and operating system-level optimizations.

Hardware and software form a symbiotic relationship crucial for energy-

efficient systems. Focusing solely on one aspect may limit efficiency, as

demonstrated by well-optimized software hindered by inefficient hardware,

and vice versa. Researchers advocate a comprehensive approach, con-

sidering both software-based techniques, like workload scheduling, and

hardware-based strategies for infrastructure enhancement. This combined

optimization reduces costs, energy consumption, and environmental im-

pact, aligning with sustainability goals. In the ever-evolving landscape

of cloud computing, acknowledging advancements in both hardware and

19

software ensures a holistic understanding of energy-efficient practices, im-

perative for compliance with regulatory energy efficiency guidelines for data

centers. In conclusion, acknowledging both hardware and software-based

techniques in the context of reducing energy demand in cloud data centers

is essential for achieving a well-rounded, effective, and sustainable approach

to energy efficiency. It allows for a more nuanced understanding of the chal-

lenges and opportunities in this complex field.

In essence, hardware-based techniques deal with the physical components

of the data center, while software-based techniques address the software

and virtualization layers that interact with and control these hardware re-

sources. Each category of techniques offers different ways to improve the

performance, efficiency, and overall effectiveness of data center operations.

2.1.1 Hardware based techniques

2.1.1.1 Dynamic Voltage and Frequency Scaling of CPU

In the current market, there are several technologies available for dynam-

ically adjusting CPU frequency and voltage based on workload. In their

work, Kim et al. [Kim et al., 2011] incorporated the Dynamic Voltage

and Frequency Scaling (DVFS) capability of the CPU into their schedul-

ing algorithm. This scheduling approach took into account the deadlines

of Bag-of-Tasks applications as constraints and dynamically adjusted the

CPU frequency to ensure the timely completion of sub-tasks. A Bag-of-

Tasks application typically comprises a set of independent and identical

tasks.

Similarly, Pietri et al. [Pietri et al., 2014] also introduced an algorithm

for scheduling that capitalizes on the DVFS capabilities of the CPU. Their

algorithm’s major goal was to fine-tune the CPU rate in order to minimize

overall power usage while still achieving user-specified task completion con-

straints. The algorithms aimed to decrease overall energy consumption,

as DVFS was not always inherently energy-efficient due to the potential

increase in execution time when scaling the CPU frequency. This could

result in increased idle time for processors. As a result, the suggested

method only adjusted the frequency if it could reduce total energy use.

20

A multi-core processor consists of two or more cores that execute and in-

terpret program instructions. This enhances the overall program speed

and enables parallel computing, making multi-core processors suitable for

CPU-intensive tasks. Operating systems designed for multi-core systems

can handle multiple processes and threads, which leads to fundamental

concerns such as resource management and performance. The authors of

(Attia et al., 2017) conducted a study on multi-core processors, focusing

on power management issues in multi-core architectures. Their proposed

technique involves using clustered Dynamic Voltage and Frequency Scal-

ing (DVFS) in asymmetric multi-core processors. This technique utilized

scoring to schedule critical section threads. An adaptive controlled strat-

egy controls the proposed technique, making decisions on how to efficiently

use the technique based on various parameters such as workload style and

current core usage. Dinakarrao [Dinakarrao, 2021] introduced a self-aware

power management scheme tailored for multi-core microprocessors. To im-

plement DVFS, the power management unit utilized a linear predictor to

anticipate the workload.

Dorronsoro et al. [Dorronsoro et al., 2014] described a multi-level hier-

archical strategy for planning large workloads of parallel computations on

multi-core systems with distributed processing. The primary objective was

to concurrently minimize computation time and energy utilization. The

authors implemented this technique by combining schedulers at the dis-

tributed system and data center levels. Johari and Kumar [Johari and

Kumar, 2015] focused on the performance aspect of multi-core systems,

specifically task migration and load balancing. They proposed four algo-

rithms: random search, sequential search, average method, and random

search with spatial locality. The average method was a load-balancing al-

gorithm implemented at the core level, considering the global and local view

of the cores and using a threshold to prevent core overutilization. However,

this load balancing algorithm was not suitable for dynamic workloads, and

the threshold formula was not robust. Task migration had overhead due

to state transfer and cache locality issues when data needed to be loaded

again into the cache of the new core. Mann [Mann, 2016] addressed the

21

task migration problem by pinning virtual machine (VM) CPU cores to

specific physical machine (PM) CPU cores. A cost problem was formu-

lated, and constraint programming was used to find a solution. The first

stage involved VM-to-PM mapping to minimize the cost function, calcu-

lating the number of overloaded CPUs, and reducing the count of active

servers by allocating VMs from lightly used and overloaded PMs using the

Modified Best First Decreasing (MBFD) Heuristic. In the second stage, op-

timal core mapping was performed using exhaustive backtrack search and

first fail heuristic. However, the search space could be further reduced us-

ing advanced heuristics. Additionally, the author did not consider memory

resources when scheduling VMs. To efficiently utilize memory resources,

modern operating systems employ Non-Uniform Memory Access (NUMA)

hardware, which automatically optimizes application performance on the

hardware. In NUMA, software threads of an application are scheduled on

cores where the corresponding memory contents reside, resulting in faster

memory access. It is also beneficial for a process being swapped-in to run

on a previously used core to take advantage of the cache contents. In

NUMA, task migration should be infrequent, and associated memory con-

tents should remain on the same core. With the introduction of Kernel Vir-

tual Machine (KVM), the traditional Linux Kernel has been transformed

into a hypervisor that schedules each virtual machine as a running process.

However, the memory requirements of these virtual machines are not taken

into account. This can lead to performance degradation on NUMA hard-

ware, particularly with long-running tasks like virtual machines. Zijlstra

[Zijlstra, 2011] proposed a dynamic NUMA binding approach to address

this issue. The kernel ensured that the process of the virtual machine ran

on the CPU of the corresponding NUMA node and properly allocates mem-

ory resources. Each process is held by the scheduler within the home node

until load balancing begins. Arcangeli [Arcangeli, 2012] presented AutoN-

UMA, a resource management approach that focused on memory access by

processes. It suggested that the kernel should monitor the memory access

of each process and migrate frequently accessed pages without the appli-

cation being aware of the memory migration. However, due to the reliance

22

on extensive per-process metadata, scalability issues might arise in very

large memory systems. Chen et al [Chen et al., 2018] proposed an innova-

tive approach for DVFS called “lightweight learning-directed DVFS.” This

approach leveraged counter propagation networks to sense, classify, and

predict task behavior, ultimately determining the optimal voltage and fre-

quency settings for the system. Moreover, the authors provided an efficient

method for assessing performance requirements for users. The study’s re-

sults illustrated that the learning-directed DVFS approach can accurately

forecast the optimal CPU frequency with remarkable precision, achieving

efficiency gains of up to 42 percent.

2.1.1.2 Energy efficiency in GPU

A graphical processing unit (GPU) is a fast computer chip designed pri-

marily for image rendering. However, its parallel processing architecture

has made it suitable for High-Performance Computing (HPC) in cloud and

server infrastructures. Companies like Nvidia, Intel, and ATI are develop-

ing more general-purpose components for GPUs, allowing software devel-

opers to utilize the extra processing power on video cards for non-graphic

operations. The availability of general-purpose programming languages and

Application Programming Interfaces (APIs) like RapidMind and Brook has

made it easier for software developers to target GPUs. Nevertheless, de-

livering HPC through the cloud remains challenging. Even with hardware-

level virtualization for GPUs, latency becomes a significant concern as the

kernel of an application may not fully utilize the GPU’s capabilities. This

necessitates scheduling algorithms that can enhance the co-execution of

multiple applications and maximize GPU utilization. Ukidave et al [Uki-

dave et al., 2016] introduced Mystic, a framework that scheduled workloads

on GPUs while minimizing interference between applications. Before exe-

cution, a profile was created based on six compute resources that applica-

tions contended for, including stream multi-processors, memory resources,

and the interconnect network. Mystic used collaborative filtering tech-

niques based on Single-Value Decomposition to measure and predict these

resources. Applications were scheduled on an ideal GPU if available, or

dispatched to the GPU with the lowest similarity score compared to other

23

applications. Mystic improved throughput, GPU utilization, and main-

tained Quality of Service (QoS). However, the prediction of application

characteristics based on previous executions before the current applica-

tion’s execution might have lead to false predictions.

Xu et al [Xu et al., 2017 presented GScheduler, which considered function

calls and resource usage during application execution to reduce and detect

interference between co-executing applications. The similarity score for

key function calls impacting GPU resource utilization was obtained using

a GPU resource usage vector and graph. GScheduler outperformed Least

Loaded and Round Robin schedulers. However, creating a profile for each

application could potentially cause resource exhaustion. The authors did

not compare GScheduler with other machine learning frameworks like Mys-

tic, so its efficiency relative to those frameworks was unknown.

Jararweh et al. [Jararweh et al., 2012] proposed a comprehensive power

and performance control architecture that reduced energy usage in GPU-

based clusters while maintaining system performance at an appropriate

level. The system actively adjusted the GPU cluster to respond to varia-

tions in workload demands and enhanced GPU device inactivity.

Tang et al [Tang et al., 2019] explored the impact of GPU DVFS on

power usage and performance in deep learning. Their tests covered various

GPU models, DVFS settings, and Deep Neural Network (DNN) setups.

They found that different convolutional algorithms (Winograd, FFT, and

GEMM) exhibited varying degrees of power conservation with GPU DVFS.

Optimizing the core frequency could lead to energy savings, amounting to

14.5% in GEMM, 12.6% in FFT, and 15.8% in Winograd. These findings

highlighted that finding the ideal core frequency not only enhances DNN

performance by as much as 33% but also resulted in substantial reductions

in energy consumption during training and inference. This underscores the

potential of GPU DVFS for energy-efficient DNN processing while main-

taining minimal impact on performance.

2.1.1.3 Dynamic Voltage and Frequency Scaling of Memory

Memory in servers and computing systems is a physical device that

stores information in the form of bits. The cost of memory decreases as its

24

size increases, but this comes at the expense of speed. To ensure maximum

CPU utilization, memory needs to respond to data requests at the same

speed as the processor executes instructions. This led to the classification

of memory as volatile and non-volatile. Volatile memory, such as SRAM

and DRAM, can respond faster to CPU requests but loses its contents when

power is lost. On the other hand, non-volatile memory, often referred to

as storage, retains data even when power is off. This section focuses on

volatile memory (referred to as memory), while non-volatile memory (stor-

age) is discussed later.

In their study, David et al. [David et al., 2011] introduced an approach that

employs Memory DVFS to dynamically adjust memory frequencies based

on workload, effectively minimizing energy consumption. They also intro-

duced a power model that quantified the power dependency on frequency

and demonstrated substantial power reductions through the implementa-

tion of memory DVFS. Additionally, they proposed a control algorithm

aimed at fine-tuning the memory frequency and voltage. This approach

was assessed on real hardware using SPEC CPU2006 workloads and holded

the potential for extension to various workload types and DVFS applica-

tions, applicable to both memory and CPU components.

Deng et al. [Deng et al., 2018] proposed an approach involving active

lower-power modes, termed “MemScale,” designed to enhance energy pro-

portionality in the main memory. The primary goal was to enhance the

energy efficiency of the memory subsystem, which could account for up

to 40% of the overall system’s energy consumption. MemScale achieved a

performance degradation of less than 10%.

SRAM, composed of flip-flops, stores each bit using transistors but loses

data when power is lost. Its power consumption depends on access fre-

quency and can be comparable to DRAM at high frequencies. SRAM also

suffers from power leakage. To overcome these challenges, Fujita et al (Fu-

jita et al., 2017) suggested using embedded spin torque transfer MRAM

(e-STT-MRAM), which offered high write access speed and endurance due

to its technology’s smaller Magnetic Tunnel Junction (MTJ) size. In cloud

servers, accessing main memory is a known bottleneck, and using short

25

retention MTJs in e-STT-MRAM-based Last Level Cache (LLC) can sig-

nificantly increase operation speed and reduce power consumption.

Optimizing virtual machine memory sizes can enhance application per-

formance. Sakamoto et al. [Sakamoto et al., 2016] proposed an optimized

memory ballooning technique, a memory reclamation technique used by

the hypervisor to reclaim unused memory from virtual machines. The

technique dynamically adjusted the invocation time based on cache hit ra-

tio, resulting in increased throughput and avoidance of low-performance

virtual machines.

Chen et al. [Chen et al., 2017] addressed latency reduction and through-

put improvement for read operations by minimizing distortion and bias

caused by Least Frequently Used (LFU) and Least Recently Used (LRU)

algorithms. They proposed a greedy approach that combined LRU and

LFU, where the data cache called the greedy algorithm to free a portion of

memory when reaching a predefined limit. The approach reduced latency

and increased throughput, although the improvement for writing opera-

tions was minimal. In a related work, Blankstein et al. [Blankstein et al.,

2017] proposed hyperbolic caching for web applications, emphasizing the

efficient use of eviction data structures.

To handle the dynamic nature of workloads in cloud computing, Yang et

al. [Yang et al., 2015] modified the architecture of existing CPU/FPGA ac-

celeration systems. They created a CPU-Cache-FPGA (Filed Programmable

Gate Array) architecture that utilized its own data cache to minimize data

fetch latency. Bus snooping logic is employed to further reduce data access

latency. Simulations demonstrated a performance improvement of up to

2.6 times.

Bazzi et al. [Bazzi et al., 2018] provided a comprehensive overview of

Resistive RAM-based Non-Volatile Static Random Access Memory (NVS-

RAM) architectures, focusing on data storage and restoration. Traditional

DRAM is a non-volatile, read-write memory that stores data using capac-

itors. The charged and discharged states of the capacitor represent the

binary bits 1 and 0, respectively. However, DRAM requires constant re-

freshing to prevent data loss, which consumes significant energy and limits

26

its capacity. To address these issues, non-volatile memory is being incor-

porated into various aspects of computing.

Venkatesan et al. [Venkatesan et al., 2015] proposed a 3-level cache miss

model based on Miss Ratio Curves (MRC). It considered both system and

user perspectives to allocate cache resources appropriately, with DRAM at

level 1, non-volatile memory at level 2, and disk/magnetic tapes at level

3. Different types of non-volatile memory, such as Phase Change Mem-

ory (PCM), Ferromagnetic RAM (FRAM), and Magnetic RAM (MRAM),

have emerged. PCM detects resistance changes between amorphous and

crystalline states to represent data. The Multi-Level Cell (MLC) architec-

ture in PCM allows for multiple states, but it has drawbacks in terms of

performance, endurance, and power consumption. Single-Level Cell (SLC)

PCM, with one bit per cell, offers lower power consumption, higher per-

formance, and longer lifespan. Qiu et al. [Qiu et al., 2015] proposed a

task scheduling algorithm and MLC/SLC PCM mode configuration using

morphable PCM cells. The algorithm optimized the allocation of tasks to

PCM cells based on a fitness function, resulting in improved execution time

compared to a heuristic approach. Endurance and write performance are

critical for PCM, so [Wang et al., 2016] suggested a hybrid architecture

that combined PCM and DRAM. DRAM is divided into Metadata cache,

which stores metadata in PCM, and data cache. When a DRAM cache

miss occurs, a request is sent to PCM, and data deduplication is performed

during read/write transactions, leading to significant data reduction. An-

other approach proposed in [He et al., 2018] is a tri-regional hybrid cache

utilized both Spin-Transfer Torque RAM (STT-RAM) and DRAM. The

hybrid cache consists of a Non-volatile STT-RAM (NSR) region, a DRAM

area, and a Volatile STT-RAM (VSR) region. The asymmetric data access

approach optimizes energy consumption by utilizing different cache regions

for static and dynamic energy reduction.

Overall, these studies explored various architectural designs and tech-

niques to enhance the performance, energy efficiency, and capacity of non-

volatile memory technologies in the context of data storage, cache manage-

ment, and task scheduling.

27

2.1.1.4 Coordinated CPU and Memory DVFS

Deng et al. [Deng et al., 2012] introduced CoScale, a novel approach

that applied DVFS to both the memory and CPU subsystems to minimize

total power consumption in the system. Unlike previous works, CoScale

considered performance constraints and coordinates DVFS on both memory

and CPU. The objective was to maximize energy savings for the entire

system.

As noted by Dhimsan et al. [Dhimsan et al., 2015], reducing the fre-

quency can sometimes lead to increased energy consumption. Therefore,

CoScale ensured a balance between the power utilization of the system and

its components. Efficiently explored the available CPU and memory fre-

quency settings and adjusting component voltage accordingly is a complex

task for the CoScale algorithm. This challenge arises because the algo-

rithm must consider a vast number of possibilities, which are determined

by the variables m, n and c. Here, m represented the available memory fre-

quency settings, c represented the CPU frequency settings, and n denoted

the number of CPU cores.

CoScale conducted evaluations with various workloads, encompassing

compute-intensive (ILP), memory-intensive (MEM), compute-memory bal-

anced (MID), and combinations of these workloads as inputs to the sys-

tem. The results achieved by CoScale were compared to those of four

other algorithms: MemScale [Deng et al., 2012], CPU DVFS, a completely

uncoordinated method, and a semi-coordinated algorithm were all used.

Memory and CPU frequencies were individually chosen by their individual

administrators in a totally uncoordinated manner. The CPU management

used an overall performance slack metric in the semi-coordinated policy

to account for the resultant performance decrease caused by the memory

manager’s prior choice. CoScale successfully met performance targets and

demonstrates robustness across the parameter search space.

2.1.1.5 Energy efficiency in storage

Cloud computing offers Storage as a Service, allowing users to remotely

store and access their data as needed. Market leaders like Amazon have

28

introduced services such as Relational Database Service (RDS) and Simple

Storage Service (S3) to provide storage solutions to users. To reduce power

consumption in servers, it is worth exploring secondary storage devices like

Hard Disk Drives (HDD) and Flash-based Storage (SSD).

Hard Disk Drives (HDD) are the most often used secondary storage

medium in data centre servers. In HDDs, the power consumption is pri-

marily attributed to three main components: the Voice Coil Motor (VCM),

Spindle Motor (SPM), and electronics [Gurumurthi et al., 2012]. Notably,

the SPM component is responsible for the majority of electricity usage in

HDDs.

Hibernator [Zhu et al., 2005] is a disk array system designed to manage

energy while meeting response time performance goals. The authors pro-

posed a disk-speed-setting algorithm called Coarse-grain Response (CR),

which leveraged workload observations to optimize the energy usage of op-

tical disks without compromising performance objectives.

Tomes et al. [Tomes et al., 2017] demonstrated that HDD RAID config-

urations performed better in terms of sequential write performance. Fur-

thermore, Tomes et al. [Tomes et al., 2017] highlighted that HDD RAIDs

consume more energy when the storage system is idle.

Mohseni et al. [Mohseni et al., 2019] described a task scheduling method

for multi-CPU and multi-Hard Disk Drive (HDD) systems that minimized

the number of missed jobs. The technique prioritized jobs based on readi-

ness time, CPU execution time, CPU completion time, and HDD read/write

time. Job execution time was adjusted according to changes in CPU fre-

quency and HDD RPM levels to find an optimal trade-off between energy

usage and overall execution time.

Solid State Drives (SSDs) utilize flash memory technology, which em-

ploys floating gate transistors to store data. However, write operations

consume more energy and can damage the oxide layer, limiting the number

of write cycles that can be performed.

Tomes et al. [Tomes et al., 2017] demonstrated that traditional power-

off-based energy conservation mechanisms used in HDD RAIDs were not

effective for SSD RAIDs due to high operational costs and limited en-

29

ergy conservation potential. SSD RAIDs consumed less energy than HDD

RAIDs in common server workloads such as mail, file, and web. The au-

thors also showed that RAID 0 performed better in terms of energy con-

sumption for write-intensive and mixed workloads. However, hybrid arrays

combining both HDD and SSD were not considered.

To increase the lifespan of SSDs, Wu et al. [Wu et al., 2018] proposed

decreasing random access and promoting sequential access patterns. They

employed a sequence recognition module to identify sequential requests,

dynamically dividing the cache into RAM and SSD. Sequential requests

are directed to the RAM’s sequential portion, while cache misses retrieved

data from HDD arrays or the random portion of the array. Simulation

results showed up to a 45% improvement in SSD performance. However,

the use of one LRU list per user for read and write requests may led to

memory contention at the cache level.

Gao et al. [Gao et al., 2018] offered a Load Aware data transfer strat-

egy for widespread monitoring utilizing a hybrid storage framework. Video

chunks were migrated to SSDs to improve node performance. Although

a hybrid architecture was employed for secondary storage, the Cluster-

Level Data Migration (CLDM) algorithm identified high and low load nodes

through a naive approach of comparing them with average load. However,

utilizing clustering and classification techniques could yield more accurate

and improved results. Tan et al. [Tan et al., 2018] applied the hybrid

secondary storage architecture to Big Data services, demonstrating that

using SSDs for local temporary data storage, even in I/O intensive jobs

like TeraSort, could achieve good utility. Yin et al. [Yin et al., 2018]

introduced DuoFS, a dependable and energy-efficient storage system that

balanced energy effectiveness, durability, and efficiency in parallel storage

systems by combining HDD and SSD-based file systems. DuoFS employed

a transformational middleware layer that routed files to one of two par-

allel file systems based on their access frequency. By duplicating popular

data in SSDs, DuoFS significantly reduced energy consumption, mitigated

key causes of storage system reliability issues, and leveraged the high I/O

performance of SSDs. Notably, DuoFS utilized highly energy-efficient flash-

30

based storage nodes.

2.1.1.6 Energy efficiency in network components

A fundamental aspect of cloud computing is the ability to access in-

frastructure remotely, which relies on a well-connected networking infras-

tructure that serves as a foundation for all other components both inside

and outside the data center. When considering energy consumption at

this high level of abstraction, the energy utilization of communication links

and intermediate networking hardware plays a significant role. Achieving

energy-efficient cloud computing begins with effective architectural plan-

ning of the data center network, followed by reducing energy consumption

in network elements such as transmission systems, routers, and network

switches. This involves operating data center components at high utiliza-

tion rates and transitioning underutilized components like switches and

servers into lower-energy modes.

Terzi et al. [Terzi et al., 2021] proposed a novel approach for networking

in data centers, replacing wired connections with high data-rate, point-to-

point wireless links operating in the 60 GHz frequency band. Heller et

al. [Heller et al., 2010] introduced a power management manager capa-

ble of dynamically adjusting power elements, active switches, and links to

handle varying data center loads. The authors compared different mecha-

nisms for achieving minimum power subnets across various traffic patterns.

Leveraging Software Defined Networking (SDN), Li et al. [Li et al., 2014]

explored a new energy-aware mechanism for flow scheduling, employing a

different routing path for each flow in the time dimension. Wang et al.

[Wang et al., 2012] presented a technique that efficiently managed traffic

by utilizing virtualized routing topologies and employing adaptive traffic

control and offline link weight optimization. Kliazovich et al. [Kliazovich

et al., 2013] focused on the communication fabric and proposed e-STAB, a

scheduling solution that considered the traffic requirements of cloud appli-

cations. Guzek et al. [Guzek et al., 2015] designed the HEROS mechanism

for load balancing, enabling energy-efficient resource allocation in hetero-

geneous environments while considering system heterogeneity.

Networking devices such as routers often operate at low average usage

31

levels, consuming 80%-90% of their peak power [Niccolini et al., 2019].

Energy consumption can be reduced by operating network switches and

transport systems at higher utilization rates. Mahadevan et al. [Mahade-

van et al., 2010] demonstrated that switch power consumption depends on

the number of active ports and their operating speed. Ahn et al. [Ahn et

al., 2014] examined the power usage of edge routers and established a di-

rect relationship between power consumption, link usage, and packet size.

Similarly, [Abts et al., 2010] showed that the energy cost of inter-server

communication could be proportional to the amount of data transferred.

Hardware-based approaches for enhancing energy efficiency in cloud data

centers have notable limitations. While advancements in energy-efficient

hardware components can contribute to overall energy savings, they of-

ten entail fixed consumption patterns that may not dynamically adapt to

varying workloads. The upfront costs and logistical challenges associated

with deploying new hardware or retrofitting existing infrastructure pose

barriers for some organizations. Moreover, hardware-based solutions may

have limited impact on idle power consumption and struggle to address in-

efficiencies in virtualized environments, where the abstraction of hardware

layers dilutes their effectiveness. Additionally, the pace of innovation in the

hardware industry and potential incompatibility with legacy systems can

hinder widespread adoption. Furthermore, these approaches may not com-

prehensively address software-related inefficiencies, emphasizing the need

for a holistic approach that considers both hardware and software opti-

mizations, as well as operational strategies, to achieve sustainable energy

efficiency in cloud data centers.

Apart from the above-mentioned hardware techniques, there are software-

based techniques that applied at the virtualization layer, OS layer etc. The

subcategories are as follows:

2.1.2 Software based techniques

2.1.2.1 Virtualization related techniques

Virtualization employs software to establish an abstract layer above

computer hardware, enabling the partitioning of physical machine resources

32

such as storage, disks, and more into multiple virtual machines (VMs).

Each user’s VM can be assigned an individual operating system on a single

physical machine, ensuring VM performance and isolation in case of fail-

ures. To enable efficient operations, a Virtual Machine Monitor (VMM)

or Hypervisor is responsible for multiplexing resources and power manage-

ment. In recent years, virtualization technology has become prominent

in computer system architecture, providing various benefits such as server

consolidation, transparent migration, and secure computing while main-

taining compatibility with existing operating systems and applications. In

contemporary virtualized environments where multiple VMs run on the

same core, there is a need for centralized power management controlled

by the hypervisor. However, this approach has limitations. First, it does

not allow users to specify individual power control schemes for each VM

or client. Second, it can impact the energy efficiency of VMs, especially

when they require different energy management strategies, leading to com-

petition among them. To address these issues, Kang et al. [Kang et al.,

2018] proposed a per-VM power control method that allowed each VM’s

guest operating system to implement its own chosen energy management

strategy, preventing conflicts between VMs. Compared to the default on-

demand governor of the Xen hypervisor, their approach called Virtual per-

formance (VIP) reduced power consumption and improved completion time

for CPU-intensive applications by up to 27% and 32%, respectively, while

still meeting the latency-sensitive implementation’s service-level agreement

(SLA).

Furthermore, Xiao et al. [Xiao et al., 2021] focused on energy-efficient

optimization of VM scheduling models and I/O virtualization paradigms.

They introduced a power-fairness credit sequencing approach with a novel

I/O offset method to achieve fast I/O performance while maximizing en-

ergy conservation. Additionally, Prabhakaran et al. [Prabhakaran et al.,

2021] introduced VM resource calibration as a means to reduce energy us-

age in virtual servers. They developed a system that utilized controlled

feedback architecture and power monitoring services to achieve less usage

of energy.

33

Preliminary VM distribution plays a crucial role in resource management

policies, exerting a significant influence on efficiacy of DC and usage of

energy. A well-planned VM placement strategy can reduce system over-

head by minimizing the need for migrations. Kabir et al. [Kabir et al.,

2014] delved into this issue within the context of a hierarchical deploy-

ment model for cloud service providers, encompassing cloud, cluster, and

host levels. This model facilitated efficient management of geographically

distributed infrastructure, aiming for scalability. Given this hierarchical

structure, it necessitates an intelligent VM placement approach, complete

with mechanisms for selecting cloud clusters and nodes, all aimed at mini-

mizing resource fragmentation and enhancing energy efficiency.

There are two types of placement strategies: centralised and hierarchi-

cal. Khosravi et al. [Khosravi et al., 2013] proposed a centralised virtual

machine deployment technique for dispersed cloud data centres. The main

objective was to reduce both electricity usage and the carbon footprint.

They created a data system that continually updates utilisation statistics

for clouds, clusters, and hosts, allowing for centralised decision-making and

resource optimisation. Their strategy took into account dispersed data cen-

tres with varied carbon footprints and Power Usage Effectiveness (PUE)

values. They carried out an in-depth review of the efficiency of energy us-

ing various bin-packing strategies.

Similarly, Forestiero et al. [Forestiero et al., 2014] introduced EcoMulti-

Cloud. This hierarchical approach attained energy efficiency similar to the

centralized ECE solution but offered greater flexibility. Since it was hier-

archical in structure, it enabled individual data centers to pick their own

interior VM placement methods.

Cagar et al. [Cagar et al., 2013] presented an online placement technique

for VM integrated into the hALT (harmony of Living Together) middle-

ware. This technique took into consideration the workload characteristics

of VMs and accounted for performance interference when determining suit-

able placements for each VM.

Meng et al. [Meng et al., 2010] presented the notion of Statistical Multi-

plexing to VM placement, which is an approach for efficiently accommodat-

34

ing additional VMs by multiplexed server resources. Their method, known

as joint-VM provisioning, entailed consolidating numerous VMs depending

on workload characteristics. Statistical multiplexing allows VMs to share

resources with co-located VMs during workload spikes. To meet Quality

of Service (QoS) requirements, they defined performance constraints for

each VM, ensuring sufficient capacity to meet specific application perfor-

mance levels. Three strategies were provided by the authors for creating

performance limits, choosing co-located VMs, and evaluating the overall

resource consumption of integrated VMs with complimentary workloads.

Joint-VM provisioning considerably increased the consumption of energy

efficiency when tested utilizing VM workloads from an industry-standard

data centre.

Chen et al. [Chen et al., 2011] conducted a study on VM placement, with a

specific focus on consolidating a larger number of VMs on servers. ES took

into account Statistical Multiplexing principles, considering factors influ-

enced the aggregated resource demand on the server where the VM was

placed. The effective size concept extended from effective bandwidth and

also considered the correlation between VM workloads. Taking the corre-

lation coefficient into account, the effective size of a VM was determined

by its own demand as well as the demand of co-located VMs. The sug-

gested VM placement technique, which has a temporal complexity of O(1),

found the best location for VMs. The study took into account Poisson

and standard distributions for VM workloads and tested the method using

simulations on a real cloud workload trace. When compared to a generic

consolidation method, the effective size technique revealed energy savings

ranging from 10% to 23%. The optimisation technique concentrated solely

on one dimension: the CPU consumption of the VMs.

Hypervisor technology plays a pivotal role in consolidating virtual machines

on physical servers, and extensive research has been conducted to investi-

gate VM consolidation strategies that might improve data centre energy

usage efficiency.

Gmach et al. [Gmach et al., 2009] suggested an efficient technique in terms

of energy reactive migration regulator that recognised overloaded or under-

35

loaded hosts. Overload and underload detection were based on the server’s

CPU and memory utilisation exceeding or falling below a predefined thresh-

old, respectively. Beloglazov et al. [Beloglazov et al., 2010] took a similar

method when investigating the influence of these two criteria on overall data

centre energy usage and SLA breaches. Underload and overload thresholds

were judged to be 30% and 70% efficient, correspondingly, when the overall

energy use and average SLA breaches were considered. Unlike Gmach et

al. [Gmach et al., 2009], the approach proposed in [Beloglazov et al., 2010]

was not dependent on the workload type.

Beloglazov et al. [Beloglazov et al., 2010] enhanced the previously men-

tioned approach [Beloglazov et al., 2010] by introducing an automatic ad-

justment mechanism for the underload and overload thresholds. The pre-

vious method, which relied on fixed threshold values, was found to be

inadequate for addressing the dynamic and unpredictable workload be-

haviors commonly encountered in cloud environments. The automation is

achieved by conducting statistical analysis on historical data derived from

virtual machine workloads. Host CPU utilization is assumed to follow a

t-distribution. This adaptive approach demonstrates significant improve-

ments in terms of Quality of Service (QoS) contrast to set criteria while

still attaining energy savings.

Cloud providers are tasked with maintaining the promised Quality of Ser-

vice (QoS) to their customers throughout the consolidation process. How-

ever, QoS can be compromised due to host overloading. To solve this issue,

Beloglazov et al. [Beloglazov et al., 2010] developed an approach for iden-

tifying host overloads that maintains QoS while conserving energy. In the

case of any known fixed workload, this technique can determine the ideal

option for overload identification. The primary goal is to maximize the

time between migrations while adhering to a specified QoS target, based

on a Markov chain model.

2.1.2.2 Virtualization at the Operating System (OS) Level (Containers)

The Platform as a Service (PaaS) model has brought about a transfor-

mative shift in application development by eliminating the need for infras-

tructure management and expediting the development process. Applica-

36

tion isolation is achieved in this paradigm by the use of containers, which

may run on both physical machines PMs, and VMs. Containers create

isolated virtual environments that do not require the use of intermediary

monitoring tools such as hypervisors. Containers have garnered consider-

able popularity and are emerging as a predominant deployment strategy in

cloud computing. Within the cloud environment, consolidation techniques

are widely adopted to optimize resource utilization and reduce power con-

sumption. Piraghaj et al. [Piraghaj et al., 2015] directed their attention

to container consolidation and conducted a comparative analysis of various

algorithms aimed at minimizing power consumption. They assessed these

algorithms using parameters such as SLA violations, energy consumption,

container transfer rates, and the number of generated VMs. The consol-

idation of container-based services presents challenges, as it can lead to

substantial power consumption within cloud data centers due to limited

management control over data center systems. Shi et al. [Shi et al., 2018]

devised the TMPSO algorithm to facilitate energy-aware consolidation of

containers. The proposed algorithm combined heuristic and greedy opti-

mization mechanisms to strike a balance between computational demands

and performance costs.

Additionally, Chen et al. [Chen et al., 2019] introduced a stable match-

ing method called many-to-one and a container placement technique named

MLSM. They implemented an early container hosting technology to re-

duce migration durations through a reliable matching mechanism. The

algorithm employed similarity algorithms as a decision-making strategy for

matching containers with VMs, with the resource usage rate used to priori-

tize the virtual machine preference list. The simulation results showed that

the technique can save an average of 12.8% more energy than the First Fit

approach.

Furthermore, Al-Moalmi et al. [Al-Moalmi et al., 2021] tackled issues

related to container and VM placement within a Container as a Service

(CaaS) environment, with a focus on optimizing power consumption and

resource utilization. They proposed an algorithm based on the Whale Op-

timization Algorithm (WOA) to address container and VM placement chal-

37

lenges. In essence, each type of container can be hosted by a single VM,

and each type of VM can be hosted by a single PM.

Research in energy-efficient resource-utilization strategies for OS con-

tainer systems are mostly focused on algorithms for OS container place-

ment. Dong et al. [Dong et al., 2014] proposed the Most Efficient Server

First (MESF) container placement system, which prioritised allocating con-

tainers to the most energy-effective computers first. The machine with the

least increase in energy use when hosting the container was the most energy-

efficient equipment for each container. The MESF strategy dramatically

decreased energy usage in comparison to the Least Allocated Server First

(LASF) and random scheduling plans, according to simulation findings util-

ising actual Google cluster data as job input and machine configuration.

In addition, the study provided a new viewpoint on assessing a cloud data

center’s utilisation of energy.

Pandit et al. [Pandit et al., 2014] also delved into the challenge of ef-

ficient resource allocation. Unlike the normal n-dimensional bin packing

issue, which considers a bin full when all sub-bins achieve capacity, the

resource distribution problem considers a bin full when any sub-bin (e.g.,

CPU) hits capacity. Pandit et al. [Pandit et al., 2014] utilised Simulated

Annealing (SA) to build an effective resource allocation method. SA is

a method often used for discrete search space issues, such as bin packing

problems. The suggested resource allocation algorithm outperformed the

frequently used First Come First Serve (FCFS) allocation strategy in terms

of resource utilisation.

Mesos [Hindman et al., 2011] also makes use of OS containers to offer

the necessary workload segregation. The Mesos platform allowed cluster

computing systems with multiple programming styles to share standard

clusters. Mesos utilized a two-level scheduling approach called “resource

offers.” The studied workloads were developed using Hadoop and MPI pro-

gramming models. The results demonstrated that Mesos is highly scalable

and fault-tolerant, improving resource utilization with less than 4% over-

head.

38

2.1.2.3 Workload Characterization

The study of resource management approaches in cloud data centres has

grown significantly, with the objective of reducing energy use. However, be-

cause to competitive and security concerns, cloud providers frequently do

not publish their workloads, resulting in a scarcity of open-source cloud

backend traces. As a result, a great deal of studies are lacking in under-

standing of the ever-evolving nature of consumer preferences and workload

fluctuations.

The readily available nature of cloud backend traces allows academics to

mimic real-world cloud data centre workloads, allowing them to assess the

practicality of suggested heuristics. Around 2009, Google made its early

traces public, triggering a flurry of research activities centred on capacity

planning, scheduling, and optimisation.

The workload handled by a system influences its performance in addition

to its hardware and software components. Knowing the workload, accord-

ing to Feitelson [Feitelson, 2015], was more important than inventing new

scheduling methods. If the tested systems did not correctly replicate the

input workload, the recommended rules or algorithms’ outputs may not

correspond to real-world conditions.

The quantity of work allocated to a computer system that must be done

within a specified timeframe is referred to as its workload. A typical sys-

tem workload consists of activities and user groups submitting requests to

the data centre. In Google’s workload, for instance, tasks are the essential

elements of a job, with a job generally consisting of one or more tasks. In

this sense, users refer to Google’s personnel or services.

It is critical to study the input workload that drives the researched system

in order to characterise the burden. The input workload must closely reflect

the real-world workload for reliable performance evaluation of a computer

system. According to Ferrari [Ferrari, 1972], there are three methods for

determining the input workload:

1) Natural Technique:

The most basic approach entailed using real weights received directly from

39

the system’s log file. Urgaonkar et al. [Urgaonkar et al., 2010] investigated

the topic of optimum allocation of resources and energy use in cloud data

centres using real traces from a variety of uses. Anselmi et al. [Anselmi et

al., 2008] validated their suggested method for the Service Consolidation

Problem (SCP) using real workloads from 41 servers. In various research,

PlanetLab VM records were used as input workload to evaluate the con-

solidation approach.

2) Artificial Technique:

The artificial approach entails creating and deploying a workload that is

unrelated to the real one. To simulate web server workloads, Mohan Raj

and Shriran [Mohan Raj and Shriran, 2011] used synthetic demands based

on the Poisson dispersion.

3) Hybrid Technique:

The hybrid approach merges collecting a real workload with the creation of

a test workload from portions of the real task. Hindman et al. [Hindman

et al., 2011] tested Mesos using CPU and IO-intensive workloads drawn

from Facebook cloud backend logs as well as Hadoop and MPI services.

According to Calzarossa and Swerazzi [Calzarossa et al., 1993], the work-

load modelling process may be separated into three major parts. The initial

stage was to build the model by choosing fundamental components like user

contribution rates and characteristics. A set of requirements was also in-

cluded in order to evaluate the suggested model. The needed parameters

for modelling were gathered in the second stage while the workload was

running in the system. Lastly, a statistical analysis of the acquired data

was done in the final stage.

Software-based approaches for enhancing energy efficiency in cloud data

centers face several limitations. These include dependency on well-designed

applications, as software optimizations rely on efficient resource utilization

within applications. Legacy systems present a challenge, as retrofitting

or redesigning older software to incorporate energy-efficient practices can

40

be complex and time-consuming. The dynamic variability of workloads in

cloud environments poses difficulties for software-based optimizations to

adapt to sudden changes in demand, impacting resource utilization. Ad-

ditionally, in multi-tenant cloud environments, coordinating fair resource

allocation among diverse workloads can be challenging for software-only so-

lutions. Furthermore, software-based approaches may struggle to address

idle power consumption, and their effectiveness in virtualized environments

can be hindered by suboptimal virtualization practices and potential com-

putational overhead. A holistic strategy that integrates both hardware

and software optimizations is crucial to overcoming these limitations and

achieving comprehensive energy efficiency in cloud data centers.

2.2 Summary

In this chapter, the focus was on conducting an extensive literature re-

view concerning the enhancement of energy efficiency within data centers.

The review encompassed a broad spectrum of techniques, both hardware

and software-based, aimed at mitigating power consumption while main-

taining or enhancing operational performance. Hardware-related strate-

gies explored methods for optimizing various components, including CPUs,

GPUs, memory, storage, and networking, with the ultimate goal of maxi-

mizing resource efficiency. Conversely, software-based approaches spanned

multiple layers such as virtualization, operating systems, middleware, and

applications, all geared toward streamlining resource allocation, improving

process management, enhancing security, and optimizing application per-

formance. Collectively, these techniques serve as a comprehensive resource

for achieving energy efficiency in contemporary data centers, a critical en-

deavor for reducing environmental impact and operational expenses while

meeting the escalating demands of the digital age.

41

Chapter 3

Workload Characterization

and Categorization

This chapter delves into the critical topic of workload characterization

and categorization within cloud data centers. It explores various clustering

techniques employed for in-depth analysis of the Bit Brains Trace dataset,

offering valuable insights into how these methods contribute to a better un-

derstanding of workload patterns and resource utilization in cloud environ-

ments.

3.1 Introduction

Cloud platforms are in great demand for hosting a wide range of work-

loads, particularly online applications that need strict SLAs between the

Cloud Service Provider (CSP) and the client. These services involve a wide

set of QoS standards in terms of accessibility, reliability, and efficiency.

Workloads frequently migrated to cloud systems require memory, CPU,

network bandwidth, and storage. These workloads are classified as distinct

resource intense workloads based on the resources they utilise more than

others. These workloads’ actual resource usage is frequently lower than the

resources they have requested. Service providers profit from this practise by

promising more resources at lower costs than the actual number of resources

they have, relying on the knowledge that the vast majority of customers’

applications will not run at full capacity. CSP uses the cloud’s dynamic

provisioning feature to deliver on-demand performance. Recognizing work-

42

load behaviour in a cloud Data Center (DC) is crucial because it allows

for the elastic scaling up and down of supplied services, which are criti-

cal to the DC’s capabilities. Workload characterisation is being utilised to

estimate resource requirements, allowing for more effective capacity man-

agement, allocation, and resource deployment. The workload is commonly

characterised using one of two methods: trace-based (Characterizing Ap-

plication Workloads on CPU Utilization for Utility Computing, n.d.) or

model-based (S. Huang and Feng, 2009), (Moro et al., 2009) (Delimitrou

and Kozyrakis, 2011). Because it is indifferent with the operating platform

on which the trace was documented, the model-based process is preferred

over the trace-based procedure. Since trace-based strategies have a limited

number of production and quality traces, they require continuous tinkering

with workload characteristics to ensure consistency with a new data centre

environment, making them less efficient than model-based strategies. The

vast majority of workloads in cloud DC are a mash-up of many applications.

It is incredibly difficult to develop a completely unified strategy to estimate

the future utilisation of these various application areas’ resources. These

tasks exhibit a wide range of behaviour in terms of periodicity, co-relation,

and recurrent tendencies. Workload classification necessitates a more in-

depth knowledge of workload behaviour and attributes. Nevertheless, there

have been less research on workload characterisation due to a lack of open-

source workload traces. Workloads are categorised based on computational

paradigms, technology stack, resources, and applications, as seen in Figure

3.1. Workloads are categorized into two types, namely batch workloads

and interactive workloads, based on their processing methodology. Their

classification based on resource requirements includes memory, CPU, I/O,

and database. These requirements encompass scalability, flexibility, exten-

sibility, and administration. Additionally, the cloud infrastructure should

offer capabilities that fulfil the organization’s top-tier demands, such as

privacy, reliable performance, and cost-effectiveness. Computer equipment

is organized differently across various computing environments, with data

being shared among them to analyze and solve problems. Workloads can

be further classified into three types based on generation: Synthetic, Real,

43

and Cloud. Furthermore, workloads are classified into four categories, in-

cluding Web, Social Network, Video Service, and others, on the basis of

application. Figure 3.1 shows the classification of workload.

Figure 3.1: Categories of Workload

3.2 Literature Review

Cloud workload characterisation and categorization is an essential re-

search subject for better understanding of workloads and efficiently man-

aging cloud resources. The four most common workload traces available in

this domain are Google Cluster Trace (GCT) (Charles Reiss et al., 2012),

Bit Brains Trace (BBT) (Shen et al., 2015), Alibaba (Alibaba/Clusterdata:

Cluster Data Collected from Production Clusters in Alibaba for Cluster

Management Research, n.d.), Yahoo Trace (Webscope — Yahoo Labs,

n.d.), and Wikipedia (Wikipedia Access Traces —WikiBench, n.d.). Work-

load characteristics for DC must be statistically aggregated and analysed

in order to forecast the data center’s future resource requirements. Many

studies have used statistical approaches such as Pearson Coefficient of Cor-

relation (PCC), standard deviation, mean, and other related and current

44

methodologies (Birke et al., 2014). Calzarossa and other authors (Carla

et al., 2016) created a list of standard internet workloads, workloads from

social networks, streaming platforms, mobile applications, and cloud com-

puting infrastructure facilities. They examined the unique characteristics of

these workloads and described the methodologies and modeling techniques

employed to characterize them. With time-series analysis, Ali-Eldin et al.

(Ali-Eldin et al., 2014) explored the time series of Wikipedia’s workload and

discovered that it is completely predictable and has strong seasonal varia-

tion. Self-similarity and burstiness are two of the main workload character-

istics according to Yin et al. (Yin et al., 2015). They created a workload

generator for cloud computing that exhibits burstiness and self-similarity.

They have used NetEase traces for analysis and comparison. Wang et al.

(Wang et al., 2015) demonstrated that the effectiveness of dynamic resiz-

ing is heavily influenced by workload process statistics. Specifically, both

the long-term non-stationarities of the workload (such as the peak-to-mean

ratio) and the short-term stochastic behavior (such as the burstiness of ar-

rivals) are significant factors. To show case the influence of these factors,

the researchers combined optimization-based modelling of long-term trends

with stochastic modelling of short-term dynamics. Workloads taken from

real-world data centre traces were used in the trials. Zhang et al. (H.

Zhang et al., 2014) created a workload factoring service in the context of

proactive workload management. This technology allows on-premise and

off-premise architectures to work together to host web-based applications.

The important feature of this technique is that it successfully separates the

base workload from the flash crowd task, which are intrinsically indepen-

dent components of the application workload. A speedy frequent data item

identification algorithm is at the heart of the intelligent workload factor-

ing service. This algorithm enables the categorization of incoming requests

based not only on their volume but also on their data content, taking into

account the evolving popularity of application data. They used Yahoo

video stream data for their analysis.

Recognizing and forecasting patterns in cloud workloads is a challenging

problem addressed by Patel et al. (J. Patel et al., 2015). They introduced

45

an innovative resource estimation approach based on clustering that groups

tasks with similar characteristics into the same cluster. They utilized the

Google cluster dataset for their analysis.

Panneerselvam et al. (Panneerselvam et al., 2014) outlined the cloud

workload classification and characterization metrics needed for training and

modeling prediction algorithms. They examined two commonly used pre-

diction algorithms and evaluated their prediction accuracy in forecasting

memory-heavy and CPU-intensive workloads within the MATLAB envi-

ronment.

Due to the scarcity of open-source workload traces, only a few attempts

at characterization of cloud DC workloads have been made so far. The

following are some of the most well-known research projects: The BBT

dataset that represents business critical workloads was analyzed by the au-

thors in (Shen et al., 2015). To characterize the workload, statistical meth-

ods such as standard deviation and mean, Pearson Correlation Coefficient

(PCC), Autocorrelation Function, Peak to Mean Ratio and Coefficient of

Variation were used. The analysis was carried out using basic statistical

and time pattern analysis. The findings from the study are as: (a) there

is a strong correlation among demanded memory and CPU utilization; (b)

Memory and CPU utilizations are easy to predict over short time periods;

and (c) disk and network utilization follow patterns, implying that predic-

tion granularity is measured in days. (d) Peak workloads can vary from 10

to 10,000 times greater than the average workloads, depending on the type

of resources involved. The authors in (Characterizing Task Usage Shapes

in Google Compute Clusters – Google Research, n.d.) presented a task

usage shape classification that precisely reproduces the technical specifi-

cations of historical data on average job wait time and machine resource

utilization. They utilized real time data from Google and found that merely

simulating the job mean usage can gain considerable precision in trying to

replicate resource utilization and task wait time. One major drawback is

that the results are very complex and produce complex characterization

of task shape classification. The authors in (Rasheduzzaman et al., 2014)

examined production workload trace (version 2) by Google and utilized

46

K-means clustering to group similar jobs together. They demonstrated a

simple method for establishing workload attributes as well as knowledge

and insights for workload performance on cluster machines. The authors

did not use the complete trace to perform the analysis, which led to the dis-

crepancy in the results. Moro (Moro et al., 2009) introduced an innovative

method to precisely assess the execution workload performed by a com-

puter. Their proposed method involved direct utilization of the memory

reference sequence generated during program execution. The memory ref-

erence sequences were treated as sequences of floating-point numbers and

subjected to analysis using signal processing techniques. Spectral analysis

was employed during the feature extraction phase, while Ergodic Contin-

uous Hidden Markov Models (ECHMMs) were used in the pattern match-

ing phase. The proposed algorithms’ effectiveness was assessed through

trace-driven simulations using SPEC 2000 workloads. Cheng et al. (2018)

conducted a comprehensive case study characterizing Alibaba’s co-located

long-running and batch task workloads across various dimensions. They

investigated patterns of resource demand and reservation, resource utilisa-

tion, workload dynamics, straggler issues, and the interaction and influence

of co-located workloads. A notable strength of their work is the use of Al-

ibaba DC traces and workload categorization based on resource utilization.

Mishra et al. (2010) presented a workload categorization technique and

applied it to the Google Cloud Backend, one of the biggest cloud back-

ends. They employed established statistical clustering techniques, assessed

workload aspects, used methods like k-means for task clustering, evaluated

qualitative cartesian coordinates within workload elements, and combined

adjacent task clusters to reduce prediction variables. Their methodology

resulted in eight workloads across several Google compute clusters. They

demonstrated that workload features related to the number of tasks and

resource consumption remain consistent for the same compute cluster but

may vary among clusters.

Ismaeel et al. (2019) presented a novel method for selecting the appro-

priate task clustering approach in data centers based on validation indices

and result correlation. They devised an efficient pre-processing strategy,

47

reducing the big data challenge to a compact 2D matrix involving indepen-

dent jobs with CPU and memory requirements, using the Google Cloud

trace for analysis.

Shekhawat et al. (2018) provided a method for categorising and charac-

terising data centre workloads on the basis of resource use. They applied

K-Means clustering to group workloads into clusters and explored seven

distinct machine-learning techniques for workload classification and dis-

tribution approximation. They also presented an approach for assessing

the relevance of various categorization attributes, although they did not

compare their results with other clustering algorithms.

E. Patel and Kushwaha (2020) discussed the cluster effectiveness of

K-Means and Gaussian Mixture Models (GMM) for characterizing cloud

workloads based on CPU and memory utilization. They utilized the Google

cluster trace and Bit Brains dataset but did not consider other parameters

like disk and network usage or evaluate the performance of the two clus-

tering approaches.

Table 3.1 provides a comparison of the work conducted in the field of

workload characterization.

Table 3.1: Comparison of work done in the domain of workload characterization

Work Advantages Disadvantages

Work (Carla et al.,

2016) is focused on

conventional web work-

loads, and the workloads

associated with social

network, mobile and

video services are con-

sidered. It discusses

different techniques for

their characterization.

Many features have

been explored from

several viewpoints,

such as qualitative and

quantitative elements

relating to technology

foundations, user

engagements with

services and apps.

The main disadvan-

tage is that the au-

thors did not con-

sider using different

machine learning tech-

niques for the classifi-

cation purpose.

48

Studied (Ali-Eldin et

al., 2014) the trend

of workload by time-

series analysis, descrip-

tive statistics and poly-

nomial splines.

The short-term predic-

tion algorithm can an-

ticipate workload with

a mean absolute per-

centage error of less

than 2 percent.

The main disadvan-

tage is that they did

not consider using the

advanced technologies

like machine learning

for trend prediction

and also, they did

not build the workload

generator.

Developed (Yin et al.,

2015) a workload gener-

ator for cloud comput-

ing based on a superpo-

sition of 2-state Markov

Modulated Possion Pro-

cesses (MMPP2s).

The suggested gen-

erator may gener-

ate workloads with

both the necessary

burstiness and self-

similarity. A thorough

empirical examination

proves BURSE’s cor-

rectness, durability,

and usefulness.

They did not consider

comparing the pro-

posed approach with

already existing tech-

niques.

Showed (Wang et al.,

2015) that the value

of dynamic resizing

is highly dependent

on statistics of the

workload process

They provided a novel

model that incorpo-

rates SLA features.

They did not consider

comparing the pro-

posed approach with

already existing tech-

niques.

49

Created a service for

workload factoring (H.

Zhang et al., 2014)

A viable and cost-

effective way for max-

imising the utilisation

of public cloud ser-

vices in conjunction

with their privately-

owned (legacy) data

centres.

The main disadvan-

tage is that they did

not consider using the

advanced technologies

like machine learning

for workload predic-

tion rather rely on ba-

sic statistical methods.

Presented (J. Patel et

al., 2015) an innovative

resource estimation ap-

proach based on clus-

tering that have similar

characteristics into the

same cluster.

They created a work-

load model that

estimates the work-

load behaviour of

randomly sampled

processes from the

trace log.

The resource manage-

ment is difficult due to

the proposed workload

estimation problem.

They (Panneerselvam et

al., 2014) specified the

Cloud workload classifi-

cation and characterisa-

tion metrics that are re-

quired for training and

modelling prediction al-

gorithms.

The studies demon-

strate that CPU-

intensive workloads

have a higher estima-

tion error rate than

memory-intensive

workloads.

They did not inves-

tigate the efficiencies

of the prediction tech-

niques.

Statistical methods such

as standard deviation

and mean, PCC, Au-

tocorrelation Function,

Peak to Mean Ratio and

Coefficient of Variation

were used (Shen et al.,

2015).

The analysis was car-

ried out using basic

statistical methods.

They have not used

the machine learning

approaches for better

classification.

50

Characterization of task

use shape that prop-

erly replicates historical

trace performance fea-

tures in terms of aver-

age task wait time and

machine resource util-

isation (Zhang et al.,

2011).

Utilized real time data

from Google and found

that merely simulat-

ing the job mean usage

can gain considerable

precision in trying to

replicate resource uti-

lization and task wait

time.

One major drawback

is that the results are

very complex and pro-

duce complex char-

acterization of task

shape classification.

Examined production

workload trace (version

2) by Google and uti-

lized K-means clustering

to group similar jobs to-

gether (Rasheduzzaman

et al., 2014).

Demonstrated a

simple method for

establishing workload

attributes as well

as knowledge and

insights for workload

performance on cluster

machines.

Did not use the com-

plete trace to perform

the analysis, which led

to the discrepancy in

the results.

Described a method

for characterisation of

workload using ergodic

hidden Markov models

(Moro et al., 2009).

The suggested tech-

niques are tested us-

ing SPEC 2000 work-

loads and trace driven

models. They demon-

strate that ECHMMs

obtain an average clas-

sification accuracy of

76 percent across eight

different workloads.

They did not consider

comparing the pro-

posed approach with

already existing tech-

niques.

51

Characterized the

batch instance work-

loads based on: CPU

utilization, memory

utilization, and job

timeframe into three

different categories

(Cheng et al., 2018).

The primary strength

lies in the fact that

the authors have used

the traces of Alibaba

DC and have done

workload categoriza-

tion based on resource

utilization.

They did not consider

comparing the pro-

posed approach with

already existing tech-

niques and did not use

the AI methods.

Mishra et al. (2010)

proposed a workload

categorization technique

and its implementation

to the Google Cloud

Backend, probably the

world’s largest cloud

backend.

Their methodology

yields eight workloads

when applied to sev-

eral Google compute

clusters.

They did not con-

sider the job con-

straints and they did

not take the entire

dataset for analysis

which is the major

drawback of their pro-

posed approach.

Introduced (Ismaeel et

al., 2019) a new method-

ological process for se-

lecting the appropriate

task clustering approach

in DC based on cluster-

ing purpose, validation

indices, and result corre-

lation.

Developed an effective

pre-processing strat-

egy, reducing the big

data challenge to a

compact 2D matrix of

independent jobs.

Used just CPU and

memory requirements.

52

Proposed (Shekhawat et

al., 2018) a technique

for classifying and char-

acterizing DC workloads

based on the resource

utilization.

They have used K

Means clustering for

grouping the workload

into clusters. Seven

distinct machine-

learning techniques

have been used and

compared.

Not considered and

compared the results

with any other cluster-

ing algorithm.

Compare the cluster

representation of the

two strategies for het-

erogeneity in resource

utilization of cloud

workloads using K

Means and Gaussian

Mixture Model (E.

Patel and Kushwaha,

2020).

K-Means and GMM

cluster efficiency for

the characterization of

Cloud workloads on

the basis of CPU and

memory utilization

were presented.

Not considered the

other parameters like

disk and network

usage and also did

not evaluate the

performance of two

clustering approaches.

The above-mentioned work overlooked the potential benefits of utilizing

various clustering techniques to validate the experimental data. Addition-

ally, they failed to evaluate the clustering methods using diverse perfor-

mance evaluation parameters, which could aid in effective workload charac-

terization and categorization. This is crucial in predicting resource require-

ments, enhancing capacity management, allocation, and resource deploy-

ment. By incorporating these approaches, the classification methods can

be compared and optimized for improved resource management. Workload

categorization is a crucial stage in workload analysis. Model correctness

is critical for workload analysis, resource use prediction, and provisioning.

The classification accuracy study helps us decide which method is optimal

for a particular data centre workload.

53

3.3 Methodology

3.3.1 Dataset Characteristics

The distributed DC at Bitbrains is a managed hosting and business-

computing powerhouse. The Bits Brain Trace [Shen et al., 2015] dataset

contains performance statistics for 1,750 VMs with size of around 1.16GB.

Large banks, credit card firms, insurers, and others are among the com-

pany’s clientele. Towers Watson and Algorithmics are two application de-

velopers whose solvency applications are hosted on Bitbrains. These ap-

plications are often used to finalise accounting information at the end of

a fiscal quarter. The performance measurements for a particular VM are

included in each file of the dataset. These files are divided into two cate-

gories: fastStorage and Rnd. The first trail is FastStorage, which has 1,250

virtual machines (VMs) attached to Storage Area Network (SAN) storage

devices. The second trace, Rnd, has 500 virtual machines (VMs) that are

either linked to a fast SAN or a considerably slower Network Attached

Storage (NAS). Because storage attached to fastStorage devices is more ef-

ficient, the fastStorage trace comprises more server side and compute units

than the Rnd trace. In contrast, the Rnd trace features a larger number

of management units, necessitating less storage and fewer frequent access

requirements.

The Bit Brains Trace dataset stands out for its versatility and robustness,

offering diverse data that enhances algorithm performance across various

scenarios. Inclusive of different data types and contexts, it fosters adaptable

and generalized analytical models. Notably, the dataset excels in address-

ing edge cases and outlier scenarios, providing a realistic simulation envi-

ronment for algorithm testing. This proves crucial in assessing algorithm

resilience and efficacy, ensuring robust real-world performance. Researchers

benefit from a holistic testing ground, enabling the development of more

reliable computational models. The Bit Brains Trace dataset emerges as a

valuable resource for advancing algorithmic understanding and application.

54

3.3.2 Clustering Algorithms

Clustering is the procedure of categorizing data elements according to

their similarity score. Clustering can be comprehensive or partial, over-

lapping or distinct, and may also involve fuzzy distinctions. K-Means par-

titional clustering splits data items into non-overlapping groups (Onan,

2019). K-Means clusters are prototype-based when the cluster is repre-

sented by a prototype and all nodes in the cluster are close to it. Centroid

and medoid are two popular prototypes. Clusters in Gaussian Mixture

Models (GMM) are based on density. Data clustering facilitates the pro-

cess of discovering and summarising aspects of interest. Clustering cloud

workload traces is essential in cloud data centers because it enables effective

workload characterization and categorization, which are the first steps in

predicting resource requirements. By grouping similar workloads together,

administrators can optimize resource allocation, capacity management, and

deployment, leading to better performance and cost-effectiveness.

The selection of clustering algorithms for the Bit Brains Trace is grounded

in considerations of execution time and overhead. Notably, the GMM and

K Means algorithms exhibit shorter execution times compared to alter-

natives, leading to a mitigation of SLA violations and reduced simulation

overhead. This strategic choice ensures efficient clustering in the Bit Brains

Trace, emphasizing a balance between prompt execution and minimal com-

putational burden to enhance the overall performance and reliability of

simulations (Ikotun et al., 2023).

3.3.3 Classification Algorithms

The classification method is a supervised learning strategy that uses

training data to determine the type of fresh observations. It is a kind of

software that learns from a dataset of observations and then classifies new

data. As a supervised learning method, the classification method employs

labeled input data that comprises both input and output. In workload

characterization and categorization, Random Forest (RF), Logistic Regres-

sion (LR), K Nearest Neighbor (KNN), Support Vector Machine (SVM)

and Decision Tree (DT), Multi-Layer Perceptron (MLP), and Back Prop-

55

agation Neural Network classification algorithms were utilised.

3.3.4 Process Flow

Generally, the workload in the DC consists of different types of at-

tributes. Some of the attributes are more important when it comes to char-

acterizing the workload. Considering the relevance distribution of qualities

is crucial in figuring out the type of task. It is important as during classifi-

cation stage, significance of the attribute determines how much weight has

to be given to it or to a group of attributes. The main purpose of perform-

ing significance assessment is to order the attributes in terms of predictive

power. Decision Tree Classifier algorithm has been used to perform the

significance analysis. The top four attributes having highest significance

value have been taken for further analysis. In the BBT dataset mem-

ory usage [KB], disk read throughput [KB/s], CPU usage [MHz], network

transmitted throughput [KB/s], disk write throughput [KB/s] and network

received throughput [KB/s] have high percentages in terms of attribute sig-

nificance analysis. The disk write throughput and disk read throughput are

combined to form a single attribute named disk usage. Similarly, network

transmitted throughput and network received throughput are combined to

form a single attribute named network usage. Normalization of the BBT

dataset is done using min-max normalization. The K means technique was

applied to the combined data set consisting of attributes having high sig-

nificance. The technique was further applied to each attribute to calculate

K. The value of number of clusters, K is determined using elbow criterion.

If c represents the clusters obtained for CPU usage [MHz], m for Memory

usage [KB], d for Disk usage [KB/s] and n represents clusters acquired for

Network usage [KB/s]. The product of c, m, d, and n yields the number

of possible workloads in the dataset. As a result, the frequency of vari-

ous workloads is calculated. This analysis yielded the dataset’s workload

distribution. GMM clustering is applied to all attributes first, followed by

individual attributes. The outcomes of both algorithms are compared us-

ing parameters such as the Calinski Harabasz index (CHI) and the Davies-

Bouldin Index (DBI). CHI is also known as the Variance Ratio Criterion.

56

A higher CHI score denotes a model with more defined clusters. The index

is the ratio of all clusters’ total between-cluster and within-cluster vari-

ance. When clusters are large and well-spaced, the score is greater, which

correlates to a classic cluster idea. When DBI is used to evaluate the

model, a lower DBI indicates a model with greater cluster separation. This

index represents the average similarity of clusters, wherein similarity is de-

fined as a criterion that relates cluster distance to number of clusters. It

distinguishes between clusters that are both remote and small. The Davies-

Bouldin criterion is based on a weighted average of distances within-cluster

and between-cluster. The lowest possible score is zero. A value closer to

zero indicates a better partition. Davies-Bouldin scores are easier to calcu-

late because they only use point-wise distances and the index is solely based

on amounts and characteristics inherent in the dataset. After characterizing

and categorizing the workload, an experiment was conducted to create the

appropriate sized virtual machines. The best clustering technique was used

to obtain samples for workload distribution on virtual machines. The first

step of this experiment involved collecting sample output data, or workload

clusters, from the best clustering technique, which were then used as input

for VM sizing. Depending on the characteristics of the workload, VMs of

different sizes were created and organized into clusters. The workload was

mapped to different VM clusters, and as a comparison, the workload was

also mapped to randomly sized VMs. The experimental results were then

compared in terms of the number of VMs used. This experiment aimed

to determine whether creating VMs based on workload distribution could

result in more efficient resource utilization and workload management. An

experimental assessment to approximate classification accuracy for various

machine-learning algorithms to explore how workload distribution affects

each model has been done. The main purpose of doing classification is to

check which algorithm should be used when predicting the workload in the

future. This is done to ensure that correct prediction algorithm would be

applied in the future such that prediction of workload should be done in

an efficient manner. The analysis was carried out using BBT fastStorage

dataset [Shen et al., 2015]. The ratio of training and testing data is kept

57

as 70 and 30 respectively. Figure 3.2 shows the methodology followed to

characterize and categorize the workload.

Figure 3.2: Methodology for categorization and characterization for workload

3.4 Experimental Setup

Normalization of the BBT dataset is done using min-max normalization.

The K means technique was applied to the combined data set consisting

of attributes having high significance. The technique was further applied

to each attribute to calculate K. The value of number of clusters, K is

determined using elbow criterion. If c represents the clusters obtained for

CPU usage [MHz], m for Memory usage [KB], d for Disk usage [KB/s] and n

represents clusters acquired for Network usage [KB/s]. The product of c, m,

58

d, and n yields the number of possible workloads in the dataset. As a result,

the frequency of various workloads is calculated. This analysis yielded the

dataset’s workload distribution. The experiments have been conducted on

M1-3.2GHz processor and 16 GB RAM. GMM clustering is applied to all

attributes first, followed by individual attributes. The outcomes of both

algorithms are compared using parameters such as the Calinski Harabasz

index(CHI) and the Davies-Bouldin Index (DBI). CHI is also known as

the Variance Ratio Criterion. After characterizing and categorizing the

workload, an experiment was conducted to create the appropriate sized

virtual machines. This experiment aimed to determine whether creating

VMs based on workload distribution could result in more efficient resource

utilization and workload management. Following the characterization of

the dataset, classification is done using different classification algorithms

K Nearest Neighbours (KNN), Logistic Regression (LR), Decision Trees

(DT), Random Forest (RF), Support Vector Machine (SVM), Multi-Layer

Perceptron and Back Propagation Neural Network. The classification of

workloads is an important step in workload analysis. The accuracy of the

models built is crucial for workload analysis, resource usage prediction and

provisioning. The classification accuracy analysis aids us in determining

which algorithm is best for a given data center workload.

3.5 Results

The findings of experiments conducted are reported in this section.

Firstly, the feature importance or attribute significance analysis is done

using a decision tree algorithm. The results are as shown in Figure 3.3.

The attributes are represented on the x-axis, while the value of coefficients

is depicted on the y axis. It is clear that the importance of CPU us-

age [MHz] is highest for the BBT dataset. The network and disk usage

dominates the second and third position in terms of significance analysis.

Memory usage has low significance among all the attributes.

Elbow method to determine the value of K is applied and the graph is

plotted between K and inertia. WCSS (Within-Cluster Sum of Squares)

or inertia signifies the summation of squared distances between each data

59

Figure 3.3: Attribute score of different attributes

point and the centroid of its respective cluster. It gauges how tightly the

clusters are formed or how compact they are. A lower WCSS value indi-

cates more uniform and homogeneous clusters, reflecting superior clustering

performance. The graph is shown in Figure 3.4. The value of x-axis depicts

the K values and the value of the Y-axis depicts the value of inertia. At

K = 4, it produces an elbow, indicating that the BBT fastStorage dataset

has four different types of workloads. The execution time for K Means on

all attributes combined is 4.1s.

Figure 3.4: Value of K vs inertias on high significant attributes

The plots of the clustering results based on each attribute individually,

such as CPU usage, memory usage, disk usage, and network usage are

60

depicted in Figure 3.5, Figure 3.6, Figure 3.7 and Figure 3.8 respectively.

It can be concluded from these graphs that for CPU usage two different

workloads have been identified that is CPU LOW (CL) and CPU HIGH

(CH); for memory, three different workloads have been observed that is

Memory LOW(ML) , Memory MEDIUM (MM) and Memory HIGH (MH);

2 workloads have been identified for disk usage that is Disk LOW (DL) and

Disk HIGH (DH) and 2 workloads have been identified for network usage

that is Network LOW (NL) and Network HIGH (NH).

Figure 3.5: K vs Inertia (CPU usage)

Figure 3.6: K vs Inertia (Memory usage)

61

Figure 3.7: K vs Inertia (Disk usage)

62

Figure 3.8: K vs Inertia (Network usage)

The 24 distinct workload combinations are determined once the elbow

point is calculated using K Means clustering. The percentage of tasks

can be identified by calculating the number of tasks in each combination.

Depending on the usage of the resources, the workloads have been char-

acterized as High, Medium and Low as per the resource used. Table 3.2

is formatted as follows:[CPU usage][Memory usage][Disk usage][Network

usage]. Depending on the usage of the resources(R), the workloads have

been characterized as Low (RL), Medium (RM), High (RH). R represents

resources like CPU (C), Memory (M), Network (N) and Disk (D). For in-

stance, [CL] [ML] [DH] [NL] represents CPU low, memory low, Disk medium

and network low resource consumption.

Table 3.2 shows that the majority of tasks (93.38 percent) have modest

resource utilization. These processes used less CPU, memory, storage space,

and network bandwidth. These virtual machines are made up of short

administrative chores and application inquiries. The workload then consists

of 3.41 percent of jobs that employ a high CPU, medium memory, and low

disk and network use. Typically, these virtual machines are utilized to run

CPU-intensive consumer applications.

Similarly, GMM clustering is applied on the BBT dataset. The graphs

of Bayesian Information Criterion (BIC) and Akaike Information Criterion

(AIC) are plotted initially on the entire dataset. It can be concluded from

the graph that there are 7 different types of workload in the entire dataset.

63

Table 3.2: Percentage of tasks in each cluster (K Means)

Type of workload Number
of tasks

Percentage
of tasks

[CL] [ML] [DL] [NL] 10479078 93.38

[CL] [ML] [DL] [NH] 6242 0.05

[CL] [ML] [DH] [NL] 10823 0.09

[CL] [ML] [DH] [NH] 3150 0.02

[CL] [MM] [DL] [NL] 127939 1.14

[CL] [MM] [DL] [NH] 1492 0.01

[CL] [MM] [DH] [NL] 1823 0.01

[CL] [MM] [DH] [NH] 401 0

[CL] [MH] [DL] [NL] 28650 0.25

[CL] [MH] [DL] [NH] 147 0

[CL] [MH] [DH] [NL] 3873 0.03

[CL] [MH] [DH] [NH] 9 0.00008

[CH] [ML] [DL] [NL] 88450 0.78

[CH] [ML] [DL] [NH] 74 0.0006

[CH] [ML] [DH] [NL] 4 0.00003

[CH] [ML] [DH] [NH] 59 0.0005

[CH] [MM] [DL] [NL] 382850 3.41

[CH] [MM] [DL] [NH] 50 0.0004

[CH] [MM] [DH] [NL] 90 0.0008

[CH] [MM] [DH] [NH] 6 0.00005

[CH] [MH] [DL] [NL] 83166 0.74

[CH] [MH] [DL] [NH] 14 0.0001

[CH] [MH] [DH] [NL] 3406 0.03

[CH] [MH] [DH] [NH] 3 0.00002

64

Figure 3.9 shows the AIC and BIC plot. On the x-axis, the number of

clusters or components are depicted whereas on Y-axis the score of AIC

and BIC is depicted. The value of AIC and BIC is same for each analysis

therefore, both the lines overlap each other that results in depiction of one

line in all graphs. The execution time for GMM on all attributes combined

is 8.1s.

Figure 3.9: AIC and BIC plot for all attributes

Once the clustering is done on the combined dataset, the GMM is

applied on the individual attributes. Clustering based on individual at-

tributes, CPU usage, memory usage, disk usage, and network usage yielded

the results as shown in figure 3.10, figure 3.11, figure 3.12 and figure 3.13

respectively. From the given graphs, it can be concluded that CPU and

memory usage have five different types of workloads followed by disk and

network usage having 4 different types of workloads.

65

Figure 3.10: AIC and BIC plot (CPU usage)

66

Figure 3.11: AIC and BIC plot (Memory usage)

Figure 3.12: AIC and BIC plot (Disk usage)

Figure 3.13: AIC and BIC plot (Network usage)

Once the number of components are identified for each attribute, 400

different workload combinations are formed. There are some combinations

in all clusters that are not identified due to thir sparse points, therefore

the 336 combinations are taken, which consists of workloads from all four

attributes. Table 3.3 depicts the various clusters formed by the GMM. De-

pending on the usage of the resources(R), the workloads have been charac-

terized as Very Low (RV L), Low (RL), Medium (RM), High (RH) and Very

67

High (RV H). R represents CPU (C), Memory (M), Network (N) and Disk

(D). For instance, [CV L] [DV L] [NH] [MV L] represents CPU very low, disk

very low, network high and memory very low resource consumption.

Table 3.3: Percentage of tasks in each cluster (GMM)

Types of workloads
(CPU, DISK, NET-
WORK, MEMORY)

Number of tasks Percentage
of tasks

[CV L] [DV L] [NV L] [MV L] 1694756 15.10235435

[CV L] [DV L] [NV L] [MV H] 1864489 16.61488353

[CV L] [DV L] [NL] [MV H] 144998 1.29211

[CV L] [DV L] [NH] [MV L] 90361 0.805227325

[CV L] [DV L] [NH] [MV H] 777464 6.928157693

[CV L] [DV H] [NV L] [MV H] 309871 2.761330624

[CV L] [DV H] [NH] [MM] 61191 0.545286852

[CV L] [DV H] [NH] [MV H] 477556 4.255609617

[CL] [DV L] [NH] [MH] 140988 1.256375982

[CM] [DL] [NL] [MM] 69007 0.614936998

[CM] [DL] [NL] [MH] 70439 0.627697874

[CM] [DV H] [NH] [MM] 55656 0.495963214

[CH] [DV L] [NV L] [MV H] 150892 1.344632768

[CH] [DV L] [NH] [MV L] 194811 1.736004919

[CH] [DV L] [NH] [MM] 72132 0.64278458

[CH] [DV L] [NH] [MV H] 214474 1.911226363

[CH] [DL] [NL] [MM] 102409 0.912589781

[CH] [DL] [NH] [MM] 184342 1.64271329

[CH] [DL] [NH] [MV H] 73562 0.655527634

[CH] [DV H] [NV L] [MV L] 67194 0.598780944

[CH] [DV H] [NV L] [MM] 116116 1.03473596

[CH] [DV H] [NV L] [MV H] 395369 3.523222656

[CH] [DV H] [NL] [MM] 92185 0.821481402

[CH] [DV H] [NH] [MV L] 151433 1.349453742

[CH] [DV H] [NH] [MM] 633867 5.648532321

[CH] [DV H] [NH] [MV H] 1114687 9.933228181

[CV H] [DV L] [NH] [MH] 71513 0.637268531

Both K means and GMM performance is evaluated based on Calinski

Harabasz index, Davies-Bouldin score and execution time. Table 3.4 shows

the values of different parameters by applying K Means and GMM.

From Table 3.4, it can be concluded that K means outperforms the

68

Table 3.4: Scores for performance evaluation parameters

Parameter K Means Gaussian
Mixture
Models

Execution
Time (in
seconds)

4.1s 8.1s

Calinski
Harabasz
Index

54500063 12027922.5

Davies-
Bouldin
score

0.37 3.77

GMM on all mentioned parameters. The Davies-Bouldin score of K Means

is 0.37 that is much better than that of 3.77 of GMM. Closer the value

to zero, better the cluster separation. The Calinski Harabasz Index of K

means is 54500063 whereas for GMM it is 12027922.5. Greater the value of

Calinski Harabasz Index score better is the density and cluster separation.

After characterizing and categorizing the workload traces, an experiment

was conducted that aimed to investigate whether workload distribution

could be used to create virtual machines of appropriate sizes. The sample

data from K Means clusters was utilized as input for VM sizing. VMs

of different sizes were created based on the characteristics of the work-

load and arranged into clusters. The workload was mapped to different

VM clusters, and the results were compared to those obtained by map-

ping the workload to random sized VMs created. To evaluate the efficiency

of this approach for workload management and resource utilization, the

number of VMs were calculated. According to the experimental results,

there was a notable difference in the number of virtual machines (VMs)

used in VM clusters created using K-means clustered workload data i.e.19

in comparison to the number of randomly sized VMs created i.e. 26. An

experimental assessment to approximate classification accuracy for various

machine-learning algorithms to explore how workload distribution affects

each model has been done. The analysis was carried out using BBT fast-

Storage dataset. The ratio of training and testing data is kept as 70 and

30 respectively. Table 3.5 displays the accuracy results, AUC ROC score,

Precision and execution time for different algorithms.

69

Table 3.5: Accuracy percentage of classification algorithms

Algorithms Accuracy
in %

AUC
ROC
Score

Precision Execution
Time (s)

K Nearest
Neighbours
(KNN)

98.79 0.963 0.96 448

Logistic Re-
gression (LR)

79.19 0.941 0.93 182

Decision Trees
(DT)

99.18 0.976 0.97 165

Random Forest
(RF)

97.8 0.958 0.95 190

Support Vec-
tor Machine
(SVM)

84.34 0.922 0.91 172844

Multi-Layer
Perceptron

79.72 0.825 0.82 200

Back Propa-
gation Neural
Network

80 0.847 0.84 250

3.6 Summary

In the realm of cloud data centers, workload characterization and cate-

gorization emerge as crucial practices that facilitate effective resource man-

agement and optimization. Workload characterization involves a meticu-

lous examination of the diverse workloads present within the data center

environment. This analysis encompasses factors such as resource consump-

tion patterns, performance metrics, and utilization behaviors, shedding

light on how different workloads interact with available resources. Simul-

taneously, workload categorization entails the classification of these het-

erogeneous workloads into coherent groups based on shared attributes and

behaviors. By clustering similar workloads together, data center adminis-

trators can tailor resource allocation strategies to meet the specific demands

of each category. This alignment between workload types and resource pro-

visioning leads to enhanced operational efficiency and performance. The

combined effects of workload characterization and categorization are far-

reaching. They empower data centers to make informed decisions about

resource allocation, capacity planning, and load balancing. Furthermore,

70

such insights enable the implementation of dynamic scaling mechanisms to

accommodate fluctuating workloads effectively. Ultimately, these practices

contribute to optimized resource utilization, reduced operational costs, im-

proved energy efficiency, and an overall elevated quality of service in the

realm of cloud data centers.

The research delves into the pivotal role of categorizing and characterizing

workloads in cloud data centers. It encompasses the clustering of diverse

workload types employing two distinct clustering techniques. The alloca-

tion of workloads is achieved through a fusion of unique workload combi-

nations in both clustering modes. Following the completion of clustering,

a performance evaluation is conducted to ascertain the superior clustering

approach. In accordance with the K Means algorithm, a significant propor-

tion (93.38%) of tasks exhibit low resource utilization across CPU, memory,

storage, and network bandwidth. These encompass virtual machines en-

gaged in brief administrative tasks and application inquiries. Conversely,

the Gaussian Mixture Model (GMM) identifies a maximum of 16.61% of

tasks that exhibit very low utilization of CPU, Disk, Network, and very

high utilization of Memory resources. The outcomes underscore K Means’

superiority in terms of Calinski Harabasz Index, Davies-Bouldin Index and

execution time. Subsequent to the clustering process, classification is im-

plemented using diverse classification techniques. Notably, the decision tree

technique achieves the highest accuracy, reaching an impressive 99.18%.

71

Chapter 4

Container Placement in Cloud

Data Center

In this chapter, various container placement algorithms are explored,

emphasizing their role in enhancing energy efficiency within cloud data cen-

ters. It highlights the implementation and impact of these algorithms while

shedding light on the efficacy of proposed and implemented metaheuristic

solutions in effectively reducing data center energy consumption.

4.1 Introduction

Better resource management is required to improve resource utilisation

in Data Center (DCs). Energy efficient management techniques utilize

resources efficiently while increasing energy efficiency (Dayarathna et al.,

2016). VM placement aims to improve resource utilisation by deploying

many VMs on a single Physical Machine (PM) (Corradi et al., 2014) (Am-

mar et al., 2019). Similarly, container placement techniques entail assigning

several containers to a single VM. These VM and container placement ap-

proaches have the potential to enhance resource utilization for both physical

machines (PMs) and virtual machines (VMs), thereby reducing energy con-

sumption in cloud data centers. A Container Placement (CP) technique

aims to distribute containers in the most efficient manner possible, utiliz-

ing the fewest number of VMs and active PMs, thereby increasing resource

efficiency and lowering energy consumption in data centers. The container

72

placement work is divided into two segments. The cloud provider must first

assess new container licensing applications and install the containers on the

hosted VMs before hosting the VMs on the PMs. Second, during the con-

tainer/VM migration process, the cloud infrastructure optimises container

and VM mobility to minimize energy usage, enhance resource usage, and so

on. Better initial container and VM placement improves the work required

for second stage optimization (Masdari et al., 2016). Some studies have

reduced CP to a single level, mostly by doing container assignment to PM

(Kaur et al., 2017). The disadvantage is that VM placement does not take

into account VM-container arrangements, which limits the circumstances

in which all containers may be co-located. As a result, the problem of

container mapping to VMs is approached differently from the problem of

mapping VMs to PMs. Container placement is similar to bin packing in

that virtual machines and containers function as a multidimensional vec-

tor, with each column representing a distinct type of resource such as CPU,

memory capacity, and network bandwidth. Because there is no difference

in bin packing whether objects are organised opposite or on top of one

another; nevertheless, this strategy is not accurate and ideal for container

placement challenges because each item is a container that must be put

in a VM. When a container utilises a resource, no other containers can

use it at the same time. A good solution is especially beneficial to cloud

providers because it enables them to take greater control of their comput-

ing resources while maintaining customer QoS as long as the algorithm

distributes a group of containers over several physical servers. It is an NP-

hard combinatorial issue to allocate containers to VMs and VMs to PMs

(Al-Moalmi et al., 2021). The problem can be resolved in order to minimise

energy consumption in a cloud DC. There are numerous approaches to ad-

dress this issue, one of which is Evolutionary Computing (EC), which is

utilised to lower energy consumption while increasing resource utilisation.

Efficient container placement and consolidation pose significant challenges

in optimizing resource utilization. Incorrect placement may lead to im-

balances in workload distribution across servers, resulting in either under-

utilized or overutilized resources. The dynamic nature of cloud workloads

73

further complicates the scenario, requiring adaptive placement strategies

to address fluctuations in demand and ensure effective resource allocation

and scaling. Achieving energy efficiency is paramount, as suboptimal con-

tainer placement may trigger unnecessary server activations and inefficient

resource utilization, contributing to heightened energy consumption. En-

suring fault tolerance and high availability introduces complexities in con-

tainer placement. Strategies must consider redundancy and isolation to

minimize the impact of failures, contributing to a resilient system. Bal-

ancing these considerations is crucial for effective container placement and

consolidation in cloud environments, emphasizing the need for adaptive

strategies to navigate the dynamic nature of workloads and optimize re-

source utilization.

Metaheuristic algorithms, including genetic algorithms, simulated anneal-

ing, and particle swarm optimization, offer effective solutions for container

placement and consolidation challenges in resource utilization (Kalra and

Singh, 2005). These algorithms efficiently navigate the solution space, iden-

tifying near-optimal container placements to address workload distribution

issues. Their inherent adaptability enables dynamic adjustments based

on changing workloads, effectively tackling the unpredictability of resource

demands. Additionally, metaheuristics can incorporate energy efficiency

objectives, optimizing container placements to minimize energy consump-

tion and contribute to sustainability in cloud data centers. Furthermore,

metaheuristic algorithms can be tailored to consider fault tolerance re-

quirements. They explore redundant placement strategies to ensure high

availability and resilience to failures, enhancing the robustness of container

placement and consolidation. In summary, metaheuristic algorithms pro-

vide adaptive and efficient solutions for optimizing container placement and

consolidation in the dynamic and complex environment of cloud computing.

4.2 Literature Review

Despite the growing popularity of container technology as a cloud ser-

vice paradigm, there have been few attempts to minimize usage of energy

in Container as a Service (CaaS) DCs. Many attempts have been made

74

to resolve the container placement problems. In a study by Nardelli et

al. (2017), they approached this task as an Integer Linear Programming

problem, considering the diversity of resource types among containers and

VMs. Their technique not only aimed at enhancing various Quality of

Service (QoS) measures but also had the ability to reallocate containers

during runtime if it could lead to improved QoS. To establish a baseline,

they compared their proposed formulation with two widely used heuristics:

the greedy first-fit and round-robin methods, typically employed to address

the container placement problem.

Similarly, Boukadi et al. (2017) tackled the resource allocation problem

from an enterprise perspective. They introduced a linear program (LP)

designed to determine the optimal deployment of a business process on

cloud containers. Their method was evaluated against both a VM-based

scheduling scheme and the First-Fit method.

In another approach, Smimite and Afdel (2020) presented a Hybrid so-

lution for resource and workload management. They combined ant colony

optimization (ACO) with the first-fit decreasing (FFD) algorithm to miti-

gate unnecessary use of energy.

Furthermore, some efforts have explored the consolidation of containers

as an integrated optimization problem, considering both container place-

ment and VM placement simultaneously. Mann (Mann, 2018), for exam-

ple, gave a solution to the joint optimization issue of dynamic container

aggregation for a multi-task learning tracing. They took into account

size issues, colocation restrictions, license fees, and hardware affinity re-

lationships. Based on an actual review of a real-world workload trace,

the integrated solution delivered much significantly better outcomes than

studying the two concerns independently. Following a similar approach,

Shi et al. (Shi et al., 2018a) introduced a Two-stage Multi-type Particle

Swarm Optimization technique, referred to as TMPSO, for energy-efficient

container consolidation in cloud data centers. Through experimental eval-

uations conducted on benchmark datasets, they were able to demonstrate

that their proposed algorithm achieved energy savings when compared to

certain existing methods. Tan, Ma, and Mei (Tan et al., 2019) approached

75

the problem in two steps. To solve the container placement problem, the

authors combined two approaches to develop a genetic programming hyper-

heuristic with customized rules. Experiments demonstrated that their hy-

brid method considerably cut energy usage when compared to utilizing

only human-designed rules. Apart from the above-mentioned research pa-

pers, nowadays researchers have increased the use of different metaheuristic

algorithms for the placement of containers and VMs. Meta-heuristic algo-

rithms, in general, have been used to identify optimum solutions to large-

scale computing issues and have grown in popularity because they are less

difficult and more efficient than other older procedures (M. K. Patra et al.,

2022). Meta-heuristic algorithms are crafted by drawing inspiration from

animal and insect behaviors, natural phenomena, evolutionary principles,

and other naturally occurring concepts. These algorithms can be cate-

gorized into five distinct types: bio-stimulated, nature-inspired, physics-

based, evolutionary, and swarm-based. Bio-stimulated meta-heuristic op-

timization is based on wild animal and marine creature hunting and for-

aging habits. Nature-inspired optimization algorithms are the second type

of meta-heuristic that are based on natural systems. Physical laws usually

motivate physics-based meta-heuristic techniques. The fourth category,

evolutionary type is built on the notions of the natural selection process.

In this approach, the community tries to build on the fitness function mea-

surements in their environment and puts forth every effort to locate the

ideal outcome in the search spaces. The last category of meta-heuristic

algorithm i.e., swarm-based is based on the mutual behaviour of insects,

nanoparticles, and other social animals. Meta-heuristics are well suited to

combinatorial optimization issues. While they are not always guaranteed

to discover the best global solution, they may frequently find an excel-

lent solution in a reasonable period. They are an alternative to exhaustive

search, which would take exponential time. In order to avoid local minima,

meta-heuristics frequently integrate some type of randomization (Saber et

al., 2018). Hussein and colleagues (Hussein et al., 2019) proposed an ar-

chitecture for placing containers on virtual machines (VMs). Their design

attempts to maximise VM and physical machine (PM) use while minimising

76

the number of active VMs and PMs. They investigated placement algo-

rithms like the Best Fit and Max Fit heuristics, as well as a fitness function

that assesses resource use. In addition, they combined their fitness function

with a meta-heuristic termed Ant Colony Optimisation based on Best Fit

(ACO-BF).

Similarly, Farzai (Farzai et al., 2020) framed the VM placement problem

as a multi-objective optimization challenge, with the objectives of reducing

resource wastage, minimizing power consumption, and reducing bandwidth

usage within the network. They presented an ant colony optimization

technique as a solution to this defined problem.

Furthermore, Shabeera and colleagues (Shabeera et al., 2017) introduced

an ACO-based Virtual Machine Placement (VMP) approach for locating

data and VMs using constrained PMs. This method selects PMs in close

proximity, and the workloads are distributed over the VMs allocated by

this scheme, which outperforms other allocation strategies.

In a similar vein, Bouaouda (Bouaouda et al., 2022) conducted a compar-

ison of container placement strategies, specifically the First Fit Decreasing

algorithm and the Ant Colony Optimization algorithm. They compared

these two approaches based on energy consumption. Zhang (W. Zhang et

al., 2022) provided a two-stage container management approach for min-

imising migration costs and load balancing. To handle optimization is-

sues at diverse time scales, they devised adaptive and greedy algorithms.

Their suggested methods are tested using real-world trace data from Al-

ibaba, demonstrating that they beat the alternative approach in terms

of load balancing and migration cost. The authors in (Akindele et al.,

2022) proposed a new fixed-length crossover operator for Grouping Genetic

Algorithm (GGA) container resource allocation optimization to promote

population variety and exploration. They also suggested problem-specific

Best-Fit and Largest VM heuristic operators to enhance local search by

reordering containers from the chromosomal tail’s lower fitness PMs into

existing VMs and PMs with higher usage where possible. They showed

that the suggested GGA may dramatically cut energy usage in large-scale

test situations using the newly built operators. Bouaouda (Bouaouda et al.,

77

2023) offered a method for predicting cloud container location and power

usage in data centres utilising heuristics and meta-heuristics like Genetic

Algorithm (GA) and First Fit Decreasing (FFD). They conducted eval-

uations of their algorithms using CloudSim, and the results consistently

showed that their approaches, particularly the Genetic Algorithm, outper-

formed Ant Colony Optimization (ACO) and Simulated Annealing (SA),

providing more effective and efficient solutions.

Additionally, in their study, they introduced an algorithm based on the

Whale Optimization Algorithm (WOA) (Al-Moalmi et al., 2021) to tackle

both stages of placement as a unified optimization problem. The algo-

rithm’s primary objective was to identify the optimal configuration of Vir-

tual Machines (VMs) and Physical Machines (PMs) within a single search

space. Extensive testing was conducted across diverse heterogeneous envi-

ronments, with comparisons made to recent approaches. The experimental

results consistently demonstrated the superiority of their proposed method

over the alternatives in a variety of test environments.

Table 4.1 shows the comparison of work done in the domain of container

placement in CDC.

Table 4.1: Comparison of work done in the domain of container placement in cloud data
centers

Work Advantages Disadvantages

An Integer Linear Pro-

gramming issue is used

to generalise the elas-

tic provisioning of virtual

machines for container

deployment (Nardelli et

al., 2017).

Their technique took

into consideration the

diversity of container

and VM resource

types.

They did not con-

sider using AI based

metaheuristics algo-

rithms for efficient

container placement.

78

Focused on the resource

distribution issue from

an enterprise standpoint

and proposes a linear

program (LP) for de-

termining the best in-

stallation of a business

processes on cloud con-

tainers (Boukadi et al.,

2017).

The authors compared

their suggested tech-

nique to the First-Fit

method for containers

and a VM-based de-

ployment.

They did not con-

sider testing their

proposed technique

with large number of

VMs and PMs.

To reduce needless

power usage, (Smimite

and Afdel, 2020) pro-

posed a Hybrid strategy

for managing resources

and workload based

on Ant Colony Opti-

misation (ACO) and

the first-fit decreasing

(FFD) algorithm.

The experiment find-

ings showed that

employing the FFD for

container placement

outperformed ant

colony optimization,

especially in homoge-

nous environments. In

the context of work-

load management,

however, ACO pro-

duced quite satisfying

solutions.

They did not track

under-utilized hosts

and tested the pro-

posed approaches for

a smaller number of

containers and hosts.

Gave a solution to the

joint optimization issue

of dynamic container

aggregation for a multi-

task learning tracing

(Mann, 2018).

Took into account size

issues, colocation re-

strictions, license fees,

and hardware affinity

relationships.

The proposed ap-

proaches were not

compared with

other pre-existing

approaches.

79

Proposed (Shi et al.,

2018a) a Two-stage

Multi-type Particle

Swarm Optimization ap-

proach, named TMPSO,

to energy-aware con-

tainer consolidation in

Cloud data centers.

When compared to

certain current tech-

niques, the proposed

algorithm saved much

more energy.

They did not con-

sider container mi-

grations to realize

the dynamic opti-

mization of container

consolidation.

To answer the chal-

lenge of container

placement, the authors

created a hybrid so-

lution that combined

genetic programming

hyper-heuristics with

human-designed criteria

(Tan et al., 2019).

The hybrid technique

could dramatically

reduce energy us-

age when compared

to employing only

human-designed rules.

They did not

consider testing

proposed algorithm

in the heterogenous

environment.

Suggested a container

placement architecture

for VMs. The sug-

gested design seeked to

maximize VM and PM

usage while keeping the

number of deployed VMs

and active PMs to a

minimum (Hussein et

al., 2019).

They investigated the

Best Fit and Max Fit

heuristics, as well as

a fitness function that

assesses resource con-

sumption.

They did not men-

tion the details

about the QoS.

80

Framed the problem

of VMP as a multi-

objective optimization

problem (Farzai et al.,

2020).

Multi-objective opti-

mization model not

only focused on energy

savings; however, it

was also concerned

with reducing resource

waste and lowering

the high rate of data

transmission over

the shared network

bandwidth of DCs.

They did not fo-

cus on the real-world

problem of container

placement.

Presented (Shabeera

et al., 2017) an ACO-

dependent Virtual

Machine Placement

(VMP) method for lo-

cating data and VMs

using restricted PMs

Selects PMs in close

vicinity, and the work-

loads were distributed

over the VMs allocated

by such a scheme, out-

performing other allo-

cation strategies.

They did not con-

sider implementing

the proposed al-

gorithm in the

heterogenous en-

vironment. They

did not focus on

the real-world prob-

lem of container

placement also.

Presented (Bouaouda et

al., 2022) the compari-

son of container place-

ment strategies like First

Fit Decreasing algorithm

and Ant Colony Opti-

mization algorithm

They compared the

proposed strategy on

the basis of the energy

consumption.

The major drawback

is that they did not

consider SLA viola-

tions and also tested

the approaches for

smaller number of

hosts.

81

Provided a two-stage

container management

approach for minimising

migration costs and load

balancing (W. Zhang et

al., 2022).

To handle the optimi-

sation difficulties for

container placement

and container migra-

tion at different time

scales, they introduced

the Balance Aware

Container Placement

(BACP) method

and the Adaptive

Threshold Container

Migration (ATCM)

algorithm.

They tested the al-

gorithms on a small

number of servers

and containers.

Proposed (Akindele et

al., 2022) a new fixed-

length crossover opera-

tor for GGA container

resource allocation opti-

mization.

They showed that their

algorithm reduced the

energy consumption in

large scale test cases.

Not Mentioned

Predicted cloud con-

tainer location and

power usage in data

centres utilising heuris-

tics and meta-heuristics

using a Genetic Algo-

rithm (GA) and First

Fit Decreasing (FFD)

(Bouaouda et al., 2023).

Their proposed strate-

gies provide better and

efficient solutions.

They tested the

strategies with a

smaller number of

hosts.

82

Addresses (Al-Moalmi et

al. 2021) the prob-

lem of container and

VM placement in CaaS

systems while optimising

both power consumption

and resource utilisation.

In one search space,

the suggested method

looked for the optimal

number of VMs and

PMs. The suggested

approach is compared

to current methods in

various degrees of di-

verse situations.

Not mentioned.

The techniques mentioned above suffer from various limitations that

render them incomplete or unsuitable for the current scenario as the con-

tainer placement problem is NP hard.

To demonstrate the NP-hardness of the container placement problem us-

ing 3SAT, it is necessary to show a reduction from 3SAT to the container

placement on virtual machine. The task is to prove that an instance of

3SAT can be transformed into an instance of the container placement on

virtual machine in polynomial time.

The Container Placement on Virtual Machine:

The container placement on virtual machine problem involves placing a

set of containers of different sizes onto a set of virtual machines with fixed

capacities, such that the number of virtual machines used is minimized,

and the containers’ total sizes do not exceed the capacities of the assigned

virtual machines.

Formally, given a set of containers with sizes C = c1, c2, ..., cn and a set

of virtual machines with capacities V = v1, v2, ..., vm, the task is to find a

placement of containers onto virtual machines such that:

1. The total size of containers assigned to each virtual machine does not

exceed its capacity.

2. The number of used virtual machines is minimized.

Proof

Given an instance of 3SAT with n variables and m clauses, it is necessary

83

to construct an instance of the container placement on virtual machine.

1. For each variable xi in the 3SAT instance, create two containers with

sizes ci1 = 2 and ci2 = 1. These two containers represent the truth values

“true” and “false” for the variable xi.

2. For each clause Cj = (a, b, c) in the 3SAT instance, create a virtual

machine with capacity vj = 3.

3. Now, for each literal in a clause, assign the corresponding container to

the virtual machine representing that clause. For example:

If the literal is xi, assign container ci1 to the virtual machine corresponding

to the clause Cj.

If the literal is negation xi (negation of xi), assign container ci2 to the vir-

tual machine corresponding to the clause Cj.

Now, let’s analyze the reduction:

If the 3SAT instance is satisfiable:

If the 3SAT instance is satisfiable, there is a truth value assignment to the

variables that fulfils all of the clauses. In the corresponding container place-

ment on virtual machine instance, it is necessary to assign assign containers

representing “true” for the variables set to true and containers representing

“false” for the variables set to false. Since each virtual machine’s capacity

is 3, and each container has a size of 1 or 2, the assignment of containers

to virtual machines will be feasible.

If the container placement on virtual machine instance has a feasible solu-

tion:

If the container placement on virtual machine instance has a feasible solu-

tion, it means there exists an assignment of containers to virtual machines

such that each virtual machine’s capacity is not exceeded. This implies

that for each clause, at least one literal in that clause evaluates to true.

Therefore, the corresponding 3SAT instance is satisfiable.

Since the reduction is valid and 3SAT is known to be NP-hard, the container

placement on VM is also NP-hard. Therefore, the container placement on

VM is NP-hard when using 3SAT as the reference problem.

For instance, most of the approaches utilized a limited number of con-

tainers, virtual machines (VMs), and servers in their experiments, thereby

84

limiting the validity and generalizability of their results. Additionally, they

primarily focused on testing their proposed methods in either homogenous

or heterogeneous scenarios, without considering their applicability in both

settings. Another significant issue with these techniques is that they ne-

glected critical optimization metrics such as energy consumption and ser-

vice level agreements (SLAs), which are essential for achieving efficient

resource utilization and meeting performance targets.

4.3 Methodology

This section presents the workflow for designing and developing an op-

timal containers placement technique in order to reduce the number of

instantiated VMs and active PMs that in turn reduces energy consumption

of DCs. A Discrete Firefly algorithm (DFF) and Discrete Firefly algo-

rithm with Local Search Mechanism (DFFLSM), which are metaheuristic

algorithms that are based on the flashing behavior of fireflies were used

for placing containers on VMs are proposed. These algorithms were com-

pared with pre-existing algorithms like First Fit (FF), First Fit Decreasing

(FFD), Random and Ant Colony Optimization (ACO). The results were

compared in terms of reduction in average energy consumption, average

active VMs, average active PMs and average overall SLA violations. Fig-

ure 4.1 shows the workflow for the implementation of container placement

algorithms.

4.3.1 Problem formulation Container Placement in Cloud Data

Center

This section presents a precise numerical illustration of the proposed

work’s aim, which is to decrease the use of energy in data centers by mini-

mizing the number of active virtual machines (VMs) and physical machines

(PMs). The power function in a cloud data center is a crucial component

that determines the amount of energy used, and it is represented mathe-

matically as follows:

85

Figure 4.1: Methodology for container placement in cloud data center

Pk (t) = P idle
k +(Pmax

k −P idle
k)×U(k,t), Nvm > 0 (4.1)

0, NVM = 0

where:

Nvm = Number of virtual machines

P idle
k = idle power consumption of physical machine k

Pmax
k = maximum power consumption of physical machine k

U(k,t) = CPU Utilization percentage of server k at time t

To put it another way, consumption of power may be reduced by mini-

mizing the number of active PMs, which is expressed by:

86

minimize Npm =
∑
k

Nvmpmk
(4.2)

Npm stands for the number of PM,Nvmpmk
stands for number of VM

running on kth PM. Each VMi (1 < j < N) has CPU capacity V Ci ,

memory capacity VMemi and bandwidth capacity V Bi. Each Container

j (1 < j < M) has its CPU demand CCj, memory demand CMemj and

bandwidth demand CBj. The following constraints are considered to re-

duce energy consumption or reduce the active number of PMs.

yi =
M∑
j=1

xi,j∀ i ∈ I (4.3)

N∑
i=0

xi,j = 1 ∀ j ∈ J (4.4)

M∑
j=1

CCJ .xi,j ≤ V Ci (4.5)

M∑
j=1

CMemJ .xi,j ≤ VMemi (4.6)

M∑
j=1

CBJ .xi,j ≤ V Bi (4.7)

i represents the set of VMs, j represents the set of containers and xi,j

represents the assignment of jth container on ith VM. Eq. (4.3) determines

whether a VM is used (yi = 1) or not (yi = 0) that is means whether the

container has been assigned to the VM or not. Constraint (4.4) demon-

strates that a container is exclusively assigned to one of the virtual ma-

chines. Constraints (4.5), (4.6), and (4.7) specify the virtual machine’s

capacity constraints for the CPU, memory, and bandwidth respectively.

The constraints in equation (4.5), (4.6) and (4.7) describes the resource

capacity requested by container (i.e., requested CPU, requested memory,

requested bandwidth) is less than or equal to that of VM.

87

4.3.2 Process Flow

The container placement algorithms have been designed to optimize en-

ergy consumption in cloud data centers by optimally placing the containers

on VMs. This section focuses on the process flow followed for designing, de-

veloping and comparing the different container placement algorithms. Two

approaches that utilize metaheuristic algorithms, Discrete Firefly algorithm

(DFF) and Discrete Firefly with local search mechanism (DFFLSM), based

on the flashing behavior of fireflies, to place containers on virtual machines

(VMs) are proposed and implemented. The performance of the proposed

algorithms was compared with pre-existing algorithms such as First Fit

Decreasing (FFD), First Fit (FF), Random, and Ant Colony Optimiza-

tion(ACO) in terms of several metrics, including average energy consump-

tion, average active VMs, average active PMs, and average overall SLA

violations. Bin packing is an algorithmic technique used for efficient stor-

age of items using the minimum number of boxes. In the field of information

technology, this approach can be utilized for tasks such as file storage, IT

assistance, and addressing efficiency issues, among others. Specifically, the

First-Fit Decreasing (FFD) algorithm (SMIMITE and AFDEL, 2020) is

commonly used for container placement in which the containers are sorted

in descending order of their RAM capacity. This algorithm allocates the

containers to the virtual machines while ensuring that the capacity restric-

tions of the virtual machines are not violated. In case, the first virtual

machine lacks sufficient space, the algorithm moves on to the second one

and continues this process until all containers are accommodated. Con-

tainers are assigned at random to VMs, which are then hosted at random

in hosts servers in Random container placement algorithm (SMIMITE and

AFDEL, 2020). The FF container placement algorithm (SMIMITE and

AFDEL, 2020) is one of the oldest memory management strategies. This

method arranges the bins in the order of first in, first served. The best-

suited VM available can be used for the allocation of containers on VM.

The Ant Colony Optimization (ACO) is a meta-heuristic algorithm that

mimics the natural food-seeking behavior of ants (SMIMITE and AFDEL,

2020). Despite their limited memory, ants have evolved a messaging net-

88

work that relies on a chemical substance called pheromone, which each ant

uses to mark its path. By detecting the amount of pheromone, other ants

can plan their movements based on the likelihood of finding food.

4.3.3 Algorithms

Algorithm 1 First Fit Decreasing Conntainer Placement Algorithm

1: Input: ContainerList, VMList
2: Output: ContainerPlacement
3: Arrange containers in descending order on the basis of the RAM required
4: Maxram = VMRam*RAMThreshold
5: Maxbw = total bandwidth capacity of VMs
6: Maxcpu = total CPU capacity of VMs
7: for container in ContainerList do
8: for VM in VMList do
9: VMRam estimate (VM, Container) ≤ Maxram

10: VMCPU estimate (VM, Container) ≤ Maxcpu

11: VMbw estimate (VM, Container) ≤ Maxbw

12: Allocate (VM, Container)
13: end for
14: end for

Figure 4.2 shows the flow chart of FFD Container Placement algorithm.

Figure 4.2: Flowchart of FFD Container Placement algorithm

RAM threshold was changed from 100 percent to 50 percent decreasing

10 percent each time. The maximum amount of RAM utilized by can be

calculated by the equation below:

89

Maxram = VMRam ∗RAMThreshold (4.8)

Algorithm 2 Random Container Placement Algorithm

1: Input: ContainerList, VMList
2: Output: ContainerPlacement
3: Maxram = VMRam*RAMThreshold
4: Maxbw = total bandwidth capacity of VMs
5: Maxcpu = total CPU capacity of VMs
6: for container in ContainerList do
7: for VM in VMList do
8: VMRam estimate (VM, Container) ≤ Maxram

9: VMCPU estimate (VM, Container) ≤ Maxcpu

10: VMbw estimate (VM, Container) ≤ Maxbw

11: Allocate (VM, Container)
12: end for
13: end for

Figure 4.3 depicts the Random container placement algorithm’s flowchart.

RAM threshold was changed from 100 percent to 70 percent decreasing 10

percent each time. The maximum amount of RAM utilized by VM can be

calculated by the equation 4.8.

Algorithm 3 First Fit Container Placement Algorithm

1: Input: ContainerList, VMList
2: Output: ContainerPlacement
3: Maxram = VMRam*RAMThreshold
4: Maxbw = total bandwidth capacity of VMs
5: Maxcpu = total CPU capacity of VMs
6: for container in ContainerList do
7: for VM in VMList do
8: VMRam estimate (VM, Container) ≤ Maxram

9: VMCPU estimate (VM, Container) ≤ Maxcpu

10: VMbw estimate (VM, Container) ≤ Maxbw

11: Allocate (VM, Container)
12: end for
13: end for

Figure 4.4 depicts the First Fit container placement algorithm’s flowchart.

RAM threshold was changed from 100 percent to 70 percent decreasing 10

percent each time. The maximum amount of RAM utilized by can be

calculated by the equation 4.8.

Figure 4.5 depicts the ACO container placement algorithm’s flowchart.

Each ant obtains all of the containers and tries to allocate them to the host

using the probability choice (ProbabilityVM) algorithm from equation 4.9.

90

Algorithm 4 Ant Colony Optimization-based Container Placement Algorithm

1: Input: ContainerList, VMList
2: Output: ContainerPlacement
3: Initialize parameters, set pheromone value
4: for container in ContainerList do
5: for VM in VMList do
6: R = container.getRam()/VM.getRam()
7: end for
8: initializeRamAllocation(R)
9: end for

10: for VM in VMList do
11: Cr = VM.getRam()
12: initializePheromone(Cr)
13: end for
14: for t = 1 to tmax do
15: for container in ContainerList do
16: Calculate Heuristic function in terms of allocation of each container according

to equation 4.11
17: for VM in VMList do
18: Calculate probability according to equation 4.9
19: initializeProbability(P)
20: end for
21: for i = 1 to k do
22: vote(VMs, probability)
23: end for
24: for VM in VMList do
25: if MaxVote then
26: Allocate(Container, BestVM)
27: Update Pheromones according to equation 4.12
28: end if
29: end for
30: end for
31: end for

91

Figure 4.3: Flowchart of Random Container Placement algorithm

Probabilityvm = PH(VM)alpha ×H(VM)beta/
∑

PH(VM)alpha ×H(VM)beta

(4.9)

The probabilistic computation (ProbabilityVM) is based on the present

pheromone concentration (PH) and a heuristic (H) that helps ants choose

the best hosts.

Using equation 4.10, the probable RAM allocation (RA) for each container

(CNT) on VM was estimated (SMIMITE and AFDEL, 2020).

RAVM
CNT = CNTRAM/VMRAM (4.10)

As seen in equation 4.11, the heuristic (H) is derived based on 4.10.

HVM
CNT+ = RA(CNT)/RA(CNT)VM (4.11)

92

Figure 4.4: Flowchart of FF Container Placement algorithm

The capacity of each host in terms of RAM was used to initialize the

pheromone (PH) concentration. After an ant had selected a host, the

pheromone concentration was updated using equation 12.

PHBestV M = PH(BestV M) ∗ (1− ρ) +Q/RA(BestV M) (4.12)

Where Q is an adaptive parameter and ρ is the evaporation factor.

The original Firefly Algorithm (FA) is a continuous optimization algo-

rithm that is designed to handle continuous variables. In the container-to-

VM mapping problem, however, the number of containers mapped to each

VM is typically a discrete variable. As such, FA may not be well-suited

for the problem, as it may not be able to handle the discrete nature of

the variable effectively. DFF can be used for container-to-VM mapping,

particularly when the number of containers mapped to each VM is a dis-

crete variable. DFF is a variation of the original Firefly Algorithm that

93

Figure 4.5: Flowchart of ACO Container Placement algorithm

can handle discrete variables and is particularly suitable for combinatorial

optimization problems (Balaji et al., 2023).

Algorithm 5 Discrete Firefly (DFF) Container Placement Algorithm

1: Input: n, α, βo, γ, MaxGeneration

2: Output: optimum placement of container on VM

3: Define the objective function f(xi) according to equation 4.15.

4: Initialize n fireflies, xi = (xi1, xi2, . . . , xid).

5: while t < MaxGeneration do

6: Identify each firefly’s absolute brightness according to equation 4.17.

7: for i = 1 to n do

8: for j = 1 to n do

9: if Ii > Ij then

10: Evaluate the distance among firefly i and firefly j using equation 4.18.

11: Evaluate the attractiveness of firefly j attracting i using equation 4.17.

12: Move firefly i to j using equation 4.19.

13: end if

14: end for

15: Disperse position after moving by discretization strategy given in equation

4.20.

16: end for

17: end while

18: Obtain the optimum placement of container on VM.

94

Time and Space Complexity

Step 1: Defining the objective function f(xi) takes constant time and can

be considered O(1).

Step 2: Initializing n fireflies, xi = (xi1, xi2, , xid) takes O(nd) time,

as it requires initializing n fireflies, each with d dimensions.

Step 3: The while loop runs MaxGeneration times, so it has a time com-

plexity of O(MaxGeneration).

Step 4: Identifying each firefly’s absolute brightness takes O(n) time since

it involves evaluating the brightness for each of the n fireflies. The first for

loop runs n times. The second for loop also runs n times.

Step 5: The if statement takes constant time and can be considered O(1).

Step 6: Evaluating the distance between firefly i and firefly j takes O(d)

time, as it requires calculating the distance between two points in d-dimensional

space.

Step 7: Evaluating the attractiveness of firefly j attracting i takes constant

time and can be considered O(1).

Step 8: Moving firefly i to j takes O(d) time, as it involves updating the

position of firefly i in each of its d dimensions.

Step 9: The end if statement takes constant time and can be considered

O(1).

Step 10: The second for loop runs n times, so its time complexity is O(n).

Step 11: Dispersing position after moving by discretization strategy takes

O(d) time, as it involves updating the position of firefly i in each of its d

dimensions.

Step 12: The end i statement takes constant time and can be considered

O(1).

Step 13: The end while statement takes constant time and can be consid-

ered O(1).

Step 14: Obtaining the optimum placement of the container on VM takes

constant time and can be considered O(1).

Therefore, the overall time complexity of the DFF algorithm isO(MaxGeneration∗

n2 ∗d), where n is the number of fireflies, d is the dimension of each firefly’s

position vector, and MaxGeneration is the maximum number of genera-

95

tions (iterations) allowed for the algorithm to run.

Objective function requires memory to store its input values, but its space

complexity is negligible compared to the rest of the algorithm. Initializa-

tion step involves creating an array of n fireflies, each represented by a

d-dimensional vector. The space complexity of this step is O(nd). The

main loop of the algorithm involves computing the brightness and attrac-

tion of each firefly and updating their positions. The space complexity of

this step is also O(nd) because it involves updating the same array of n

fireflies.

Figure 4.6 shows the flowchart of DFF Container Placement algorithm.

Figure 4.6: Flowchart of DFF Container Placement algorithm

The resource required by containers to get properly placed on the VMs

is calculated using the equation number 4.13.

core ∗MIPS +Bandwidth+RAM (4.13)

Here, core refers to the number of processing units in the system, MIPS

refers to the processing speed of the CPU, Bandwidth refers to the amount

of data that can be transferred between components (e.g., CPU and mem-

ory) in a given amount of time and RAM represents main memory size.

Once the containers were placed on the VMs, the resources available to the

96

VM after placement were calculated using equation 4.14.

core ∗MIPS +Bandwidth+RAM (4.14)

Initial populations of fireflies were generated randomly and the F (xi) is

calculated using equation 4.15.

F (xi) = VM ra
i − Contruj (4.15)

where F (xi) is the resource left of the VM after placement of the container.

The firefly algorithm contains the three sections that are described be-

low:

The absolute luminosity Ij of firefly j is defined as objective function

value at xj

Ij = F (xj) (4.16)

In the target minimization issue, the smaller the objective function value,

the brighter the absolute luminosity of fireflies.

Attractiveness: The brightness and attractiveness are proportionate, and

both diminish as the distance separating among fireflies grows. As a con-

sequence, if there are two flashing fireflies, the less luminous one will move

towards the brighter one. It will travel at random if there is no other firefly

that is bright than it.

βji = β0 × e−γ2
rij

(4.17)

Where β0 is the attractiveness at r = 0, gamma a fixed light absorption

coefficient, rij is the distance between the ith and jth firefly, is listed as

below:

rij =

√√√√ d∑
k=1

(xik − xjk)
2 (4.18)

Movement: A firefly i’s movement is drawn to another, more appealing

(brighter) firefly j, as determined by (Ding et al., 2018):

xi(t+ 1) = xi(t) + βji(xj(t)− xi(t)) + α(rand− 0.5 ∗ A)

97

(4.19)

where the second term is due to the attraction, and βji is the attractive-

ness. The third term is randomization and α represents the randomization

argument.

Discretization Strategy: When firefly i approaches towards firefly j, its

location changes from a binary number to a real number. As a result,

it must be substituted by a binary number for this actual integer. The

following sigmoid function limits S (xik) to the range of zero to one.

S(xik) =
1

1 + e−xik
(4.20)

where S(xik) denotes the probability of bit xik taking 1.

Local search mechanisms are often introduced (Saber et al., 2018) in

metaheuristic algorithms to help improve the quality of solutions and avoid

being stuck in local optima. Based on the vast number of alternative con-

figurations, the container-to-VM mapping issue is a combinatorial opti-

mization problem, which implies that finding the best solution might be

challenging. Local search can help the algorithm explore the search space

more effectively and find better solutions. Overall, local search mechanism

can be a useful addition to DFF container placement algorithm, as it can

help improve the quality of solutions and avoid being stuck in local optima.

DFF container placement algorithm is a global search algorithm designed

to explore a large search space and find a good solution. However, they

can sometimes be stuck in local optima or suboptimal solutions. This can

happen when the algorithm converges to a suboptimal solution that ap-

pears to be brighter than other nearby solutions, causing the fireflies to

move towards it and being stuck in a suboptimal solution. By incorpo-

rating a local search mechanism (Saber et al., 2018), the solutions found

by the global search algorithm can be further refined and hence can help

to potentially escape from suboptimal solutions. In case of DFFLSM con-

tainer placement algorithm, the local search mechanism can help to refine

the solutions found by the algorithm by exploring the neighborhood of each

98

firefly and improving its position based on its attraction to other fireflies.

This can potentially lead to better solutions and improve the quality of the

final solution obtained by the algorithm.

Algorithm 6 Discrete Firefly (DFF) Container Placement Algorithm with local search
mechainsm

1: Input: n, α, βo, γ, MaxGeneration

2: Output: optimum placement of container on VM

3: Define the objective function f(xi) according to equation 15.

4: Initialize n fireflies, xi = (xi1, xi2, . . . , xid).

5: while t < MaxGeneration do

6: Identify each firefly’s absolute brightness according to equation 4.17.

7: for i = 1 to n do

8: for j = 1 to n do

9: if Ii > Ij then

10: Evaluate the distance among firefly i and firefly j using equation 4.18.

11: Evaluate the attractiveness of firefly j attracting i using equation 4.17.

12: Move firefly i to j using equation 4.19.

13: end if

14: end for

15: Disperse position after moving by discretization strategy given in equation

4.20.

16: end for

17: if t > 2 then

18: Optimize the local optimal solution using local search mechanism.

19: end if

20: end while

21: Obtain the optimum placement of container on VM.

LocalSearchMechanism()

1. for m = 1:Nvm

2. Colm+1= Colm+Colm+1

3. Colm=0

4. for i=1:Nvm

5. for j=2:Nvm

6. if (Ii > Ij)

7. Update solution with the new placement scenario generated

8. else

99

9. end for

10. end for

11. end for

12. Repeat steps 2 to 7

A local search mechanism is used to improve the quality of the best

solution while also speeding up the outcome finding procedure. Consider-

ing that the answer provided after iterating once is the optimal solution,

the following local search strategy was used to increase the quality of this

optimum result and speed up the next iterative search: The first column’s

values were added to the second column, and these were the new values of

the second column. The first column’s values were all replaced with 0. As

a result, a new type of placement was created. When the relevant value of

the objective function was compared to the objective function value of the

previous placement result, the optimal solution was updated; otherwise,

the value in the second column was added to the third column, resulting

in the new value of the third column. The second column’s values were all

replaced with 0. The procedure continued by comparing the new objective

function values to the old objective function values; if the difference was

smaller, the optimal solution was updated. If no such enhanced optimal

placement scenario existed then the algorithm continued with the existing

placement scenario generated at step 14 of algorithm 6.

Time and Space Complexity

Overall, the time complexity of the DFFLSM algorithm can be ex-

pressed as O(MaxGeneration ∗ n2 ∗ d), where n is the number of fireflies,

d is the dimension of each firefly’s position vector, and MaxGeneration

is the maximum number of generations (iterations) allowed for the algo-

rithm to run. If the LocalSearchMechanism function is executed when

(t > 2), it involves another nested for loop over all VMs (O(Nvm)), and

within each VM, another nested for loop to compare each pair of fireflies

(O(n2)). The updated solution with a new placement scenario is assumed to

have a constant time complexity. Therefore, the overall time complexity is

O(n2∗d∗MaxGeneration+Nvm∗n2) or simply O(n2∗d∗MaxGeneration),

100

if LocalSearchMechanism is not executed.

Objective function F (xi) requires memory to store its input values, but

its space complexity is negligible compared to the rest of the algorithm.

Initialization step involves creating an array of n fireflies, each represented

by a d-dimensional vector. The space complexity of this step is O(nd).

The main loop of the algorithm involves computing the brightness and at-

traction of each firefly and updating their positions. The space complexity

of this step is also O(nd) because it involves updating the same array of n

fireflies. Local Search Mechanism function operates on the same array of

n fireflies and does not introduce any new data structures. Therefore, its

space complexity is also negligible. Having the Local Search Mechanism

function does not affect the main loop of the algorithm, which still requires

an array of n fireflies, each represented by a d-dimensional vector, and thus

the space complexity of O(n ∗ d) is maintained.

Figure 4.6 depicts the DFFLSM container placement algorithm’s flowchart.

Figure 4.7: Flow chart of DFFLSM Container Placement algorithm

101

4.4 Experimental Setup

The experiments have been conducted in Cloudsim 4.0 with i5-2.4GHz

processor and 8 GB RAM. Table 4.2 shows the objectives and various sets

of experiments conducted for different combinations of container placement

algorithms.

Table 4.2: Objectives and Experiment sets for Container Placement

Set Objective RAM Threshold CPU
Threshold

Bandwidth Overbooking
factor

1 Examine
the influ-
ence of CP
algorithms
on average
energy con-
sumption.

[70%,80%,90%,100%] 90% 80% 80%

2 Examine the
influence of
CP algorithms
on average ac-
tive VM.

[70%,80%,90%,100%] 90% 80% 80%

3 Examine the
influence of on
CP algorithms
on average ac-
tive PM

[70%,80%,90%,100%] 90% 80% 80%

4 Examine the
influence of
CP algo-
rithms on
average over-
all SLA.

[70%,80%,90%,100%] 90% 80% 80%

5 Examine the
influence of
CP algorithms
corresponding
to different
container
overbooking
factor on av-
erage energy
consumption,
average active
VM, average
active PM
and average
overall SLA.

80% 90% 80% 20,40,80%

Table 4.3 shows the values of different arguments/parameters used in

102

ACO, DFF and DFFLSM container placement algorithms. For each con-

tainer placement algorithm, the threshold values for RAM, CPU and Band-

width were fixed as: RAM threshold varied as 70 percent, 80 percent,

90 percent and 100 percent; CPU threshold was fixed as 90 percent and

bandwidth threshold is fixed as 80 percent. The results were calculated

corresponding each RAM threshold.

Table 4.3: Parameter values used in algorithms (ACO, DFF and DFFLSM)

Parameters Values

ACO CP algorithm

α 1

β 2

ρ 0.7

Q 100

DFF & DFFLSM CP algorithm

α 1

β 1

A 1

γ 0.01

4.4.1 Scenario 1: Homogenous Environment

In this case, a DC was simulated with 700 homogenous servers and 1000

VMs. A total of 5000 containers were used which belonged to 3 different

types. The configurations of the PMs are shown in table 4.4 and that of

VMs and containers are shown in Table 4.5.

Table 4.4: PM configurations in homogenous environment for Container Placement

Physical Machine Configurations and Power Models

Type of
Server

CPU [3GHz] (37274
MIPS/core)

Memory
(GB)

P idle
(Watt)

P max
(Watt)

Number

1 4 Core 64 93 135 700

4.4.2 Scenario 2: Heterogenous Environment

In this case, a DC was simulated with 700 heterogenous servers and

1000 VMs with the set of 3 different servers and 4 different types of VMs.

A total of 5000 containers were used which belonged to 3 different types

103

Table 4.5: VM and container configurations in homogenous environment for Container
Placement

Type of Containers and VMs

Type
of Con-
tainer

CPU
MIPS
(1 core)

Memory
(MB)

Type of
VM

CPU
[1.5GHz]
(18636
MIPS/core)

Memory
(GB)

Number

1 4658 128

1 2 2 10002 9320 256

3 18636 512

as that of in homogenous environment. The configurations of the PMs are

shown in table 4.6 and that of VMs and containers are shown in table 4.7.

Table 4.6: PMs configurations in heterogenous environment for Container Placement

PM Configurations and Power Models

Type of
Server

CPU
[3GHz]
(37274
MIPS/core)

Memory
(GB)

P idle
(Watt)

P max
(Watt)

Number

1 4 Core 64 86 117 234

2 8 Core 128 93 135 233

3 16 Core 256 66 247 233

Table 4.7: VMs and container configurations in heterogenous environment for Container
Placement

Types of Containers and VMs

Type
of Con-
tainer

CPU
MIPS
(1 core)

Memory
(MB)

Type of
VM

CPU
[1.5GHz]
(18636
MIPS
/core)

Memory
(GB)

Number

1 4658 128 1 2 1 250

2 9320 256 2 4 2 250

3 18636 512
3 1 4 250

4 8 8 250

4.5 Results

In experiments, the following cases have been investigated:

A) Examine the influence of Container Placement algorithms on average

energy consumption.

104

B) Examine the influence of Container Placement algorithms on average

active VM.

C) Examine the influence of Container Placement algorithms on average

active PM.

D) Examine the influence of Container Placement algorithms on average

overall SLA violations.

E) Examine the influence of Container Placement algorithms correspond-

ing to different overbooking factor on average energy consumption, average

active VM, average active PM and average overall SLA violations.

All the above cases have been considered for both homogenous and het-

erogenous environment. PlanetLab workload traces (Park and Pai, 2006)

were used to assess the container placement algorithms considering the sim-

ulation setup and parameters indicated in section 4.2. Each of these records

contained 10 days of experimentation workload from randomly selected

providers, which were gathered during March and April 2011 (Beloglazov

and Buyya, 2012). The dataset included CPU utilization percentages for

over a thousand VMs deployed across more than 500 global locations. The

data was structured with each day represented as a separate folder, and

within each folder, individual files contained daily CPU utilization readings

for each VM, sampled at 5-minute intervals. Each container was allocated

to a task that contains statistics on CPU usage for one day that was re-

ported every five minutes.

4.5.1 Homogenous Environment

4.5.1.1 Examine the influence of Container Placement algorithms on aver-

age energy consumption:

The average energy usage of a DC was calculated corresponding to differ-

ent CP algorithms at different RAM thresholds. The comparison of average

energy consumed by these CP algorithms at different RAM thresholds is as

shown in figure 4.8. DFFLSM outperformed FF, FFD, Random, ACO and

DFF in terms of average energy consumption with energy saving of 10.05%,

8.79%, 15.91%, 7.61% and 4.25% respectively with changing RAM thresh-

105

olds as shown in table 4.8. DFF outperformed FF, FFD, Random and

ACO in terms of average energy consumption with energy saving of 6.05%,

4.74%, 12.18% and 3.51% respectively with changing RAM thresholds as

shown in table 4.9.

Figure 4.8: Comparison of average energy consumption in homogenous environment for
different container placement algorithms

4.5.1.2 Examine the influence of Container Placement algorithms on aver-

age active VM:

The comparison of different container placement algorithms for average

active VM at different RAM thresholds is as shown in figure 4.9. DFFLSM

outperformed FF, FFD, Random, ACO and DFF in terms of average active

VM with a percentage of 48.63%, 24.26%, 51.21%, 35.29% and 20.94%

respectively with changing RAM thresholds as shown in table 4.8. DFF

outperforms FF, FFD, Random and ACO in terms of average active VM

with a percentage of 35.03%, 24.26%, 38.28% and 18.15% respectively with

changing RAM thresholds as shown in table 4.9.

4.5.1.3 Examine the influence of Container Placement algorithms on aver-

age active PM:

The comparison of different container placement algorithms for average

active PM at different RAM thresholds is as shown in figure 4.10.

DFFLSM outperformed FF, FFD, Random, ACO and DFF in terms of

106

Figure 4.9: Comparison of average active VM in homogenous environment for different
container placement algorithms

average active PM with a percentage of 24.50%, 18.59%, 27.62%, 12.40%

and 8.36% respectively with changing RAM thresholds as shown in table

4.8.

DFF outperformed FF, FFD, Random and ACO in terms of average active

PM with a percentage of 17.60%, 11.16%, 21.02% respectively with chang-

ing RAM thresholds is as shown in table 4.9.

Figure 4.10: Comparison of average active PM in homogenous environment for different
container placement algorithms

107

Table 4.8: Percentage Reduction in average energy consumption, average active VM and
average active PM of DFFLSM in comparison to other container placement algorithms
in homogenous environment

Homogenous Environment

DFFLSM

Average reduction in energy consumption
(%)

FF FFD Random ACO DFF

10.05 8.79 15.91 7.61 4.25

Average reduction in active VM (%)

48.63 24.26 51.21 35.29 20.94

Average reduction in active PM (%)

24.5 18.59 27.62 12.4 8.36

Table 4.9: Percentage reduction in average energy consumption, average active VM and
average active PM of DFF in comparison to other container placement algorithms in
homogenous environment

Homogenous Environment

DFF

Average reduction in energy con-
sumption (%)

FF FFD Random ACO

6.05 4.74 12.18 3.51

Average reduction in active VM
(%)

35.03 24.26 38.28 18.15

Average reduction in active PM
(%)

17.6 11.16 21.02 4.41

108

4.5.1.4 Examine the influence of Container Placement algorithms on aver-

age overall SLA violations:

According to equation 5.3, the SLA metric is defined as a proportion of

the difference between the required and allocated amount of CPU for each

VM. It is violated, if the VM that hosts the container does not get the nec-

essary amount of CPU. The container placement algorithms optimizes the

initial distribution of containers onto VMs, resulting in fewer SLA breaches

in the experiment, ensuring that each VM receives the necessary resources.

The impact of different container placement algorithms on average overall

SLA violations for different RAM thresholds is shown in figure 4.11.

Figure 4.11: Comparison of average overall SLA violations in homogenous environment
for different container placement algorithms

4.5.1.5 Examine the influence of Container Placement algorithms corre-

sponding to different overbooking factor on average energy con-

sumption, average active VM, average active PM and average over-

all SLA violations:

Overbooking is a significant factor that impacts the efficiency of con-

tainer placement and consolidation algorithms in terms of energy utiliza-

tion, average active VM, average active PM and SLA breaches. Containers

were assigned to VMs based on a predetermined percentage of application

workload. The greater the percentile, the fewer containers could fit on each

109

VM. For this set of experiment, the overbooking factor was set as 20, 40,

or 80 percentile. The impact of different container placement algorithms

for different values of overbooking factor on average energy consumption,

average active VM, average active PM and overall average SLA violations

is as shown in figure 4.12 and figure 4.13 respectively. The RAM threshold

in this set of experiment was kept at 80%.

(a) (b)

Figure 4.12: Impact of different container placement algorithms on data center (a) aver-
age energy consumption and (b) average active VM for different values of overbooking
factor (RAM Threshold= 80 percent) in homogenous environment

(a) (b)

Figure 4.13: Impact of different container placement algorithms on data center (a) aver-
age active PM and (b) average overall SLA violations for different values of overbooking
factor (RAM Threshold= 80 percent) in homogenous environment

110

4.5.2 Heterogenous Environment

4.5.2.1 Examine the influence of Container Placement algorithms on aver-

age energy consumption:

The comparison of different container placement algorithms for average

energy consumed at different RAM thresholds is as shown in figure 4.14.

DFFLSM outperformed FF, FFD, Random, ACO and DFF in terms of

average energy consumption with energy saving of 50.63%, 49.64%, 54.21%,

31.09% and18.70% respectively with changing RAM thresholds as shown

in Table 4.10. DFF outperformed FF, FFD, Random and ACO in terms of

average energy consumption with energy saving of 39.27%, 38.05%, 43.67%

and 15.24% respectively with changing RAM thresholds as shown in table

4.11.

Figure 4.14: Comparison of average energy consumption in heterogenous environment
for different container placement algorithms

4.5.2.2 Examine the influence of Container Placement algorithms on aver-

age active VM:

The comparison of different container placement algorithms for aver-

age active VM at different RAM thresholds is as shown in figure 4.15.

DFFLSM outperformed FF, FFD, Random, ACO and DFF in terms of av-

erage active VM with a percentage of 45.54%, 41.89%, 48.23%, 18.79% and

12.95% respectively with changing RAM thresholds as shown in table 4.10.

111

DFF outperformed FF, FFD, Random and ACO in terms of average active

VM with a percentage of 37.43%, 33.24%, 40.53%, 6.69% respectively with

changing RAM thresholds as shown in table 4.11.

Figure 4.15: Comparison of average active VM in heterogenous environment for different
container placement algorithms

4.5.2.3 Examine the influence of Container Placement algorithms on aver-

age active PM:

The comparison of different container placement algorithms for average

active PM at different RAM thresholds is as shown in figure 4.16. DFFLSM

outperformed FF, FFD, Random, ACO and DFF in terms of average ac-

tive PM with a percentage of 26.16%, 22.22%, 37.88%, 14.34% and 8.85%

respectively with changing RAM thresholds as shown in table 4.10. DFF

outperformed FF, FFD, Random and ACO in terms of average active PM

with a percentage of 18.99%, 14.67%, 31.84% and 6.02% respectively with

changing RAM thresholds as shown in table 4.11.

4.5.2.4 Examine the influence of Container Placement algorithms on aver-

age overall SLA violations:

The impact of different container placement algorithms on average over-

all SLA violations for different RAM thresholds is shown in figure 4.17.

112

Table 4.10: Percentage reduction in average energy consumption, average active VM and
average active PM of DFFLSM in comparison to other container placement algorithms
in heterogenous environment

Heterogenous Environment

DFFLSM

Average Energy Consumption (%)

FF FFD Random ACO DFF

50.63 49.64 54.21 31.09 18.7

Average Active VM (%)

45.54 41.89 48.23 18.79 12.95

Average Active PM (%)

26.16 22.22 37.88 14.34 8.85

Table 4.11: Percentage reduction in average energy consumption, average active VM
and average active PM of DFF in comparison to other container placement algorithms
in heterogenous environment

Heterogenous Environment

DFF

Average Energy Consumption
(%)

FF FFD Random ACO

39.27 38.05 43.68 15.24

Average Active VM (%)

37.43 33.24 40.53 6.69

Average Active PM (%)

18.99 14.67 31.84 6.02

113

Figure 4.16: Comparison of average active PM in heterogenous environment for different
container placement algorithms

Figure 4.17: Comparison of average overall SLA violations in heterogenous environment
for different container placement algorithms

4.5.2.5 Examine the influence of Container Placement algorithms corre-

sponding to different overbooking factor on average energy con-

sumption, average active VM, average active PM and average over-

all SLA violations:

Average energy consumption and average active PM is shown in figure

4.18. Average active PM and overall average SLA violations is as shown in

figure 4.19.

4.6 Summary

Container placement stands as a pivotal aspect of optimizing resource

utilization and overall performance in cloud data centers. With the rise

of containerization technology, which encapsulates applications and their

dependencies into isolated units called containers, the manner in which

114

(a) (b) a

Figure 4.18: Impact of different container placement algorithms on data center (a) aver-
age energy consumption and (b) average active VM for different values of overbooking
factor(RAM Threshold= 80) in heterogenous environment

(a) (b)

Figure 4.19: Impact of different container placement algorithms on data center average
active PM (a) and average overall SLA violations (b) for different values of overbooking
factor (RAM Threshold= 80) in heterogenous environment

these containers are distributed across the available physical servers holds

significant importance.

Efficient container placement involves intelligent decision-making algo-

rithms that determine the optimal arrangement of containers on servers.

This process takes into account factors such as resource availability, work-

load characteristics, and energy efficiency goals. The aim is to strike a

balance between maximizing server utilization, ensuring high application

performance, and minimizing energy consumption.

Effective container placement strategies contribute to enhanced data

center efficiency by preventing resource wastage and minimizing contention

for resources. It helps prevent issues such as performance bottlenecks and

115

ensures that applications coexist harmoniously on the same physical server.

Moreover, intelligent placement can lead to energy savings by consolidat-

ing containers onto fewer servers, thus reducing the need for unnecessary

hardware utilization.

The proposed DFFLSM algorithm for container placement demonstrated

superior performance compared to existing algorithms, including FF, FFD,

ACO, and DFF, leading to significant optimizations in data center energy

utilization. When contrasted with these established methods, DFFLSM

achieved remarkable results, exhibiting a reduction of 9.32% and 40.85% in

average data center energy consumption within homogeneous and hetero-

geneous environments, respectively. Furthermore, it achieved a substantial

decrease in the average count of active physical machines (PMs), marking

an 18.30% and 21.89% reduction in homogeneous and heterogeneous set-

tings when compared to both existing and proposed techniques. In terms of

energy efficiency, the DFF algorithm outperformed the FF, FFD, Random,

and ACO container placement algorithms. Compared to these methods,

DFF brought about noteworthy improvements, achieving energy consump-

tion reductions of 6.62% and 34.06% in homogeneous and heterogeneous

environments, respectively. Additionally, it achieved a significant drop in

the average active PMs by 13.55% and 17.88% in homogeneous and het-

erogeneous environments, respectively, when compared to pre-existing ap-

proaches. These findings underscored the effectiveness of DFFLSM and

DFF in enhancing data center energy efficiency and operational perfor-

mance across diverse scenarios.

116

Chapter 5

Container Consolidation in

Cloud Data Center

In this chapter, various container consolidation algorithms are explored,

emphasizing their role in enhancing energy efficiency within cloud data cen-

ters. It highlights the implementation and impact of these algorithms while

shedding light on the efficacy of proposed and implemented metaheuristic

solutions in effectively reducing data center energy consumption.

5.1 Introduction

Virtualization optimises resource utilisation by allowing many operat-

ing systems (Guest OS) to operate on a single physical server’s hardware.

Containerization, on the other hand, enables several applications to oper-

ate within the same OS on a single VM or server (Jain and Choudhary,

2016). VMs are ideal for organisations that demand OS functionality and

functionalities while running many applications on a server or managing

multiple OSs. Containers are a better option for reducing the number of

servers necessary for multiple services (Guan et al., 2017). While previous

efforts to lower both energy and task completion time in cloud DC have

been made, they have not been progressive, resulting in a high number of

container migrations. When evaluating workload adjustments or condens-

ing the workload to a smaller number of servers to conserve energy, the cost

of container migrations is ignored (Abdelbaky et al., 2015). Downtime is

117

caused by container migration (for example, CRIU), and repeated migra-

tions can have a detrimental impact on job completion timescales and are

likely to result in Service Level Agreement (SLA) breaches. As a result, it

is preferable to have a DC placement approach that minimises power, job

completion time, and container movements while being expandable to its

size (Xu and Fortes, 2010). SLAs are commonly used in the cloud to ensure

consistent QoS between cloud providers and clients. There has been an in-

creased desire to reduce energy consumption while meeting SLAs (Carvalho

et al., 2017). In the Infrastructure as a Service (IaaS) model, addressing

this issue involves optimizing the usage of Physical Machines (PMs) and

implementing load balancing measures. However, in light of the recent in-

troduction of Container as a Service (CaaS) offerings by cloud providers,

containers are gaining increasing significance and are poised to become the

predominant deployment method within the cloud ecosystem, especially in

Platform as a Service (PaaS) environments. Consequently, the need to re-

duce power consumption while still maintaining Service Level Agreements

(SLAs) at the Virtual Machine (VM) level has become of paramount im-

portance. Containerization outperforms virtualization in terms of speed

and installation density. Container implementation density is frequently

6-12 times that of VM installation density due to their lightweight nature

(Liu et al., 2020). When a cloud provider maintains a high installation

density, fewer PMs are deployed to serve the same number of customers,

resulting in lower capital (buy) and operational expenditures (e.g., energy).

Given these considerations, various open-source groups and businesses are

increasing their investments in container-based virtualization solutions. It

is also worth noting that containers and virtual machines get along well.

That is, VM-Docker combinations clearly achieve near native, if not some-

what superior, efficiency. CaaS services are therefore developed on top

of VMs (Li et al., 2015) (Affetti et al., 2015). VMs, according to cloud

providers, give an added degree of security to untrusted apps. Meanwhile,

containers provide a good setting for semi-trusted workloads (Piraghaj et

al., 2015a).

118

5.2 Literature Review

Various container migration techniques have been created to provide

load-balancing services and to reduce computing machine energy usage. In

a study conducted by Chen et al. (2018), a container migration strategy for

container consolidation was devised. The algorithm’s performance was as-

sessed based on various metrics, including the number of virtual machines

created, the average rate of container migrations, energy consumption and

violations of service level agreements. Meanwhile, U-Chupala et al. (2017)

introduced a container rebalancing approach that operates concurrently

with a scheduling process. This container rebalancing method improved

the utilization of LXC clusters while ensuring minimal interference with

the scheduling process. Zheng (Zheng et al., 2021) introduced a container

resource migration-scheduling algorithm called Utilization Variation Pre-

diction in One Cycle (UVPOC). They also developed a two-level sched-

uler mechanism that monitors real-time resources on a global scale. The

simulator results proved the algorithm’s practicality and showed that the

algorithm improved the global resource utilization of containers and VMs.

Chhikara (Chhikara et al., 2021) presented a container management tech-

nique to increase host resource consumption and avoid server Overload or

Underload. Ma et al. (Ma et al., 2020) tackled the challenge of container

migration in edge computing to achieve load balancing while considering

migration costs. In a proposal by Zhong and Buyya (Zhong and Buyya,

2020), a three-pronged approach to heterogeneous task allocation was in-

troduced for cost-effective container orchestration. This approach focused

on optimizing resource utilization and elastic instance pricing. The three

components included enabling diverse workload configurations for efficient

initial container placement, adjusting cluster sizes to accommodate chang-

ing workloads using auto-scaling techniques, and implementing a reschedul-

ing feature to shut down unnecessary VM instances, thereby saving costs

and reallocating critical tasks without interrupting their progress.

Hanafy et al. (Hanafy et al., 2018) proposed selection criteria for con-

tainers and hosts, achieving improved energy efficiency and meeting SLAs

119

compared to other solutions. Tang et al. (Tang et al., 2019) framed the

problem of container migration for mobile application jobs in Fog Comput-

ing (FC) as a large-scale Markov Decision Process (MDP). They defined

a system model with a cost function encompassing factors such as delay,

power consumption, and migration cost. Subsequently, they introduced

container migration techniques based on deep Q-learning to make rapid

decisions. Their improvements included enhancing random action selection

during exploration and refining the Deep Neural Network (DNN) training

approach for Q-network updates. The results indicated that their proposed

algorithm reduced latency, power consumption, and migration costs.

Ghribi (Ghribi, 2014) created a framework for cloud computing work-

load prediction and VM deployment. The platform comprised an esti-

mating module that predicted the incoming data centre demand, as well as

schedulers that determined the best way to allocate VMs to PMs. Spicuglia

(Spicuglia et al., 2015) released OptiCA, which facilitated the building of

massive data intensive applications suitable for CaaS. The suggested tech-

nique’s goal was to achieve the specified efficiency under any given energy

and core restraints. Dong (Dong et al., 2014) proposed the most efficient

server first (MESF) job scheduling technique, which assigned work to the

most energy efficient computers first. To optimise data centre energy effi-

ciency, the scheduler analysed resource allocation information and machine

energy profiles to determine where jobs should be scheduled. Yaqub (Yaqub

et al., 2014) emphasised the distinctions between IaaS and PaaS implemen-

tation methodologies. The PaaS deployment approach was built on OS-

level containers that is responsible for hosting a variety of software services.

Moreover, they noted that PaaS DC frequently underutilized the underly-

ing infrastructure owing to unforeseen software application needs and the

fluctuating quantity of containers that are provided and de-provisioned.

As a result, their primary contribution was to describe the server consol-

idation problem as a multidimensional bin-packing problem and solve it

using metaheuristics such as Late Simulated Annealing, Late Acceptance,

Simulated Annealing, and Tabu Search. Shi (Shi et al., 2018b) employed

NSGA-II based algorithm. They explored non-dominated solutions to de-

120

termine which hosts, not overloaded, would undergo container migration

during each reallocation interval. For each of these selected hosts, they

employed the First-Fit (FF) policy to determine the destination hosts for

their containers. Piraghaj (Piraghaj et al., 2015b) presented a two-stage

framework. First, the framework used static Underload and Overload lev-

els to identify Overloaded or Underloaded host containers that should be

relocated. The containers to be migrated are then determined by two al-

gorithms, “Maximum Correlation (MCor)” and “Maximum Usage (MU).”

The framework then mapped the migrating containers to destination VMs

using one of the bin-packing host selection techniques: Random, First Fit

(FF), and Least-Full hosts. Table 5.1 shows the comparison of work done

in the domain of container consolidation.

Table 5.1: Comparison of work done in the domain of container consolidation

Work Advantages Disadvantages

Developed a container

movement strategy

for container consol-

idation (Chen et al.,

2018).

The algorithm has a

positive impact on en-

ergy consumption.

They did not com-

bine the VM and con-

tainer consolidation al-

gorithms.

Proposed (U-Chupala

et al., 2017) a con-

tainer rebalancing

approach with a

rebalancing process

working alongside a

scheduling process.

The container re-

balancing method

increases LXC clus-

ter utilization while

maintaining minimal

interference with the

scheduling process.

They have not tested

the effectiveness of the

proposed approach.

121

Proposed (Zheng et

al., 2021) a container

resource migration

scheduling algorithm

called UVPOC.

Created a two-level

scheduler system to

keep track of global

real-time resources,

using LTSM to fore-

cast the trend of

dominating resource

utilisation and decide

whether to undertake

container migration or

VM pre-boot in terms

of the provisioning of

resources.

They did not consider

to test the method

with large number of

datasets. Their de-

fined dataset consists of

small number of VMs

and PMs.

Presented a con-

tainer management

technique to increase

host resource con-

sumption and avoid

server Overload or

Underload (Chhikara

et al., 2021).

The best-fit container

placement methodol-

ogy is used to handle

host overload or under-

load issues by locating

the optimum destina-

tion host for container

placement.

However, while deciding

on the appropriate host

for the container, the

authors did not account

for migration costs.

Addressed the edge

computing container

migration problem in

order to perform load

balancing while bring-

ing migration costs

into consideration

(Ma et al., 2020).

The proposed approach

increased total service

performance.

They did not consider

the mobility.

122

Suggested (Zhong

and Buyya, 2020) a

three-pronged hetero-

geneous scheduling

approach for cost-

effective orchestration

of containerized ser-

vices through the use

of resources optimi-

sation and elastic

instance pricing.

The proposed tech-

nique reduces the

overall significant cost

for different types

of cloud workload

patterns.

They did not consider

to compare the pro-

posed algorithm with

the pre-existing meth-

ods.

Suggested container

and host selection

criteria (Hanafy et al.,

2018).

Outperform the other

algorithms energy and

service level agreement

commitment.

The dataset used in

this approach consists

of small number of VMs

and PMs.

Characterised the con-

tainer migration prob-

lem of mobile ap-

plication jobs in FC

as a large-scale MDP

problem (Tang et al.,

2019).

They introduced

deep Q-learning-based

container migration

techniques. To accom-

plish quick decision

making, they improve

random action selec-

tion in exploration

and DNN training

approach in Q-network

update.

Not mentioned

123

Proposed (Ghribi,

2014) a framework

for cloud computing

workload prediction

and VM deployment.

First, an estimating

module was included to

forecast the DC’s in-

coming load. Then,

schedulers were created

to identify the best

way to allocate VMs to

PMs.

The efficiency of the

suggested algorithms

was not validated.

Released OptiCA,

which facilitates the

building of massive

data intensive appli-

cations suitable for

CaaS (Spicuglia et al.,

2015).

The suggested tech-

nique’s goal is to

achieve the specified

efficiency under any

given energy and core

restraints.

The used dataset is very

small which doesn’t val-

idate the results when

the number of PMs,

VMs and containers are

huge in number.

Proposed (Dong et

al., 2014) the most

efficient server first

(MESF) job schedul-

ing technique, which

assigns work to the

most energy efficient

computers first.

Suggested MESF

strategy significantly

reduces energy con-

sumption

They did not consider

the SLA violations met-

rics.

124

Emphasised the dis-

tinctions between IaaS

and PaaS implemen-

tation methodologies

(Yaqub et al., 2014).

Primary contribution

is to describe the server

consolidation problem

as a multidimensional

bin-packing problem

and solve it using

metaheuristics such

as Late Simulated

Annealing, Late Ac-

ceptance, Simulated

Annealing, and Tabu

Search.

They did not con-

sider to compare the

proposed techniques

with the already ex-

isting techniques for

validation.

Employed NSGA-II

based algorithm for

container consolida-

tion problem (Shi et

al., 2018b).

They look for non-

dominant methods that

determine which non-

overloaded hosts are

made to transfer their

containers at each relo-

cation.

They did not consider

the SLA violations and

the dataset used for ex-

perimentation is small

in number.

Presented (Piraghaj et

al., 2015b) a two-

stage framework for

energy efficient con-

tainer consolidation in

cloud data centers.

The containers to be

migrated are then

determined by two

algorithms, “MCor”

and “MU.” The frame-

work then maps the

migrating containers to

destination VMs using

one of the bin-packing

host selection tech-

niques: Random, FF,

and Least-Full hosts.

The major drawback is

that they did not con-

sider the use of meta-

heuristic algorithms.

The techniques that have been mentioned previously are not be suitable

125

for the present scenario, as they are incomplete or insufficient for solving

the complex container placement and consolidation problems in cloud data

centers. In order to find the most optimal solutions for these problems, it

is necessary to use AI-based meta-heuristic algorithms. These algorithms

have proven to be highly effective in solving the dynamic and large-scale

nature of these problems, which traditional optimization techniques strug-

gle to handle. Therefore, the research needs to explore and implement these

advanced techniques to ensure efficient and effective container placement

and consolidation in cloud data centers. The container placement and con-

solidation problems are NP hard (Al-Moalmi et al., 2021) (Hussein et al.,

2019).

To prove that the container consolidation problem is NP-hard using 3SAT,

it is necessary to reduce 3SAT to the container consolidation problem. In

other words, it is necessary to show that an instance of 3SAT can be trans-

formed into an instance of the container consolidation problem in polyno-

mial time.

The Container Consolidation Problem:

The container consolidation problem involves consolidating a set of con-

tainers of different sizes onto a minimum number of servers while ensuring

that the total sizes of containers on each server do not exceed their capac-

ities.

Formally, given a set of containers with sizes C = c1, c2, ..., cn and a set of

servers with capacities S = s1, s2, ..., sm, the task is to find a consolidation

of containers onto servers such that:

1. The total size of containers on each server does not exceed its capacity.

2. The number of used servers is minimized.

Proof

Given an instance of 3SAT with n variables and m clauses, it is necessary

to construct an instance of the container consolidation problem.

1. For each variable xi in the 3SAT instance, create two containers with

sizes ci1 = 2 and ci2 = 1. These two containers represent the truth values

“true” and “false” for the variable xi. 2. For each clause Cj = (a, b, c) in

the 3SAT instance, create a server with capacity sj = 4.

126

3. Now, for each literal in a clause, assign the corresponding container to

the server representing that clause. For example:

- If the literal is xi, assign container ci1 to the server corresponding to the

clause Cj.

- If the literal is negation of xi, assign container ci2 to the server corre-

sponding to the clause Cj.

Now, let’s analyze the reduction:

If the 3SAT instance is satisfiable:

If the 3SAT instance is satisfiable, there is a truth value assignment to the

variables that fulfils all of the clauses. In the corresponding container con-

solidation instance, it is necessary to assign containers representing “true”

for the variables set to true and containers representing “false” for the vari-

ables set to false. Since each server’s capacity is 4, and each container has

a size of 1 or 2, the assignment of containers to servers will be feasible.

If the container consolidation instance has a feasible solution:

If the container consolidation instance has a feasible solution, it means

there exists an assignment of containers to servers such that each server’s

capacity is not exceeded. This implies that for each clause, at least one

literal in that clause evaluates to true. Therefore, the corresponding 3SAT

instance is satisfiable.

Since the reduction is valid and 3SAT is known to be NP-hard, the con-

tainer consolidation problem is also NP-hard. Therefore, the container

consolidation problem is NP-hard when using 3SAT as the reference prob-

lem.

In some cases, it may be possible to break a container-to-VM mapping

problem into smaller sub problems that can be solved using dynamic pro-

gramming. For example, if the problem involves mapping a large number

of containers to a smaller number of VMs, the problem can be broken down

into smaller sub problems by mapping groups of containers to subsets of

VMs, and then combine the solutions to these sub problems to get the

overall optimal mapping. However, there may be other mapping problems

where dynamic programming (de Souza et al., 2022) is not the best ap-

proach. If the problem involves mapping containers to a large number of

127

VMs involving large number of constraints, it may be more appropriate to

use a different optimization approach, such as linear programming, con-

straint programming, or heuristics. Linear programming is a useful tool

for a wide range of optimisation issues, it may not be appropriate for ev-

ery circumstance, including the container virtual machine (VM) mapping

problem. (Karmakar et al., 2022). The container VM mapping problem

involves mapping a set of containers to a set of VMs while minimizing the

overall resource usage and meeting certain constraints such as minimiz-

ing the number of VMs used or ensuring that each container has enough

resources. This problem is a combinatorial optimization problem, which

means that it involves finding the best combination of mappings from a

large set of possible combinations. Linear programming is also not well-

suited for combinatorial optimization problems because it assumes that the

solution space is continuous and can be represented by a linear equation.

However, in the container VM mapping problem, the solution space is dis-

crete, meaning that it involves selecting a subset of available VMs for each

container. Therefore, other optimization techniques such as heuristic ap-

proaches, genetic algorithms, or integer linear programming may be more

suitable for solving the container VM mapping problem. These techniques

can handle the combinatorial nature of the problem and find a good solu-

tion within a reasonable time frame. The ILP shows a major issue with

the energy consumption when compared with other strategies (M. K. Patra

et al., 2022). Metaheuristic algorithms, on the other hand, are designed

to handle such complex and dynamic problems by iteratively exploring the

solution space and adjusting the search parameters based on the quality

of the solutions found. The approaches have been used on virtual machine

placement and migration. As containerization continues to gain popularity,

research in this area is likely to remain a key focus for cloud computing

researchers and practitioners. The research needs to focus on reducing the

energy consumption of the cloud data center without affecting the SLA by

developing optimized container placement and consolidation strategies. As

it remains the key research area due to the growing popularity of container-

ization as a lightweight alternative to virtualization in cloud computing

128

environments. Moreover, these approaches need to be tested on both ho-

mogenous and heterogenous environments and on large dataset i.e., more

numbers of VMs and PMs.

5.3 Methodology

Container consolidation in cloud data centers is a strategy employed

to enhance the efficiency of computing resource utilization by bundling

several containerized applications onto a reduced number of physical ma-

chines. This approach empowers data center operators to optimize their

infrastructure efficiency while curbing expenses linked to power, cooling,

and physical footprint. Through container consolidation, data centers can

curtail the necessity for numerous physical servers to execute a specific

suite of applications, thereby diminishing the energy demand required for

server operation and cooling. Additionally, by optimizing resource utiliza-

tion, data centers can make better use of their existing hardware, reducing

the need for new infrastructure investments.

5.3.1 Problem Formulation of Container Migration in Cloud

Data Center

Pdc (t) =

NS∑
i=1

Pi(t) (5.1)

Pdc (t) is the usage of power of the DC at time t, NS is the number of

servers, Pi(t) is the power consumption of server i at time t.

For each i server, CPU usage (Ui,t) is equal to
∑NV M

j=1

∑Nc

k=1 UC(k,j,i)(t) and

the usage of power of the server is estimated through the below equation:

Pi (t) = P idle
i +

(
Pmax
i − P idle

i

)
×Ui,t Nvm > 0 (5.2)

0 Nvm = 0

P idle
i is the idle usage of power of server i at time t, Pmax

i is the maximum

usage of power of server i at time t and Ui,t CPU Utilization percentage

of server i at time t.NVM is the number of VMs. Nc is the number of

containers.

129

The SLA is only breached if the VM that hosts the container does not get

the specified amount of CPU. The SLA measure is defined in this context

as the fraction of the gap in between sought and allotted quantity of CPU

for each VM.

SLA =
Ns∑
i=1

Nvm∑
j=1

Nv∑
p=1

CPU r (vmj,i,tp)− CPUa(vmj,i, tp)

CPU r(vmj,i, tp)
(5.3)

CPU r (vmj,i,tp) represents required CPU by VMj on server i at time tp,

CPUa(vmj,i, tp) represents the CPU amount assigned to VMj at time tp,

Ns denotes number of servers, Nvm denotes the number of VMs, Nv denotes

number of SLA breaches. The purpose of this study was to minimize DC

energy consumption by exploring alternative host selection methods for

container consolidation in cloud DC. The research problem is formulated

as follows to reduce the power usage of a DC with M containers, N VMs,

and K servers:

minPdc (t) =

NS∑
i=1

Pi(t) (5.4)

Consider the following constraints:

Nvm∑
j=1

Uvmj,i
(t) < S(i,r), ∀i ∈ [1, Ns] , ∀r ∈ CPU (5.5)

Nvm∑
j=1

vm(j,i,r)
< S(i,r), ∀i ∈ [1, Ns] , ∀i ∈ BW, Memory, Disk (5.6)

Nc∑
k=1

UC(k,j,i)
< vm(j,i,r), ∀j ∈ [1, Nvm] , ∀i ∈ [1, Ns] , ∀r ∈ CPU (5.7)

Nc∑
k=1

C(k,j,i,r)
< vm(j,i,r), ∀j ∈ [1, Nvm] , ∀i ∈ [1, Ns] , ∀r ∈ [BW, Memory, Disk]

(5.8)

Uvmj,i
(t) represents CPU utilization of VM j on server i at time t, S(i,r)

represents server i capacity for resource r, vm(j,i,r) represents the resource r

capacity of VM j on server i, UC(k,j,i)
denotes CPU utilization of container k

on VM j and server i, C(k,j,i,r) represents the resource r capacity of container

k on VM j, server i.

130

5.3.2 Process Flow

This section focuses on the process flow of designing and developing con-

tainer migration algorithms/host selection algorithms for energy efficiency

in cloud data center. Two algorithms, Energy Efficient Ant Colony Op-

timization (EEACO) and Energy Efficient Firefly Optimization (EEFFO)

are proposed, implemented and compared with the pre-existing algorithms

Random Host Selection (RHS), First Fit Host Selection (FFHS), Last Fit

Host Selection (LFHS) and Corelation based Host Selection (CorHS) [78].

RHS algorithm selects a host at random from the available host list that

has at least one VM that can host the container. The FFHS algorithm

chooses the first host from the available hosts list that fulfils the resource

requirements for the container. LFHS algorithm selects the first host from

a sorted (descending order by CPU utilization) list of available hosts that

fulfils the container resource requirements. The CorHS method calculates

the correlation of CPU workload histories from containers and hosts. If

it determines that there is no such the past, it just utilises LFHS. If the

load history can be verified, the first host that matches the first correla-

tion condition and has a VM that can handle the container is selected.

This approach yields a value known as “Pearson’s correlation coefficient,”

which measures the degree of dependence among two variables. According

to Pearson’s analysis, if there are two random variables P and Q with n

samples denoted by pi and qi the correlation coefficient is calculated us-

ing equation 5.9 where P̄ and Q̄ denotes the sample means of P and Q

respectively and rpy varies the range [-1, +1].

rpy =

∑n
i=1 (pi − p̄)(qi − q̄)√∑n

i=1 (pi − p̄)2
∑n

i=1 (qi − q̄)2
(5.9)

The closer P and Q’s correlation coefficients are near +1, the more is

the probability of the variables to reach peak/valley values together. In

other terms, if the container workload is unrelated to the host load, the

container is less prone to OL the host. The VM is chosen using the First-

Fit technique in all of the approaches described above. Host status module

in Cloudsim 4.0 as shown in Figure 5.1 determines the OL and UL host

131

machines. This is accomplished by the Host OL/UL Detector component,

which monitors the host’s resource use after each fixed time period (say 5

minutes). If the host is underutilized, the detector communicates to the

consolidation module with host ID and containers IDs running on it. In

the case of OL host status, the detector is responsible for sending a request

to the container selector (CS) component for activation (Piraghaj et al.,

2015b).

Host Status = Overloaded if Ui,t > Tol Underloaded if Ui, t < Tul

(5.10)

U(i,t) represents percentage utilization of CPU of Server i at time t. The

CS when invoked in case of OL host is done using the following algorithms:

MU (Piraghaj et al., 2015b): In MU, the container with the highest CPU

utilization is selected and put to the migration list.

MCor algorithms (Piraghaj et al., 2015b): In MCor, the container with the

highest correlation with the host load is selected and chosen for migration.

The Container Migration List (CML) keeps data about the selected con-

tainer.

Figure 5.1: Host status module and its components in Cloudsim 4.0 (Piraghaj et al.,
2015b)

The consolidation module as shown in Figure 5.2 is responsible for the

migration of containers based on the output given by the host status mod-

ule. The host status module consists of the OL host list and the OL

destination selector. The OL host list contains hosts categorized as “OL”

based on their current state, while the OL destination selector employs the

132

Host Selection Algorithm (HSA) to identify appropriate destinations for

containers within the received CMLs (Container Migration Lists).

The VM creation component is in charge of predicting the number of

VMs required in the subsequent phase. This calculation is derived from

the count of containers for which the overflow destination selector failed to

identify an appropriate host or virtual machine. The primary objective of

this component is to create the most substantial VMs feasible on under-

utilized hosts and then allocate containers to these newly created VMs. If

any containers remain unallocated, it randomly selects a host from the list

of inactive hosts and initiates VMs on that host, ensuring no containers

are left without a migration destination.

In contrast, the UL destination selector utilizes an HSA (Host Selec-

tion Algorithm) to ascertain the best possible destination for containers

that originate from under-loaded (UL) hosts. This decision takes into ac-

count not only the list of under-loaded hosts but also the choices made

by the OL destination selector. In cases where this component identifies a

suitable destination for each container on an under-loaded host, it commu-

nicates these destinations to the VM Host Migration Manager component,

along with the destinations chosen by the overload destination selector.

Furthermore, it supplies the host identification to the under-loaded host

deactivation component, which then proceeds to shut down under-loaded

hosts once all containers have been moved.

Figure 5.2: Consolidation Module and its components in Cloudsim 4.0 (Piraghaj et al.,
2015b)

133

5.3.3 Algorithms

The algorithm took the placement of containers on virtual machines

(VMs) as input and aimed to migrate containers to the best host nodes.

It started by initializing variables and updating global pheromones. The

loop ran until a specified number of iterations were completed. Within the

loop, the algorithm allocated containers to hosts based on equation 5.12

and updated the allocation probability if the host was underloaded. It

then checked the energy consumption of each ant and updated the global

pheromones accordingly. Following the conclusion of each iteration, local

pheromone levels are refreshed or adjusted. By combining both local and

global pheromones, ACO algorithms effectively exploited promising paths

found by individual ants while simultaneously exploring new paths in the

search space. This balance between exploitation and exploration enabled

ACO to efficiently navigate complex problem landscapes and converge to-

wards near-optimal or optimal solutions (Yan et al., 2018). Finally, the

best allocation was returned based on the minimum energy consumption.

134

Algorithm 7 Energy Efficient Ant Colony Optimization Host Selection Algorithm
(EEACO)

1: Input: Container Placement on VMs using DFFLSM

2: Output: Migration of containers to best host nodes

3: Initialize k, len, τij , minPower = MaxV alue, bestAllocationMap = null

4: update global pheromones according to Equation 5.11

5: while iterationNum < len do

6: for allant ∈ antList do

7: for all Container ∈ ContainerMigrationList obtained from overloaded

node do

8: allocate Container to host according to P’ij in Equation 5.12

9: update P’ij according to Equation 5.12

10: end for

11: for each container on ContainerMigrationList do

12: if No Underloaded Node and Overloaded Node left then

13: Activate any inactive node

14: Transfer the container to the node

15: end if

16: end for

17: end for

18: for forallant ∈ antList do do

19: if powerSum < minPower then then

20: minPower ← powerSum

21: bestAllocaton← allocation

22: update global pheromones according to Equation 5.11

23: end if

24: end for

25: update local pheromones according to Equation 5.13

26: end while

27: Return best allocation

The value of parameters used in EEACO is shown in Table 5.2.

If the power consumption of the ath allocation results is lower than

minPower, the global pheromone is updated and the powerSum is set to

minPower

τij = τij +
Q

Powera
(5.11)

Here, Powera displays the power usage of the method discovered by ath

ant. Q is an information intensity constant that indicates the quantity of

135

Table 5.2: Parameters of EEACO

Parameter Value

Q 100

α 1

ρ 0.7

len 50

k 10

pheromone left by the ants after one repetition. τij denotes the released

pheromone.

p′ij= ((ταij)/dij)/
∑n

i=1(τ
α
ij)/dij

(5.12)

p′ij denotes the probability of container i to be allocated to host j. α is the

inspiration factor.

if the host is underloaded, dij is equal to number of underloaded hosts

otherwise if it is a case for overloaded hosts, dij in that case is equal to 1.

With such adjustments, the likelihood of container migration to under

loaded hosts is substantially lower than that to overloaded hosts, potentially

reducing the phenomena of UL hosts.

τij = (1− ρ).τij + δτij (5.13)

Here, ρ is the pheromone volatility factor and δτij is the pheromone incre-

ment, which is defined as:

(5.14)

Here, k

is the number of ants.

Time and Space Complexity

Step 1: Initialization step only performs a few variable assignments hence

136

the complexity O(1).

Step 2: Updating global pheromones step involves iterating over each pair

of nodes, which takes O(n2) time.

Step 3: The loop runs for “len” iterations, and each iteration involves iter-

ating over all“”k” ants, and for each ant, iterating over al“ ”m” containers

in ContainerMigrationList.

Step 4: The allocation and pheromone update steps take O(n2) time each,

so the total time complexity of the loop is O(len ∗ k ∗m ∗ n2).

Step 5: Transferring containers step involves transferring the containers

from overloaded nodes to underloaded nodes, which takes O(m) time.

Step 6: Updating local pheromones this step involves iterating over each

pair of nodes, which takes O(n2) time.

Therefore, the total time complexity of EEACO is O(len∗k∗m∗n2), where

“len” is the number of iterations, “k” is the number of ants, “m” is the

number of containers, and “n” is the number of nodes.

O(1) for variable initialization, O(n2) for the global pheromone matrix,

O(m ∗n ∗ k) for the allocation matrix and the local pheromone matrix and

O(k) for the antList. So, Overall space complexity is O(m ∗ n ∗ k + n2)

where m is the number of containers, n is the number of nodes and k the

number of ants.

The algorithm initialized three arrays and ran a loop for a specified number

of generations. For each overloaded node, it computed energy consump-

tion and execution time using specific equations and calculated the index

of attraction. The algorithm then sorted the index of attraction in ascend-

ing order according to energy consumption and calculated the distance. It

sorted the host load in descending order and transfered the host load to the

destination with the nearest energy consumption. Finally, the distance is

updated, and the loop continued until the maximum number of generations

is reached.

137

Algorithm 8 Energy Efficient Firefly Optimization Host Selection Algorithm (EEFFO)

1: Input: Container Placement on VMs using DFFLSM

2: Output: Migration of containers to best host nodes

3: Initialize Overload, Underload, Active

4: while t < maxgeneration do

5: for each Overloaded Node and Underloaded node do

6: Compute Energy Consumption using equation 5.15

7: CE[]← Energy Consumption Value

8: Calculate Execution Time using equation 5.16

9: HET []← Execution Time value

10: end for

11: for each Overloaded Node do

12: Compute Attractivesness Index as (CE, HET)

13: IA[]← Attractiveness Index

14: end for

15: Sort IA[] in an ascending order according to EC values

16: Compute Distance using equation 5.17

17: Find the host with CE value nearest to the calculated Distance value from the

sorted IA[]

18: for each container in the CML do

19: Compute HostLoad of Overloaded Node using CPU usage

20: HostLoad[]← HostLoad value

21: end for

22: Sort HostLoad[] in a descending order

23: Pick the first position element of sorted IA[] as the destination

24: Transfer the first HostLoadOverloaded[] container from ContainerMigrationList

to the first IAOverloaded[] element.

25: for each Underloaded Node do

26: Compute Attractiveness Index (CE, HET)

27: IAUnderloaded[]← Attractiveness Index

138

28: end for

29: Sort IAUnderloaded[] in an ascending order according to EC values

30: Compute Distance using equation 5.17

31: Find the host with CE value nearest to the calculated distance value from the

sorted IAUnderloaded[]

32: for each container on ContainerMigrationList do

33: Compute HostLoad of Underloaded Node using CPU usage

34: HostLoadUnderloaded[]← HostLoad value

35: end for

36: Sort HostLoadUnderloaded[] in a descending order

37: Pick the first position element of sorted IAUnderloaded[] as the destination

38: Transfer the first HostLoadUnderloaded[] container from ContainerMigrationList

to the first IAUnderloaded[] element.

39: for each container on ContainerMigrationList do do

40: if no underloaded and overloaded node found then

41: Activate any inactive node

42: Transfer the container to the node

43: end if

44: Update distance according to equation 5.18

45: end for

46: end while

CEi =
(
∑v

j=1

∑u
k=1CPU i,j,k)(

∑v
j=1

∑u
k=1mui,j,k)

M
(5.15)

In equation 5.12, v represents the number of VMs running on the ith node

and u is the number of containers allocated to v VMs. CPU i,j,k and mui,j,k

are the processor and the memory usage of k containers operating in jth

VM of the ith node respectively and M is the number of memory units.

HET i =
v∑

j=1

u∑
k=1

HET i,j,k (5.16)

Where HET i,j,k is the execution time of k containers running in jth VMs

on the ith node.

Distance = Avg(IAmid, IAmax) (5.17)

Where IAmid, IAmax are the middle and the maximum vales from the AI

139

list.

(Distance)t+1 = (Distance)t + CPUutilization w.r.t to V M + ϵ

(5.18)

Where (Distance)t+1 and (Distance)t are the distance at time t and t+1.

ϵ is the gaussian distribution error.

Time and Space Complexity

Step 1: Line 4 runs for MaxGeneration times, so its time complexity is

O(MaxGeneration).

Step 2: Lines 5-10 loop over each OverloadedNode and UnderloadedNode,

so their time complexity can be approximated as O(n), where n is the total

number of nodes.

Step 3: Lines 12-114 calculate Attractiveness Index for each Overload-

edNode, so their time complexity can be approximated as O(n).

Step 4: Line 15 sorts IAOverloaded[], which has a length of n, so its time

complexity is O(n log n).

Step 5: Lines 16-17 compute the distance and find the closest host, so their

time complexity is O(n log n).

Step 6: Lines 18-21 loop over each container on the ContainerMigrationList,

so their time complexity can be approximated as O(c), where c is the num-

ber of containers to be migrated.

Step 7: Line 22 sorts HostLoadOverloaded[], which has a length of c, so its

time complexity is O(c log c).

Step 8: Lines 23-24 transfer the container with the highest HostLoad from

Overloaded Node to the selected destination, so their time complexity is

O(1).

Step 9: Line 25 updates the distance value, so its time complexity is O(1).

Step 10: Lines 26-29 compute attractiveness index for each Underload-

edNode, so their time complexity can be approximated as O(n).

Step 11: Line 30 sorts IAUnderloaded[], which has a length of n so its time

complexity is O(n log n).

Step 12: Lines 31-32 compute the Distance and find the closest host, so

their time complexity is O(n log n).

Step 13: Lines 33-36 loop over each container on the ContainerMigra-

140

tionList, so their time complexity can be approximated as O(c).

Step 14: Line 37 sorts HostLoadUnderloaded[], which has a length of C, so

its time complexity is O(c log c).

Step 15: Lines 38-39 transfer the container with the highest HostLoad from

UnderloadedNode to the selected destination, so their time complexity is

O(1).

Step 16: Line 40 updates the distance value, so its time complexity is

O(1).

Step 17: Lines 41-46 loop over each container on the ContainerMigra-

tionList and try to activate any inactive node, so their time complexity

can be approximated as O(c).

Overall, the time complexity of this algorithm can be approximated as

O(MaxGeneration ∗ n ∗ (logn + clogc)), where n is the number of nodes,

c is the number of containers to be migrated, and MaxGeneration is the

maximum number of iterations. Overload, Underload, Inactive variables

are used to store the set of overloaded, underloaded, and inactive nodes,

respectively. The space required to store these variables is proportional to

the number of nodes in the data center, which is typically a constant value

for a given data center. Therefore, the space complexity for these vari-

ables can be considered as O(1). CE[] and HET[] arrays store the energy

consumption and execution time values, respectively, for each overloaded

and underloaded node. The space required to store these arrays is pro-

portional to the number of nodes in the data center, which is typically a

constant value for a given data center. Therefore, the space complexity

for these arrays can be considered as O(n). IAOverloaded[] and IAUnder-

loaded[] arrays store the attractiveness index values for each overloaded

and underloaded node, respectively. The space required to store these ar-

rays is proportional to the number of nodes in the data center, which is

typically a constant value for a given data center. Therefore, the space

complexity for these arrays can be considered as O(n). HostLoadOver-

loaded[] and HostLoadUnderloaded[] arrays store the host load values for

each overloaded and underloaded node, respectively. The space required to

141

store these arrays is proportional to the number of containers in the data

center, which can be considered as O(c). ContainerMigrationList is a list

of containers that need to be migrated. The space required to store this list

is proportional to the number of containers in the data center, which can

be considered as O(c). Distance variable to store the estimated distance

between overloaded and underloaded nodes. The space required to store

this variable is proportional to the number of nodes in the data center,

which is typically a constant value for a given data center. Therefore, the

space complexity for this variable can be considered as O(1). Therefore,

the total space complexity of the algorithm is the sum of the space required

for all these variables, which is O(n + c), where n is the number of nodes

and c is the number of containers.

5.4 Experimental Setup

The experiments have been conducted in Cloudsim 4.0 with i5-2.4GHz

processor and 8 GB RAM. Table 5.3 shows the objectives and various sets

of experiments that were conducted for different combinations of overload

(OL), Underload (UL) and Container selection (CS) algorithms.

Experimental set up was done for two different scenarios. Scenario 1 was

for the homogenous environment in which the configurations of the VM

and PM remained same. The second scenario was for heterogenous envi-

ronment in which the configurations of the VM and the PM were different.

The configurations in the homogenous environment and the heterogenous

environment are enlisted in table 5.4, table 5.5, table 5.6 and table 5.7.

5.4.1 Scenario 1: Homogenous Environment

In this case, a data center was simulated with 700 homogenous servers

and 1000 VMs. A total of 5000 containers are used which belonged to 3

different types. Table 5.4 shows the configurations of the PMs, whereas

table 5.5 shows the setups of the VMs and containers.

142

Table 5.3: Objectives and Experiment sets for Container Consolidation

Set Objective CS UL OL Overbooking
Factor (per-
centile)

Correlation
Thresh-
old

1
Examine the impact of con-
tainer consolidation/host
selection algorithms on av-
erage energy consumption.

MU/MCor
70% [80%,

90%,
100%]

80 0.5

[50%,
60%,
70%]

80%

2
Examine the impact of con-
tainer consolidation/host
selection algorithms on
average container migra-
tions.

MU/MCor
70% [80%

90%,
100%]

80 0.5

[50%,
60%,
70%]

80%

3
Examine the impact of con-
tainer consolidation/host
selection algorithms on
average VM used.

MU/MCor
70% [80%,

90%,
100%]

80 0.5

[50%,
60%,
70%]

80%

4
Examine the impact of con-
tainer consolidation/host
selection algorithms on
average PM used.

MU/MCor
70% [80%,

90%,
100%]

80 0.5

[50%,
60%,
70%]

80%

5
Examine the impact of con-
tainer consolidation/host
selection algorithms on
SLA.

MU/MCor
70% [80%,

90%,
100%]

80 0.5

50%,
60%,
70%

80%

6 Examine the impact of con-
tainer consolidation/host
selection algorithms cor-
responding to different
container overbooking
factor on average energy
consumption, average ac-
tive VM, average active
PM, average container
migrations and average
overall SLA.

MU 80% 70% [20,40,80] 0.5

143

Table 5.4: PM configurations in homogenous environment for Container Consolidation

Physical Machine Setup and Power Models

Type of
Server

CPU
[3GHz]
(37274
MIPS/core)

Memory
(GB)

P idle
(Watt)

P max
(Watt)

Number

1 4 Core 64 93 135 700

Table 5.5: VM and container configurations in homogenous environment for Container
Consolidation

Type of Containers and VMs

Type
of Con-
tainer

CPU
MIPS
(1 core)

Memory
(MB)

Type of
VM

CPU
[1.5GHz]
(18636
MIPS/core)

Memory
(GB)

Number

1 4658 128

1 2 2 10002 9320 256

3 18636 512

5.4.2 Scenario 2: Heterogenous Environment

In this case, a DC was simulated with 700 heterogenous servers and

1000 VMs with the set of 3 different servers and 4 different types of VMs.

A total of 5000 containers were used which belonged to 3 different types

as that of in homogenous environment. The configurations of the PMs are

shown in table 5.6 and that of VMs and containers are shown in table 5.7.

Table 5.6: PMs configurations in heterogenous environment for Container Consolidation

PM Setup and Power Models

Type of
Server

CPU
[3GHz]
(37274
MIPS/core)

Memory
(GB)

P idle
(Watt)

P max
(Watt)

Number

1 4 Core 64 86 117 234

2 8 Core 128 93 135 233

3 16 Core 256 66 247 233

5.5 Results

In experiments, the following cases have been investigated:

A) Examine the impact of container consolidation/host selection algorithms

144

Table 5.7: VMs and container configurations in heterogenous environment for Container
Consolidation

Types of Containers and VMs

Type
of Con-
tainer

CPU
MIPS
(1 core)

Memory
(MB)

Type of
VM

CPU
[1.5GHz]
(18636
MIPS
/core)

Memory
(GB)

Number

1 4658 128 1 2 1 250

2 9320 256 2 4 2 250

3 18636 512
3 1 4 250

4 8 8 250

on average energy consumption.

B) Examine the impact of container consolidation/host selection algorithms

on average container migrations.

C) Examine the impact of container consolidation/host selection algorithms

on average VM used.

D) Examine the impact of container consolidation/host selection algorithms

on average PM used.

E) Examine the impact of container consolidation/host selection algorithms

on SLA.

F) Examine the impact of container consolidation/host selection algorithms

corresponding to different overbooking factor on average energy consump-

tion, average active VM, average active PM, average container migrations

and average overall SLA.

All the above cases had been considered for both homogenous and het-

erogeneous environment. Also, each case (except F) was determined for

different OL value, UL value and CS algorithms (MU and MCor). In case

(F), UL and OL was fixed to 70% and 80% respectively. The CS algorithm

used in this case was MU and the overbooking factor was varied. The

workload traces from PlanetLab (Park and Pai, 2006) to assess the algo-

rithms considering the simulation setup and parameters indicated in table

5.4, table 5.5, table 5.6 and table 5.7. These traces include 10 days’ worth

of the testbed’s workload from randomly chosen sources, which were gath-

ered during March and April 2011 (Beloglazov and Buyya, 2012). Each

container was allocated to a task that contained statistics on CPU usage

145

for one day that was reported every five minutes. The dataset included

CPU utilization percentages for over a thousand VMs hosted on servers

distributed across more than 500 locations worldwide. The data organi-

zation followed a daily folder structure, with each folder containing CPU

utilization records for VMs sampled every 5 minutes over the course of a

day.

5.5.1 Homogenous Environment

5.5.1.1 Impact of host selection policies (container consolidation) on aver-

age energy consumption:

The energy usage of a DC was calculated by using the various host selec-

tion policies on different Container Selection (CS) algorithms and thresh-

olds. CS algorithms, MU and MCor are defined in section 5.3.2 and host

status thresholds are defined in section 5.4. The impact of host selection

algorithms on average energy consumption for different Overload (OL) and

Underload (UL) combinations is as shown in figure 5.3 and figure 5.4 re-

spectively. Table 5.8 and table 5.9 shows the comparison of EEFFO and

EEACO with other algorithms in terms of average energy consumption in

homogenous environment.

Table 5.8: Comparison of EEFFO for average energy consumption reduction in Homoge-
nous environment (in percent)

Energy Efficiency in Homogenous environment (in Percentage)

RHS FFHS CorHS LFHS EEACO

EEFFO MU (chang-
ing OL)

11.75 9.67 1.87 6.24 1.37

EEFFO MU (chang-
ing UL)

15.01 15.12 7.14 9.78 4.4

EEFFO MCor
(chang-
ing OL)

12.29 10.68 2.77 7.42 2.3

EEFFO MCor
(chang-
ing UL)

14.91 15.36 7.22 10.08 4.42

146

Table 5.9: Comparison of EEACO for average energy consumption reduction in Ho-
mogenous environment (in percent)

Energy Efficiency in Homogenous environment (in Per-
centage)

RHS FFHS CorHS LFHS

EEACO MU (changing
OL)

10.52 8.41 0.5 4.93

EEACO MU (changing
UL)

11.1 11.22 2.87 5.63

EEACO MCor (chang-
ing OL)

10.22 8.58 0.48 5.24

EEACO MCor (chang-
ing UL)

10.97 11.44 2.93 5.92

(a) (b)

Figure 5.3: Impact of host selection algorithms on average energy consumption for
different OL combinations (a) MU and (b) MCor in homogenous environment

5.5.1.2 Impact of host selection policies (container consolidation) on aver-

age container migrations:

The average container migration was calculated by using the various

host selection algorithm on different CS algorithms and thresholds. Two

separate tests were performed based on the OL threshold, UL threshold

and different CS algorithms (MU and MCor). For each set, the average

container migrations calculated and compared for different OL and UL

combinations as shown in figure 5.5 and figure 5.6 respectively.

147

(a) (b)

Figure 5.4: Impact of Host selection algorithms on average energy consumption for
different UL combinations (a) MU and (b) MCor in homogenous environment

(a) (b)

Figure 5.5: Impact of Host selection algorithms on average container migration for
different OL combinations (a) MU and (b) MCor in homogenous environment

5.5.1.3 Impact of host selection algorithm (container consolidation) on av-

erage VM used:

The average VM used were calculated by using the various host selection

algorithm on different CS algorithms and thresholds. Two separate tests

were performed based on the OL threshold, UL threshold and different CS

algorithms (MU and MCor). For each set, the average active VMs used

were calculated and compared for different OL and UL combinations as

shown in figure 5.7 and figure 5.8 respectively. Table 5.10 and table 5.11

show the comparison of EEFFO and EEACO with other algorithms in

terms of average active VM reduction in homogenous environment.

148

Table 5.10: Comparison of EEFFO average active VM reduction in homogenous envi-
ronment

Average Active VM in Homogenous environment (in Percent-
age)

RHS FFHS CorHS LFHS EEACO

EEFFO MU (chang-
ing OL)

8.28 9.65 17.44 19.67 4.49

EEFFO MU (chang-
ing UL)

4.08 6.1 13.92 13.12 2.25

EEFFO MCor
(chang-
ing OL)

7.79 9.18 17.16 19.22 4.17

EEFFO MCor
(chang-
ing UL)

4.37 5.11 9.31 6.96 1.69

Table 5.11: Comparison of EEACO average active VM reduction in homogenous envi-
ronment

Average Active VM in Homogenous environment (in Per-
centage)

RHS FFHS CorHS LFHS

EEACO MU (changing
OL)

3.97 5.41 13.56 15.9

EEACO MU (changing
UL)

1.87 3.93 11.93 11.12

EEACO MCor (changing
OL)

3.78 5.23 13.56 15.71

EEACO MCor (changing
UL)

2.73 3.48 7.75 5.35

149

(a) (b)

Figure 5.6: Impact of Host selection algorithms on average container migration for
different UL combinations (a) MU and (b) MCor in homogenous environment

(a) (b)

Figure 5.7: Impact of Host selection algorithms on average VMs used for different OL
combinations (a) MU and (b) MCor in homogenous environment

5.5.1.4 Impact of host selection algorithm (container consolidation) on av-

erage PM used:

The average PMs used were calculated by using the various host selection

algorithms for different CS algorithms and thresholds. Two separate tests

were performed based on the OL threshold, UL threshold and different CS

algorithms (MU and MCor). For each set, the average PMs used were

calculated and compared for different OL and UL combinations as shown

in figure 5.9 and figure 5.10 respectively. Table 5.12 and table 5.13 show

the comparison of EEFFO and EEACO with other algorithms in terms of

average active PMs reduction in homogenous environment.

150

Table 5.12: Comparison of EEFFO average active PMs reduction in Homogenous envi-
ronment (in percentage)

Average Active PMs in Homogenous environment (in Percent-
age)

RHS FFHS CorHS LFHS EEACO

EEFFO MU (chang-
ing OL)

15.64 23.13 23.17 18.4 5.66

EEFFO MU (chang-
ing UL)

8.96 23.22 22.69 16.27 4.47

EEFFO MCor
(chang-
ing OL)

15.55 27.58 23.17 18.51 5.82

EEFFO MCor
(chang-
ing UL)

8.58 23.15 22.4 16.34 4.46

Table 5.13: Comparison of EEACO average active PMs reduction in Homogenous envi-
ronment (in percentage)

Average Active PMs in Homogenous environment (in Per-
centage)

RHS FFHS CorHS LFHS

EEACO MU (changing
OL)

7.57 23.13 18.55 13.5

EEACO MU (changing
UL)

4.7 19.63 19.07 12.36

EEACO MCor (changing
OL)

10.33 23.1 18.43 13.47

EEACO MCor (changing
UL)

4.31 19.56 18.78 12.43

151

(a) (b)

Figure 5.8: Impact of Host selection algorithms on average VMs used for different UL
combinations (a) MU and (b) MCor in homogenous environment

(a) (b)

Figure 5.9: Impact of Host selection algorithms on average PMs used for different OL
combinations (a) MU and (b) MCor in homogenous environment

5.5.1.5 Impact of host selection algorithm (container consolidation) on SLA:

According to equation 5.3, the SLA metric is defined as a proportion of

the difference between the required and allocated amount of CPU for each

VM. It is violated, if the VM that hosts the container does not get the

necessary amount of CPU. The container placement has been done using

algorithm 4.6, Discrete Firefly Container Placement algorithm with Local

Search Mechanism (DFFLSM). The technique optimised the initial distri-

bution of containers onto VMs, resulting in fewer SLA breaches, ensuring

that each VM received the necessary resources. The impact of different host

selection algorithms on average overall SLA violations for different OL-UL

combinations and CS algorithms is as shown in figure 5.11 and figure 5.12

152

(a) (b)

Figure 5.10: Impact of host selection algorithms on average PMs used for different UL
combinations (a) MU and (b) MCor in homogenous environment

respectively.

(a) (b)

Figure 5.11: Impact of host selection algorithms on average overall SLA violations for
different OL combinations (a) MU and (b) MCor in homogenous environment

5.5.1.6 Impact of overbooking of containers on average energy consump-

tion, average active VM, average active PM, average container mi-

grations and average overall SLA violations

Energy consumption and SLA violations are critical factors affecting

the efficiency of consolidation algorithms, and overbooking plays a signifi-

cant role in this regard. Containers have been assigned to VMs based on a

specified percentile of each container’s application workload. With a higher

percentile, fewer containers were deployed on each VM. Host selection tech-

niques generally led to a similar number of migrations because of minimal

153

(a) (b)

Figure 5.12: Impact of host selection algorithms on average overall SLA violations for
different UL combinations (a) MU and (b) MCor in homogenous environment

workload variance, with migration decisions primarily based on PM load

rather than VM load. For these set of experiments, MU CS algorithm was

used and UL and OL values were fixed at 70% and 80% respectively. The

overbooking factor is varied as 20, 40 and 80. Figure 5.13, figure 5.14 and

figure 5.15 show the impact of host selection algorithms on average energy

consumption of data center, average active VM, average active PM, aver-

age container migrations and average overall SLA violations for different

values of overbooking factor (UL=70%, OL=80% and MU CS algorithm)

(a) (b)

Figure 5.13: Impact of host selection algorithms on (a) average energy consumption
of data center and (b) average active VM for different values of overbooking factor in
homogenous environment (UL=70 percent, OL=80 percent and MU CS algorithm)

154

(a) (b)

Figure 5.14: Impact of host selection algorithms on (a) average active PM and (b)
average container migrations for different values of overbooking factor in homogenous
environment (UL=70 percent, OL=80 percent and MU CS algorithm)

Figure 5.15: Impact of host selection algorithms on average overall SLA violations for dif-
ferent values of overbooking factor in homogenous environment (UL=70 percent, OL=80
percent and MU CS algorithm)

5.5.2 Heterogenous Environment

5.5.2.1 Impact of host selection policies (container consolidation) on aver-

age energy consumption:

The usage of energy in DC was calculated by using the various host selec-

tion algorithms on different CS algorithms and thresholds. CS algorithms,

MU and MCor are defined in section 5.3.3 and host status thresholds are

defined in section 5.3.3. The impact of host selection algorithms on average

energy consumption for different OL and UL combinations are as shown

in figure 5.16 and figure 5.17 respectively. Table 5.14 and table 5.15 shows

155

the comparison of EEFFO and EEACO with other algorithms in terms of

average energy-consumption reduction in heterogenous environment.

Table 5.14: Comparison of EEFFO average energy consumption reduction in Heteroge-
nous environment (in percent)

Energy Efficiency in Heterogenous environment (in Percentage)

RHS FFHS CorHS LFHS EEACO

EEFFO MU (changing
OL)

13.47 6.46 9.65 11.46 5.38

EEFFO MU (changing
UL)

13.29 8.32 10.52 11.18 4.31

EEFFO MCor (chang-
ing OL)

13.1 6.62 9.76 11.38 5.39

EEFFO MCor (chang-
ing UL)

12.89 8.42 10.62 11.1 4.31

Table 5.15: Comparison of EEACO average energy consumption reduction in Heteroge-
nous environment (in percent)

Energy Efficiency in Heterogenous environment (in Per-
centage)

RHS FFHS CorHS LFHS

EEACO MU (changing
OL)

8.55 1.14 4.51 6.42

EEACO MU (changing
UL)

9.38 4.18 6.48 7.17

EEACO MCor (chang-
ing OL)

8.15 1.3 4.62 6.33

EEACO MCor (chang-
ing UL)

8.96 4.29 6.59 7.09

5.5.2.2 Impact of host selection policies (container consolidation) on aver-

age container migrations:

The average container migration was calculated by using the various

host selection algorithms for different CS algorithms and thresholds. Two

separate tests were performed based on the OL threshold, UL threshold

and different CS algorithms (MU and MCor). For each set, the container

migrations were calculated and compared for different combinations of OL

and UL thresholds as shown in Figure 5.18 and figure 5.19 respectively.

156

(a) (b)

Figure 5.16: Impact of host selection algorithms on average energy consumption for
different OL combinations (a) MU and (b) MCor in heterogenous environment

(a) (b)

Figure 5.17: Impact of host selection algorithms on average energy consumption for
different UL combinations (a) MU and (b) MCor in heterogenous environment

5.5.2.3 Impact of host selection algorithm (container consolidation) on av-

erage VM used:

The average VMs used were calculated by using the various host selec-

tion algorithms for different CS algorithms and thresholds. Two separate

tests were performed based on the OL threshold, UL threshold and different

CS algorithms (MU and MCor). For each set, the average VMs used were

calculated and compared for different combinations of OL and UL thresh-

olds are as shown in figure 5.20 and figure 5.21 respectively. Table 5.16

and table 5.17 show the percentage reduction of active VM in comparison

to EEFFO and EEACO algorithms respectively.

157

(a) (b)

Figure 5.18: Impact of Host selection algorithms on average container migration for
different OL combinations (a) MU and (b) MCor in heterogenous environment

(a) (b)

Figure 5.19: Impact of Host selection algorithms on average container migration for
different UL combinations (a) MU and (b) MCor in heterogenous environment

5.5.2.4 Impact of host selection algorithm (container consolidation) on av-

erage PM used:

The average PMs used were calculated by using the various host selection

algorithms for different CS algorithms and thresholds. Two separate tests

were performed based on the OL threshold, UL threshold and different CS

algorithms (MU and MCor). For each set, the average PMs used were cal-

culated and compared for different combinations of OL and UL thresholds

as shown in figure 5.22 and figure 5.23 respectively. Table 5.18 and table

5.19 shows the comparison of EEFFO and EEACO with other algorithms

in terms of average active PMs reduction in Heterogeneous environment.

158

Table 5.16: Comparison of EEFFO average active VM reduction in heterogenous envi-
ronment

Average Active VM in Heterogenous environment (in Percentage)

RHS FFHS CorHS LFHS EEACO

EEFFO MU (changing OL) 13.7 21.05 22.03 17.74 11.04

EEFFO MU (changing UL) 8.5 11.59 13.67 12.74 7.62

EEFFO MCor (changing OL) 13.68 20.86 22.02 17.36 10.65

EEFFO MCor (changing UL) 8.79 10.32 13.82 12.49 7.49

Table 5.17: Comparison of EEACO average active VM reduction in heterogenous envi-
ronment

Average Active VM in Heterogenous environment (in
Percentage)

RHS FFHS CorHS LFHS

EEACO MU (changing
OL)

2.98 11.25 12.35 7.53

EEACO MU (changing
UL)

0.95 4.3 6.55 5.54

EEACO MCor (chang-
ing OL)

3.39 11.43 12.72 7.51

EEACO MCor (chang-
ing UL)

1.41 3.05 6.84 5.4

Table 5.18: Comparison of EEFFO average active PMs reduction in Heterogeneous
environment (in percent)

Average Active PMs in Heterogeneous environment (in Percentage)

RHS FFHS CorHS LFHS EEACO

EEFFO MU (changing
OL)

14.25 17.16 9.23 13.16 5.93

EEFFO MU (changing
UL)

14.87 16.91 9.1 12.4 6.47

EEFFO MCor (changing
OL)

14.67 18.19 10.29 12.87 5.66

EEFFO MCor (changing
UL)

13.71 15.74 9.22 9.73 3.61

159

(a) (b)

Figure 5.20: Impact of Host selection algorithms on average VMs used for different OL
combinations (a) MU and (b) MCor in heterogenous environment

(a) (b)

Figure 5.21: Impact of Host selection algorithms on average VMs used for different UL
combinations (a) MU and (b) MCor in heterogenous environment

5.5.2.5 Impact of host selection algorithm (container consolidation) on SLA:

The container placement has been done using algorithm 4.6, Discrete

Firefly Container Placement algorithm with local search mechanism. The

technique optimised the initial placement of containers onto VMs, resulting

in fewer SLA breaches in the experiment, ensuring that each VM receives

the necessary resources. Figure 5.24 and figure 5.25 show the impact of host

selection algorithms on average overall SLA violation for different OL-UL

and CS algorithm combinations respectively.

160

Table 5.19: Comparison of EEACO average active PMs in Heterogeneous environment
(in percent)

Average Active PMs in Heterogeneous environment (in
Percentage)

RHS FFHS CorHS LFHS

EEACO MU (changing
OL)

8.85 11.93 3.51 7.68

EEACO MU (changing
UL)

8.97 11.15 2.81 6.34

EEACO MCor (chang-
ing OL)

9.55 13.28 4.91 7.64

EEACO MCor (chang-
ing UL)

10.47 12.58 5.82 6.34

(a) (b)

Figure 5.22: Impact of Host selection algorithms on average PMs used for different OL
combinations (a) MU and (b) MCor in heterogenous environment

5.5.2.6 Impact of overbooking of containers on average energy consump-

tion, average active VM, average active PM, average container mi-

grations and average overall SLA violations:

Overbooking significantly impacts the consolidation algorithms effec-

tiveness, particularly on the basis of usage of energy and SLA breaches.

The allocation of containers to virtual machines is determined based on a

predetermined percentile of the application workload associated with each

container. The greater the percentile, the fewer containers that can fit on

each VM. Because workload variance was minimal and migration decisions

are based on PM load rather than VM load, most HSA had the same num-

ber of migrations. The MU CS algorithm is employed was this series of

studies, and the UL and OL values are set at 70% and 80%, respectively.

161

(a) (b)

Figure 5.23: Impact of Host selection algorithms on average PMs used for different UL
combinations (a) MU and (b) MCor in heterogenous environment

(a) (b)

Figure 5.24: Impact of host selection algorithms on average overall SLA violation for
different OL combinations (a) MU and (b) MCor in heterogenous environment

The overbooking factor was set to 20, 40, or 80. Figure 5.26, figure 5.27 and

figure 5.28 show the impact of host selection algorithms on average energy

consumption of data center, average active VM, average active PM, aver-

age container migrations and average overall SLA violations for different

values of overbooking factor (UL=70%, OL=80% and MU CS algorithm)

162

(a) (b)

Figure 5.25: Impact of host selection algorithms on average overall SLA violation for
different UL combinations (a) MU and (b) MCor in heterogenous environment

(a) (b)

Figure 5.26: Impact of host selection algorithms on (a) average energy consumption
of data center and (b) average active VM for different values of overbooking factor in
heterogenous environment (UL=70 percent, OL=80 percent and MU CS algorithm)

163

(a) (b)

Figure 5.27: Impact of host selection algorithms on (a) average active PM and (b)
average container migrations for different values of overbooking factor in heterogenous
environment (UL=70 percent, OL=80 percent and MU CS algorithm)

Figure 5.28: Impact of host selection algorithms on average overall SLA violations for
different values of overbooking factor in heterogenous environment (UL=70 percent,
OL=80 ercent and MU CS algorithm)

164

5.6 Summary

Container consolidation is a pivotal strategy employed in cloud data

centers to enhance resource utilization and optimize operational efficiency.

As cloud computing continues to grow in prominence, the need to effec-

tively manage and allocate resources becomes paramount. Containeriza-

tion technology, which encapsulates applications and their dependencies

into isolated units known as containers, has revolutionized the deployment

and scaling of applications.Container consolidation leverages this technol-

ogy to consolidate multiple applications onto fewer physical servers, thereby

reducing hardware and energy consumption. By efficiently packing multi-

ple containers onto a single server, data centers can achieve higher resource

utilization rates, leading to cost savings and a reduced environmental foot-

print. This practice is particularly beneficial in dynamic and scalable

environments where workloads vary over time. The process involves in-

telligent load balancing, performance monitoring, and predictive scaling

mechanisms to ensure optimal resource distribution and prevent perfor-

mance bottlenecks. Through advanced orchestration platforms and man-

agement tools, container consolidation enables data centers to adapt swiftly

to changing workloads while maintaining desired Service Level Agreements

(SLAs). Moreover, this approach contributes to the effective utilization of

the available hardware, minimizing wasted resources and overall infrastruc-

ture costs.

In this research, the EEFFO algorithm demonstrated remarkable energy-

saving results in data centers, showcasing an 8.34% reduction in energy

consumption in a homogeneous environment and an even more impressive

9.38% reduction in a heterogeneous environment, surpassing the perfor-

mance of all other existing algorithms. Furthermore, EEFFO achieved a

significant decrease in the average power modules (PM) utilized, with a

reduction of 16.35% in homogeneous settings and 11.65% in heterogeneous

settings when compared to both pre-existing and proposed algorithms. Ad-

ditionally, EEFFO contributed to an overall improvement in Quality of

165

Service (QoS) by significantly reducing the number of Service Level Agree-

ment (SLA) violations in comparison to both the pre-existing algorithms

and its counterpart EEACO, thereby ensuring enhanced QoS for the data

center operations.

166

Chapter 6

Statistical Analysis

This chapter assesses the effectiveness of proposed and implemented en-

ergy efficiency algorithms in data centers by conducting a statistical analy-

sis, employing the Tukey HSD test to detect significant differences. It aims

to provide empirical evidence of algorithmic performance and its impact on

data center energy efficiency.

6.1 Statistical Analysis

The Tukey HSD (Honestly Significant Difference) test is a statistical

technique employed to ascertain the statistical significance of a relation-

ship between two datasets. It helps determine whether a numerical change

observed in one variable is likely to be causally related to a numerical

change observed in another variable. In essence, the Tukey test serves as

a means to rigorously test an experimental hypothesis. Moreover, it is

utilized to evaluate if an interaction among three or more variables holds

statistical significance, indicating that it goes beyond being a simple sum

or product of individual degrees of significance. It is designed to determine

which specific group means differ significantly from each other after a sig-

nificant result is obtained from ANOVA. The Tukey HSD test helps identify

pairwise differences between group means in an ANOVA when the null hy-

pothesis of equal means has been rejected. When conducting an ANOVA,

if the overall F-test indicates that there are significant differences among

the group means, the Tukey HSD test can be used to perform post hoc

167

pairwise comparisons to identify which specific groups differ significantly

from each other.

The Tukey HSD test has been applied at container placement and con-

tainer consolidation level for finding the significant difference between the

numerical values of mean energy consumption and mean overall SLA vi-

olations for proposed and pre-existing values for both homogenous and

heterogeneous environments. Each set of experiment is simulated 50 times

to get the optimized results.

6.1.1 Container Placement in Cloud Data Center

In Tukey test, the significance value represents the threshold below

which the differences between group means to be statistically significant

were considered. In a Tukey test conducted at a 95% confidence level, the

significance value is set at 0.05. When the significance value falls below

0.05, it indicates that the distinctions between the means of the groups

being compared are statistically significant. In other words, the null hy-

pothesis is rejected, indicating that there is a significant difference in the

means of the groups under consideration.

Table 6.1 shows the Tukey multiple comparisons of mean difference for

energy consumption and SLA violations in homogenous and heterogeneous

data center for different container placement algorithms.

Table 6.2 shows the Tukey multiple comparisons of significance values for

energy consumption and SLA violations in homogenous and heterogeneous

data center for different container placement algorithms.

DFFLSM showed a significant difference of average energy consumption

when compared to FF, FFD, Random and ACO container placement al-

gorithms with a P value of 0.002, 0.005, < 0.001 and 0.015 respectively in

homogenous environment as shown in table 6.2.

DFFLSM showed a significant difference of overall SLA violations when

compared to FF, FFD, Random, ACO and DFF container placement al-

gorithms with a P value of < 0.001, < 0.001, < 0.001, 0.003 and 0.069

respectively in homogenous environment as shown in table 6.2.

DFFLSM showed a significant difference of average energy consumption

168

Table 6.1: Tukey multiple comparisons of mean difference for energy consumption and
SLA violations in homogenous and heterogeneous data center for different container
placement algorithms

Homogenous Environment Heterogenous Environment

(I) VAR00001 (J) VAR00001 Mean Diff.
(Energy
Consump-
tion)

Mean Diff.
(SLA viola-
tions)

Mean Diff.
(Energy
Consump-
tion)

Mean Diff.
(SLA viola-
tions)

FF FFD 9315.72665 0.01 10363.85335 0.01

Random -38013.98830* -0.01 -51040.7456 -0.01

ACO 17676.26565 .03500* 187208.79920* .03000*

DFF 34636.65595* .05000* 259464.05580* .04500*

DFFLSM 53886.53500* .06500* 327550.14525* .06000*

FFD FF -9315.72665 -0.01 -10363.85335 -0.01

Random -47329.71495* -.02000* -61404.59895* -.02000*

ACO 8360.539 .02500* 176844.94585* .02000*

DFF 25320.9293 .04000* 249100.20245* .03500*

DFFLSM 44570.80835* .05500* 317186.29190* .05000*

Random FF 38013.98830* 0.01 51040.7456 0.01

FFD 47329.71495* .02000* 61404.59895* .02000*

ACO 55690.25395* .04500* 238249.54480* .04000*

DFF 72650.64425* .06000* 310504.80140* .05500*

DFFLSM 91900.52330* .07500* 378590.89085* .07000*

ACO FF -17676.26565 -.03500* -187208.79920* -.03000*

FFD -8360.539 -.02500* -176844.94585* -.02000*

Random -55690.25395* -.04500* -238249.54480* -.04000*

DFF 16960.3903 0.015 72255.25660* .01500*

DFFLSM 36210.26935* .03000* 140341.34605* .03000*

DFF FF -34636.65595* -.05000* -259464.05580* -.04500*

FFD -25320.9293 -.04000* -249100.20245* -.03500*

Random -72650.64425* -.06000* -310504.80140* -.05500*

ACO -16960.3903 -0.015 -72255.25660* -.01500*

DFFLSM 19249.87905 0.015 68086.08945* .01500*

DFFLSM FF -53886.53500* -.06500* -327550.14525* -.06000*

FFD -44570.80835* -.05500* -317186.29190* -.05000*

Random -91900.52330* -.07500* -378590.89085* -.07000*

ACO -36210.26935* -.03000* -140341.34605* -.03000*

DFF -19249.87905 -0.015 -68086.08945* -.01500*

* The mean difference is significant at the 0.05 level.

169

Table 6.2: Tukey multiple comparisons of significance values for energy consumption
and SLA violations in homogenous and heterogeneous data center for different container
placement algorithms

Multiple Comparisons of Container Placement Algorithms

Dependent Variable: VAR00002

Tukey HSD

Homogenous Envi-
ronment

Heterogeneous En-
vironment

(I)
VAR00001

(J)
VAR00001

Sig.(Energy
Consump-
tion)

Sig.(SLA
viola-
tions)

Sig.(Energy
Consump-
tion)

Sig.(SLA
viola-
tions)

FF FFD 0.758 0.271 0.971 0.087

Random 0.012 0.271 0.076 0.087

ACO 0.244 0.001 < .001 < .001

DFF 0.018 < .001 < .001 < .001

DFFLSM 0.002 < .001 < .001 < .001

FFD FF 0.758 0.271 0.971 0.087

Random 0.004 0.02 0.035 0.003

ACO 0.822 0.007 < .001 0.003

DFF 0.072 < .001 < .001 < .001

DFFLSM 0.005 < .001 < .001 < .001

Random FF 0.012 0.271 0.076 0.087

FFD 0.004 0.02 0.035 0.003

ACO 0.002 < .001 < .001 < .001

DFF < .001 < .001 < .001 < .001

DFFLSM < .001 < .001 < .001 < .001

ACO FF 0.244 0.001 < .001 < .001

FFD 0.822 0.007 < .001 0.003

Random 0.002 < .001 < .001 < .001

DFF 0.273 0.069 0.017 0.015

DFFLSM 0.015 0.003 < .001 < .001

DFF FF 0.018 < .001 < .001 < .001

FFD 0.072 < .001 < .001 < .001

Random < .001 < .001 < .001 < .001

ACO 0.273 0.069 0.017 0.015

DFFLSM 0.19 0.069 0.022 0.015

DFFLSM FF 0.002 < .001 < .001 < .001

FFD 0.005 < .001 < .001 < .001

Random < .001 < .001 < .001 < .001

ACO 0.015 0.003 < .001 < .001

DFF 0.19 0.069 0.022 0.015

170

when compared to FF, FFD, Random and ACO container placement algo-

rithms with a P value of < 0.001, < .001, < .001 and < .001 respectively

in heterogeneous environment as shown in table 6.2.

DFFLSM showed a significant difference of overall SLA violations when

compared to FF, FFD, Random, ACO and DFF container placement al-

gorithms with a P value of < .001, < .001, < .001, < .001 and 0.015

respectively in heterogeneous environment as shown in table 6.2.

6.1.2 Container Consolidation in Cloud Data Center

Table 6.3 shows the Tukey multiple comparisons of mean difference for

energy consumption and SLA violations in homogenous data center for

different container consolidation algorithms with MU as container selection

algorithm.

Table 6.4 shows the Tukey multiple comparisons of mean difference for

energy consumption and SLA violations in homogenous data center for dif-

ferent container consolidation algorithms with MCor as container selection

algorithm.

Table 6.5 shows the Tukey multiple comparisons of significance values

for energy consumption and SLA violations in homogenous data center for

different container consolidation algorithms with MU as container selection

algorithm.

Table 6.6 shows the Tukey multiple comparisons of significance values

for energy consumption and SLA violations in homogenous data center

for different container consolidation algorithms with MCor as container

selection algorithm.

EEFFO showed a significant difference of average energy consumption

for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of < .001, 0.001, 0.235, 0.01

and 0.862 respectively in homogenous environment for MU Container Se-

lection and OL threshold changing as shown in table 6.5.

EEFFO showed a significant difference of average energy consumption

for container consolidation algorithms when compared to RHS, FFHS,

171

Table 6.3: Tukey multiple comparisons of mean difference for energy consumption and
SLA violations in homogenous data center for different container consolidation algo-
rithms with MU as container selection algorithm

Tukey
HSD

Energy
Consump-
tion (MU,
OL Chang-
ing)

Energy
Con-
sumption
(MU, UL
Chang-
ing)

SLA vi-
olations
(MU, OL
Chang-
ing)

SLA vi-
olations
(MU,
UL
Chang-
ing)

(I) VAR00001 (J) VAR00001 Mean Diff. Mean Diff. Mean Diff. Mean Diff.

RHS FFHS 14478.92 -8485.07 -0.02 -0.01

CorHS 54449.2 54543.48 0.02 0.02

LFHS 33872.94 37766.31 -0.02 -0.02

EEACO 64353.1 75420.68 0.03 0.04

EEFFO 71839.18 108813.91 0.05 0.05

FFHS RHS -14478.92 8485.07 0.02 0.01

CorHS 39970.29 63028.56 0.03 0.02

LFHS 19394.03 46251.38 -0.01 -0.02

EEACO 49874.19 83905.75 0.05 0.04

EEFFO 57360.26 117298.98 0.06 0.06

CorHS RHS -54449.2 -54543.48 -0.02 -0.02

FFHS -39970.29 -63028.56 -0.03 -0.02

LFHS -20576.26 -16777.18 -0.04 -0.04

EEACO 9903.9 20877.2 0.02 0.02

EEFFO 17389.98 54270.42 0.03 0.04

LFHS RHS -33872.94 -37766.31 0.02 0.02

FFHS -19394.03 -46251.38 0.01 0.02

CorHS 20576.26 16777.18 0.04 0.04

EEACO 30480.16 37654.37 0.05 0.06

EEFFO 37966.24 71047.6 0.07 0.07

EEACO RHS -64353.1 -75420.68 -0.03 -0.04

FFHS -49874.19 -83905.75 -0.05 -0.04

CorHS -9903.9 -20877.2 -0.02 -0.02

LFHS -30480.16 -37654.37 -0.05 -0.06

EEFFO 7486.08 33393.23 0.02 0.02

EEFFO RHS -71839.18 -108813.91 -0.05 -0.05

FFHS -57360.26 -117298.98 -0.06 -0.06

CorHS -17389.98 -54270.42 -0.03 -0.04

LFHS -37966.24 -71047.6 -0.07 -0.07

EEACO -7486.08 -33393.23 -0.02 -0.02

172

Table 6.4: Tukey multiple comparisons of mean difference for energy consumption and
SLA violations in data center for different container consolidation algorithms with MCor
as container selection algorithm

Multiple comparisons for Container Consolidation Algorithms in Homogenous Environment

Tukey
HSD

Energy
Con-
sumption
(MCor,OL
Changing)

Energy
Consump-
tion on
(MC-
sor, UL
Changing)

SLA vi-
olations
(MCor,
OL
Chang-
ing)

SLA vi-
olations
(MCor,
UL Chang-
ing)

(I) VAR00001 (J) VAR00001 Mean Diff. Mean Diff. Mean Diff. Mean Diff.

RHS FFHS 9861.22 -8336.45 -0.02 -0.01

CorHS 52336.86 54681.77 0.02 0.02

LFHS 29341.34 37989.76 -0.02 -0.02

EEACO 62031.01 75563.52 0.03 0.04

EEFFO 71349.91 108192.68 0.05 0.05

FFHS RHS -9861.22 8336.45 0.02 0.01

CorHS 42475.64 63018.21 0.03 0.03

LFHS 19480.12 46326.2 -0.01 -0.01

EEACO 52169.8 83899.97 0.04 0.05

EEFFO 61488.69 116529.12 0.06 0.06

CorHS RHS -52336.86 -54681.77 -0.02 -0.02

FFHS -42475.64 -63018.21 -0.03 -0.03

LFHS -22995.52 -16692.01 -0.04 -0.04

EEACO 9694.15 20881.75 0.01 0.02

EEFFO 19013.05 53510.91 0.03 0.03

LFHS RHS -29341.34 -37989.76 0.02 0.02

FFHS -19480.12 -46326.2 0.01 0.01

CorHS 22995.52 16692.01 0.04 0.04

EEACO 32689.67 37573.76 0.05 0.05

EEFFO 42008.57 70202.92 0.07 0.07

EEACO RHS -62031.01 -75563.52 -0.03 -0.04

FFHS -52169.8 -83899.97 -0.04 -0.05

CorHS -9694.15 -20881.75 -0.01 -0.02

LFHS -32689.67 -37573.76 -0.05 -0.05

EEFFO 9318.9 32629.16 0.02 0.02

EEFFO RHS -71349.91 -108192.68 -0.05 -0.05

FFHS -61488.69 -116529.12 -0.06 -0.06

CorHS -19013.05 -53510.91 -0.03 -0.03

LFHS -42008.57 -70202.92 -0.07 -0.07

EEACO -9318.9 -32629.16 -0.02 -0.02

173

Table 6.5: Tukey multiple comparisons of significance values for energy consumption
and SLA violations in data center for different container consolidation algorithms with
MU as container selection algorithm

Tukey
HSD

Energy
Con-
sumption
(MU, OL
Chang-
ing)

Energy
Con-
sumption
(MU, UL
Chang-
ing)

SLA vi-
olations
(MU, OL
Changing)

SLA vi-
olations
(MU, UL
Chang-
ing)

(I)
VAR00001

(J)
VAR00001

Sig. Sig. Sig. Sig.

RHS FFHS 0.374 0.965 0.147 0.902

CorHS 0.002 0.02 0.147 0.147

LFHS 0.018 0.096 0.049 0.049

EEACO < .001 0.004 0.007 0.003

EEFFO < .001 < .001 < .001 < .001

FFHS RHS 0.374 0.965 0.147 0.902

CorHS 0.008 0.01 0.007 0.049

LFHS 0.168 0.042 0.902 0.147

EEACO 0.002 0.002 < .001 0.002

EEFFO 0.001 < .001 < .001 < .001

CorHS RHS 0.002 0.02 0.147 0.147

FFHS 0.008 0.01 0.007 0.049

LFHS 0.138 0.676 0.003 0.003

EEACO 0.693 0.493 0.147 0.049

EEFFO 0.235 0.02 0.007 0.003

LFHS RHS 0.018 0.096 0.049 0.049

FFHS 0.168 0.042 0.902 0.147

CorHS 0.138 0.676 0.003 0.003

EEACO 0.029 0.097 < .001 < .001

EEFFO 0.01 0.005 < .001 < .001

EEACO RHS < .001 0.004 0.007 0.003

FFHS 0.002 0.002 < .001 0.002

CorHS 0.693 0.493 0.147 0.049

LFHS 0.029 0.097 < .001 < .001

EEFFO 0.862 0.148 0.147 0.147

EEFFO RHS < .001 < .001 < .001 < .001

FFHS 0.001 < .001 < .001 < .001

CorHS 0.235 0.02 0.007 0.003

LFHS 0.01 0.005 < .001 < .001

EEACO 0.862 0.148 0.147 0.147

174

Table 6.6: Tukey multiple comparisons of significance values for energy consumption
and SLA violations in data center for different container consolidation algorithms with
MCor as container selection algorithm

Tukey
HSD

Energy
Con-
sumption
(MCor,
OL
Chang-
ing)

Energy
Con-
sumption
(MCor,
UL
Chang-
ing)

SLA vi-
olations
(MCor,
OL
Chang-
ing)

SLA vi-
olations
(MCor,
UL
Chang-
ing)

(I)
VAR00001

(J)
VAR00001

Sig. Sig. Sig. Sig.

RHS FFHS 0.918 0.967 0.069 0.559

CorHS 0.017 0.019 0.069 0.087

LFHS 0.178 0.092 0.02 0.23

EEACO 0.007 0.004 0.007 0.007

EEFFO 0.004 < .001 < .001 0.001

FFHS RHS 0.918 0.967 0.069 0.559

CorHS 0.044 0.01 0.003 0.015

LFHS 0.489 0.041 0.812 0.942

EEACO 0.017 0.002 < .001 0.002

EEFFO 0.008 < .001 < .001 < .001

CorHS RHS 0.017 0.019 0.069 0.087

FFHS 0.044 0.01 0.003 0.015

LFHS 0.347 0.677 0.001 0.007

EEACO 0.923 0.489 0.271 0.23

EEFFO 0.51 0.021 0.003 0.015

LFHS RHS 0.178 0.092 0.02 0.23

FFHS 0.489 0.041 0.812 0.942

CorHS 0.347 0.677 0.001 0.007

EEACO 0.124 0.096 < .001 0.001

EEFFO 0.046 0.006 < .001 < .001

EEACO RHS 0.007 0.004 0.007 0.007

FFHS 0.017 0.002 < .001 0.002

CorHS 0.923 0.489 0.271 0.23

LFHS 0.124 0.096 < .001 0.001

EEFFO 0.934 0.158 0.02 0.23

EEFFO RHS 0.004 < .001 < .001 0.001

FFHS 0.008 < .001 < .001 < .001

CorHS 0.51 0.021 0.003 0.015

LFHS 0.046 0.006 < .001 < .001

EEACO 0.934 0.158 0.02 0.23

175

CorHS, LFHS and EEACO with a P value of < .001, < .001, 0.02, 0.005

and 0.148 respectively in homogenous environment for MU Container Se-

lection and UL threshold changing as shown in table 6.5.

EEFFO showed a significant difference of average overall SLA viola-

tions for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of < .001, < .001, 0.007, <

.001 and 0.147 respectively in homogenous environment for MU Con-

tainer Selection and OL threshold changing as shown in table 6.5.

EEFFO showed a significant difference of average overall SLA viola-

tions for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of < .001, < .001, 0.003, <

.001 and 0.147 in homogenous environment for MU Container Selection

and UL threshold changing as shown in table 6.5.

EEFFO showed a significant difference of average energy consumption

for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of 0.004, 0.008, 0.51, 0.046

and 0.934 respectively in homogenous environment for MCor Container

Selection and OL threshold changing as shown in table 6.6.

EEFFO showed a significant difference of average energy consumption

for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of < .001, < .001, 0.021, 0.006

and 0.158 respectively in homogenous environment for MCor Container

Selection and UL threshold changing as shown in table 6.6.

EEFFO showed a significant difference of average overall SLA viola-

tions for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of < .001, < .001, 0.003, <

.001 and 0.02 respectively in homogenous environment for MCor Con-

tainer Selection and OL threshold changing as shown in table 6.6.

EEFFO showed a significant difference of average overall SLA viola-

tions for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of 0.001, < .001, 0.015, < .001

and 0.23 in homogenous environment for MU Container Selection and UL

threshold changing as shown in table 6.6.

176

Table 6.7 shows the Tukey multiple comparisons of mean difference for

energy consumption and SLA violations in heterogenous data center for

different container consolidation algorithms with MU as container selection

algorithm.

Table 6.8 shows the Tukey multiple comparisons of mean difference for

energy consumption and SLA violations in heterogenous data center for dif-

ferent container consolidation algorithms with MCor as container selection

algorithm.

Table 6.9 shows the Tukey multiple comparisons of significance values

for energy consumption and SLA violations in heterogeneous data center for

different container consolidation algorithms with MU as container selection

algorithm.

Table 6.10 shows the Tukey multiple comparisons of significance values

for energy consumption and SLA violations in heterogeneous data center

for different container consolidation algorithms with MCor as container

selection algorithm.

EEFFO showed a significant difference of average energy consumption

for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of < .001, < .001, < .001, <

.001 and < .001 respectively in heterogeneous environment for MU

Container Selection and OL threshold changing as shown in table 6.9.

EEFFO showed a significant difference of average energy consumption

for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of 0.001, 0.016, 0.004, 0.004

and 0.382 respectively in heterogeneous environment for MU Container

Selection and UL threshold changing as shown in table 6.9.

EEFFO showed a significant difference of average overall SLA viola-

tions for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of 0.002, < .001, 0.007, < .001

and0.147 respectively in heterogeneous environment for MU Container Se-

lection and OL threshold changing as shown in table 6.9.

EEFFO showed a significant difference of average overall SLA viola-

177

Table 6.7: Tukey multiple comparisons of mean difference for energy consumption and
SLA violations in heterogeneous data center for different container consolidation algo-
rithm with MU as container selection algorithm

Tukey
HSD

Energy
Con-
sumption
(MU, OL
Chang-
ing)

Energy
Con-
sumption
(MU, UL
Chang-
ing)

SLA vi-
olations
(MU,
OL
Chang-
ing)

SLA vi-
olations
(MU,
UL
Chang-
ing)

(I) VAR00001 (J) VAR00001 Mean Diff. Mean Diff. Mean Diff. Mean Diff.

RHS FFHS 28902.64 21403.43 -0.02 -0.01

CorHS 17795.55 10889.48 0.01 0.02

LFHS 9952.66 10859.34 -0.03 -0.02

EEACO 35717.6 42358.95 0.03 0.04

EEFFO 55845.27 57258.99 0.04 0.05

FFHS RHS -28902.64 -21403.43 0.02 0.01

CorHS -11107.09 -10513.95 0.03 0.03

LFHS -18949.99 -10544.09 -0.01 -0.01

EEACO 6814.96 20955.52 0.04 0.05

EEFFO 26942.63 35855.56 0.06 0.06

CorHS RHS -17795.55 -10889.48 -0.01 -0.02

FFHS 11107.09 10513.95 -0.03 -0.03

LFHS -7842.9 -30.15 -0.04 -0.04

EEACO 17922.05 31469.47 0.02 0.02

EEFFO 38049.72 46369.51 0.03 0.03

LFHS RHS -9952.66 -10859.34 0.03 0.02

FFHS 18949.99 10544.09 0.01 0.01

CorHS 7842.9 30.15 0.04 0.04

EEACO 25764.94 31499.62 0.05 0.06

EEFFO 45892.61 46399.65 0.07 0.07

EEACO RHS -35717.6 -42358.95 -0.03 -0.04

FFHS -6814.96 -20955.52 -0.04 -0.05

CorHS -17922.05 -31469.47 -0.02 -0.02

LFHS -25764.94 -31499.62 -0.05 -0.06

EEFFO 20127.67 14900.04 0.02 0.01

EEFFO RHS -55845.27 -57258.99 -0.04 -0.05

FFHS -26942.63 -35855.56 -0.06 -0.06

CorHS -38049.72 -46369.51 -0.03 -0.03

LFHS -45892.61 -46399.65 -0.07 -0.07

EEACO -20127.67 -14900.04 -0.02 -0.01

178

Table 6.8: Tukey multiple comparisons of mean difference for energy consumption and
SLA violations in heterogeneous data center for different container consolidation algo-
rithm with MCor as container selection algorithm

Tukey
HSD

Energy Con-
sumption
(MCor,OL
Changing)

Energy
Consump-
tion (MCor,
UL Chang-
ing)

SLA vi-
olations
(MCor, OL
Changing)

SLA vi-
olations
(MCor,
UL Chang-
ing)

(I) VAR00001 (J) VAR00001 Mean Diff. Mean Diff. Mean Diff. Mean Diff.

RHS FFHS 25700.72 21409.68 0 -0.01

CorHS 14545.28 10790.26 0.02 0.02

LFHS 7873.92 10854.74 -0.02 -0.02

EEACO 33635.87 42347.34 0.04 0.04

EEFFO 54196.78 57187.16 0.06 0.05

FFHS RHS -25700.72 -21409.68 0 0.01

CorHS -11155.43 -10619.42 0.02 0.03

LFHS -17826.8 -10554.94 -0.02 -0.01

EEACO 7935.16 20937.66 0.04 0.04

EEFFO 28496.06 35777.49 0.06 0.06

CorHS RHS -14545.28 -10790.26 -0.02 -0.02

FFHS 11155.43 10619.42 -0.02 -0.03

LFHS -6671.36 64.48 -0.04 -0.04

EEACO 19090.59 31557.08 0.02 0.02

EEFFO 39651.49 46396.9 0.04 0.03

LFHS RHS -7873.92 -10854.74 0.02 0.02

FFHS 17826.8 10554.94 0.02 0.01

CorHS 6671.36 -64.48 0.04 0.04

EEACO 25761.95 31492.6 0.06 0.05

EEFFO 46322.85 46332.42 0.07 0.07

EEACO RHS -33635.87 -42347.34 -0.04 -0.04

FFHS -7935.16 -20937.66 -0.04 -0.04

CorHS -19090.59 -31557.08 -0.02 -0.02

LFHS -25761.95 -31492.6 -0.06 -0.05

EEFFO 20560.9 14839.82 0.02 0.02

EEFFO RHS -54196.78 -57187.16 -0.06 -0.05

FFHS -28496.06 -35777.49 -0.06 -0.06

CorHS -39651.49 -46396.9 -0.04 -0.03

LFHS -46322.85 -46332.42 -0.07 -0.07

EEACO -20560.9 -14839.82 -0.02 -0.02

179

Table 6.9: Tukey multiple comparisons of significance values for energy consumption
and SLA violations in heterogeneous data center for different container consolidation
algorithm with MU as container selection algorithm

Tukey
HSD

Energy
Con-
sumption
(MU, OL
Changing)

Energy
Con-
sumption
(MU, UL
Changing)

SLA vi-
olations
(MU, OL
Chang-
ing)

SLA vi-
olations
(MU, UL
Chang-
ing)

(I)
VAR00001

(J)
VAR00001

Sig. Sig. Sig. Sig.

RHS FFHS < .001 0.138 0.147 0.434

CorHS < .001 0.65 0.434 0.147

LFHS 0.013 0.652 0.018 0.049

EEACO < .001 0.007 0.018 0.003

EEFFO < .001 0.001 0.002 < .001

FFHS RHS < .001 0.138 0.147 0.434

CorHS 0.008 0.677 0.018 0.018

LFHS < .001 0.675 0.434 0.434

EEACO 0.071 0.148 0.002 < .001

EEFFO < .001 0.016 < .001 < .001

CorHS RHS < .001 0.65 0.434 0.147

FFHS 0.008 0.677 0.018 0.018

LFHS 0.039 1 0.003 0.003

EEACO < .001 0.03 0.147 0.049

EEFFO < .001 0.004 0.007 0.007

LFHS RHS 0.013 0.652 0.018 0.049

FFHS < .001 0.675 0.434 0.434

CorHS 0.039 1 0.003 0.003

EEACO < .001 0.029 < .001 < .001

EEFFO < .001 0.004 < .001 < .001

EEACO RHS < .001 0.007 0.018 0.003

FFHS 0.071 0.148 0.002 < .001

CorHS < .001 0.03 0.147 0.049

LFHS < .001 0.029 < .001 < .001

EEFFO < .001 0.382 0.147 0.434

EEFFO RHS < .001 0.001 0.002 < .001

FFHS < .001 0.016 < .001 < .001

CorHS < .001 0.004 0.007 0.007

LFHS < .001 0.004 < .001 < .001

EEACO < .001 0.382 0.147 0.434

180

Table 6.10: Tukey multiple comparisons of significance values for energy consumption
and SLA violations in heterogeneous data center for different container consolidation
algorithm with MCor as container selection algorithm

Tukey
HSD

Energy
Con-
sumption
(MCor,OL
Changing)

Energy
Con-
sumption
(MCor,
UL Chang-
ing)

SLA vi-
olations
(MCor,
OL
Chang-
ing)

SLA vi-
olations
(MCor,
UL
Chang-
ing)

(I)
VAR00001

(J)
VAR00001

Sig. Sig. Sig. Sig.

RHS FFHS 0.428 0.138 1 0.902

CorHS 0.849 0.657 0.087 0.049

LFHS 0.985 0.652 0.23 0.147

EEACO 0.22 0.007 0.003 0.003

EEFFO 0.038 0.001 < .001 < .001

FFHS RHS 0.428 0.138 1 0.902

CorHS 0.94 0.67 0.087 0.018

LFHS 0.729 0.674 0.23 0.434

EEACO 0.985 0.149 0.003 0.002

EEFFO 0.341 0.016 < .001 < .001

CorHS RHS 0.849 0.657 0.087 0.049

FFHS 0.94 0.67 0.087 0.018

LFHS 0.993 1 0.007 0.003

EEACO 0.679 0.029 0.087 0.147

EEFFO 0.13 0.004 0.007 0.007

LFHS RHS 0.985 0.652 0.23 0.147

FFHS 0.729 0.674 0.23 0.434

CorHS 0.993 1 0.007 0.003

EEACO 0.426 0.029 < .001 < .001

EEFFO 0.073 0.004 < .001 < .001

EEACO RHS 0.22 0.007 0.003 0.003

FFHS 0.985 0.149 0.003 0.002

CorHS 0.679 0.029 0.087 0.147

LFHS 0.426 0.029 < .001 < .001

EEFFO 0.62 0.386 0.23 0.147

EEFFO RHS 0.038 0.001 < .001 < .001

FFHS 0.341 0.016 < .001 < .001

CorHS 0.13 0.004 0.007 0.007

LFHS 0.073 0.004 < .001 < .001

EEACO 0.62 0.386 0.23 0.147

181

tions for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of < .001, < .001, 0.007, <

.001 and 0.434 in heterogeneous environment for MU Container Selec-

tion and UL threshold changing as shown in table 6.9.

EEFFO showed a significant difference of average energy consumption

for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of 0.038, 0.341, 0.13, 0.073

and 0.62 respectively in heterogeneous environment for MCor Container

Selection and OL threshold changing as shown in table 6.10.

EEFFO showed a significant difference of average energy consumption

for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of 0.001, 0.016, 0.004, 0.004

and 0.386 respectively in heterogeneous environment for MCor Container

Selection and UL threshold changing as shown in table 6.10.

EEFFO showed a significant difference of average overall SLA viola-

tions for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of < .001, < .001, 0.007, <

.001 and 0.23 respectively in heterogeneous environment for MCor Con-

tainer Selection and OL threshold changing as shown in table 6.10.

EEFFO showed a significant difference of average overall SLA viola-

tions for container consolidation algorithms when compared to RHS, FFHS,

CorHS, LFHS and EEACO with a P value of < .001, < .001, 0.007, <

.001 and 0.147 in heterogeneous environment for MU Container Selec-

tion and UL threshold changing as shown in table 6.10.

6.2 Summary

In this chapter, a comprehensive statistical analysis of the proposed

algorithms was conducted using the Tukey HSD test. The results demon-

strated a significant difference between the performance of these algorithms

and the pre-existing ones. This analysis provides empirical evidence of the

effectiveness and superiority of the proposed algorithms in enhancing vari-

ous aspects of the data center’s operations and energy efficiency.

182

Chapter 7

Discussion

This chapter discusses the outcomes of a series of experiments conducted

to evaluate workload characterization and categorization, container place-

ment, and container consolidation algorithms. It sheds light on the effec-

tiveness of the proposed algorithms and their impact on optimizing data

center operations. The results provide valuable insights into the practical

application and performance of these algorithms in real-world scenarios.

7.1 Discussion

Cloud computing guarantees high throughput, adaptability, and cost-

effectiveness to address evolving processing necessities. As the quantity

of data continues to grow at an appalling rate, an increasing number of

firms are turning to data centers to make effective choices and achieve a

competitive edge. The cloud-computing model is used for a multitude of

applications. These applications range in their features and place varied

demands on the resources of Physical Machines (PMs). Database-based

applications (which do intense read and write activities on disk, for exam-

ple) have different needs than science-based computing programs (which

require substantial processing power from the CPU). To effectively config-

ure cloud resources, network managers must be able to characterize and

predict workload on VMs. Clustering the tasks into groups or clusters is

feasible based on the different demands of dissimilar tasks of cloud ap-

plications. The clustering process can identify characterizations that can

183

improve the efficiency of historical workload traces over a wide range of

critical performance parameters, such as increasing the utilization of PMs

hosted in cloud data centers.

The utilization and prominence of cloud computing as among the most

well-known internet-based inventions for supplying computational power

and infrastructural facilities to IT organizations for executing/hosting cloud

workloads is expanding every day and is anticipated to expand even further.

Consumers upload heterogeneous cloud workloads to the cloud through in-

ternet services, banking applications, online payment processing assistance,

portable computing assistance, and graphics-based services, with varying

QoS parameters in the form of SLA. Workload of different types are clus-

tered using two different clustering techniques. After clustering is com-

pleted, the performance is examined to determine which clustering works

best.

� The majority of tasks (93.38 percent) when clustered by K Means al-

gorithm belonged to low resource utilization category (CPU, memory,

storage, space, and network bandwidth).

� GMM showed maximum 16.61 % of the tasks consumed CPU (very

Low), Disk (very Low), Network (very Low) and Memory (very high)

resources.

� The results demonstrated that K means outperforms GMM in both

Calinski Harabasz Index and the Davies-Bouldin Index.

� After clustering, classification is carried through utilizing several clas-

sification techniques. The decision tree showed the maximum accuracy

of 99.18%.

Compared to the existing study included in section 2.1, this work provided

an in depth explanation of different clustering and classification strategies

used for cloud data center workloads.

Containers is an OS-level virtualization approach that may be used on

VMs or on physical systems (PMs). Its major role is to offer an independent

system to run applications. Unlike a VM, which needs to run the whole OS,

184

a container can use the same operating system kernel as other containers.

Consequently, a container is deemed lightweight, using few resources and

requiring little set-up time. Container as a Service (CaaS) is rapidly being

used in the cloud to give end customers with more service alternatives,

such as Fargate by Amazon and Kubernetes by Google. Under the com-

monly used CaaS architecture, where containers can only be deployed on

VMs, finding a practical placement with an optimal energy usage remains

a difficulty. The container placement basically refers to allocating contain-

ers to VMs and VMs to appropriate computing nodes in order to fulfil

an intended objective under certain resource restrictions. CaaS is a rela-

tively new cloud service concept that is built on container virtualization,

has evolved to provide containers as services. CaaS addresses the issue of

applications created in a single PaaS context and whose implementation is

limited to the needs of that PaaS ecosystem. CaaS liberates the application

by removing constraints and removing it from the PaaS construction en-

vironment. Container-based programs are consequently transportable and

may run in any environment.

Simulating container placement and consolidation in a homogeneous

server environment, where servers have uniform capabilities, is essential

for evaluating basic placement strategies and their impact on resource uti-

lization and performance. However, real-world cloud data centers are char-

acterized by heterogeneous servers with diverse configurations. Introducing

simulation in a heterogeneous environment adds complexity, reflecting ac-

tual data centers and providing a realistic representation of challenges in

dynamic, mixed-capacity settings. Homogeneous simulations may oversim-

plify performance expectations, ignoring variability in server capabilities.

Heterogeneous simulations explore performance variations among servers,

requiring adaptive algorithms for load balancing and optimal resource uti-

lization. While basic placement and consolidation strategies work in homo-

geneous settings, their efficacy in optimizing resource utilization becomes

more challenging in heterogeneous environments. Simulating in such set-

tings assesses the adaptability of placement algorithms in dynamically al-

locating workloads to servers with varying capacities. Insights gained from

185

homogeneous simulations may not fully capture challenges in heterogeneous

environments, especially regarding scalability and varied scaling behaviors

across different servers. Simulating in the latter helps evaluate the impact

of scaling strategies on performance and resource usage. Exploring energy-

efficient strategies in homogeneous environments is a starting point, but

simulating in heterogeneous environments allows for a more comprehen-

sive examination, considering diverse servers with distinct power profiles

and efficiency characteristics, necessitating tailored strategies for optimal

energy utilization in container placement and consolidation.

The contributions of the container placement work done in order to

reduce energy consumption are as follows:

� An optimized meta-heuristic container placement algorithm, Discrete

Firefly with Local Search mechanism (DFFLSM) and without local

search mechanism (DFF) have been proposed and implemented for

container placement.

� DFF and DFFLSM algorithms are compared with the FF, FFD, Ran-

dom and ACO in terms of average energy consumption, average active

VM average active PM and average overall SLA violations.

� The investigation has been done for both homogenous and heteroge-

nous environments taking into account the workload traces of Planet-

Lab.

� The proposed algorithms were compared with pre-existing ones by

varying the thresholds of RAM of VMs.

� DFFLSM outperformed FF, FFD, Random, ACO and DFF in terms

of average energy efficiency by 9.32% and 40.85% in homogenous and

heterogenous environment respectively.

� DFFLSM outperformed FF, FFD, Random, ACO and DFF in terms

of average active VM by 36.07% and 33.48% in homogenous and het-

erogenous environment respectively.

� DFFLSM outperformed FF, FFD Random, ACO and DFF in terms

186

of average active PM by 18.30% and 21.89% in homogenous and het-

erogenous environment respectively.

� DFF outperformed FF, FFD, Random and ACO container placement

algorithms in terms of energy efficiency. It reduced energy consump-

tion of DC by and 6.62% and 34.06% in homogenous and heterogenous

environment respectively as compared to all other algorithms.

� DFF outperformed FF, FFD, Random and ACO in terms of average

active VM by 28.93% and 29.47% in homogenous and heterogenous

environment respectively.

� DFF also reduced the average PM used by 13.55% and 17.88% in

homogenous and heterogenous environment respectively as compared

to the pre-existing algorithms.

� DFFLSM and DFF reduced the overall average SLA violations as com-

pared to pre-existing container placement algorithms i.e. FF, FFD

Random, ACO for both homogenous and heterogenous environments.

� The experimentation results for checking the impact of different con-

tainer placement algorithms for different values of overbooking factor

showed that there is a significant increase of average active VMs and

PMs corresponding to a higher percentile of overbooking factor lead-

ing to high-energy consumption. However, the results of DFF and

DFFLSM show that these algorithms perform better in comparison to

pre-existing algorithms.

Server consolidation is advocated as an important energy-aware method

in cloud DCs in this direction. It is a key feature that is made possible

by virtualization technology, which includes live movement of VMs and

containers (S. S. Patra, 1 C.E.). To conserve energy, many virtual ma-

chines (VMs) and containers are densely packed into the smallest possible

number of physical machines (PMs), allowing idle hosts to be powered off

or switched to sleep mode. However, consolidation faces a challenge in

finding the right balance between efficiency and QoS. Hence, an effective

consolidation process must consider both SLAs and energy efficiency.

187

There are two forms of consolidation: static consolidation and dynamic

consolidation. In static consolidation, which involves the allocation of VMs

to PMs without migration, no VM movement occurs. Dynamic consolida-

tion, on the other hand, dynamically relocates VMs between PMs according

on their current resource utilisation. This process is repeated until the most

energy-efficient design with the fewest active PMs is obtained.

To offer QoS while minimising energy waste and better resource allo-

cation, cloud systems require resource management solutions. In order to

innovate and compare resource-managing techniques, review platforms that

ease experiment design while also making them reproducible and accurate

are required. Simulators are great tools for creating such an evaluation

environment on the cloud (Zhao et al., 2012). They are especially useful in

the early phases of research to discover and discard inefficient algorithm, or

when access to large scale distributed infrastructure is prohibitively expen-

sive. Testing and assessing resource management rules in a production en-

vironment during the initial verification step is both dangerous and costly.

In this regard, a variety of simulation tools for evaluating algorithms cre-

ated exclusively for CC settings are being developed. Regardless of the

fact that containers will be one of the key application deployment strate-

gies in the cloud, most simulations see virtualized cloud DCs as their base

(Beloglazov and Buyya, 2010).

The contributions of the container consolidation work done in order to

reduce energy consumption while maintaining QoS are as follows:

� Two energy aware metaheuristic algorithms, Energy Efficient Ant

Colony Optimization (EEACO) and Energy Efficient Firefly Opti-

mization (EEFFO) have been proposed and implemented for selection

of host in order to consolidate containers.

� The proposed host selection algorithms EEACO and EEFFO have

been compared with pre-existing algorithms in Cloudsim 4.0 in terms

of energy efficiency, average container migrations, average active VM

, average active PM and average overall SLA violations.

� The comparison of the aforementioned algorithms is done considering

two possibilities of Container Selection algorithms inbuilt in Cloudsim

188

4.0 i.e. Maximum Usage (MU) and Maximum Correlation (MCor).

� The comparison of the suggested algorithms is done considering dif-

ferent Overload and Underload host machine thresholds. The experi-

ments have been conducted to investigate the different possibilities.

� The investigation has been done for both homogenous and heteroge-

nous environments taking into account PlanetLab workload.

� The results showed that EEFFO outperformed all the pre-existing al-

gorithms and proposed EEACO in terms of average energy consumed.

In the case of homogenous environment, EEFFO reduced energy con-

sumption up to 8.34% as compared to the pre-existing algorithms like

RHS, FFHS, CorHS LFHS and proposed EEACO algorithm. Also, in

case of heterogenous environment, the EEFFO algorithm optimized

the energy efficiency data center by reducing the energy up to 9.38%

as compared to the pre-existing algorithms like RHS, FFHS, CorHS ,

LFHS and proposed EEACO algorithm.

� The results showed that EEFFO outperformed all the pre-existing al-

gorithms and proposed EEACO in terms of active VM used. In the

case of homogenous environment, EEFFO reduced the average active

VM by 9.19% as compared to the pre-existing algorithms like RHS,

FFHS, CorHS LFHS and proposed EEACO algorithm. In case of het-

erogenous environment, the EEFFO algorithm optimized the average

VM used by 13.85% as compared to the pre-existing algorithms like

RHS, FFHS, CorHS , LFHS and proposed EEACO algorithm.

� The results showed that EEFFO outperformed all the pre-existing al-

gorithms and proposed EEACO in terms of active PM used. In the

case of homogenous environment, the EEFFO reduced the average ac-

tive PM by 16.35% as compared to the pre-existing algorithms like

RHS, FFHS, CorHS, LFHS and proposed EEACO algorithm. In case

of heterogenous environment, the EEFFO algorithm optimized the av-

erage PM used by 11.65% as compared to the pre-existing algorithms

like RHS, FFHS, CorHS, LFHS and proposed EEACO algorithm.

189

� The proposed algorithms showed less number of SLA violations in

comparison to pre-existing algorithms. However, EEFFO outperformed

all other algorithms and showed least number of SLA breaches.

� The experimentation results of checking the impact of different con-

tainer consolidation / host selection algorithms for different values of

overbooking factor showed that there is a significant increase of av-

erage active VMs and PMs corresponding to a higher percentile of

overbooking factor leading to high-energy consumption. However, the

results of EEFFO and EEACO are better in comparison to pre-existing

algorithms.

190

Chapter 8

Conclusion and Future Work

This chapter delves into the future prospects of container placement and

consolidation in cloud data centers. Emerging trends and technologies are

explored, shedding light on the potential developments that could impact

the optimization of data center resources and energy efficiency. It offers a

glimpse into the evolving landscape of this field.

8.1 Conclusion and Future Work

The utilization and prominence of cloud computing as among the most

well-known internet-based inventions for supplying computational power

and infrastructural facilities to IT organizations for executing/hosting cloud

workloads is expanding every day and is anticipated to expand even further.

Consumers upload heterogeneous cloud workloads to the cloud through in-

ternet services, banking applications, online payment processing assistance,

portable computing assistance, and graphics-based services, with varying

QoS parameters in the form of SLA. Virtualization is a key innovation that

supports cloud computing and provides considerable benefits in reducing

server size. This method reduces cloud computing operating expenses while

making greater use of system services. VMs with distinct equipment and

application requirements can then be placed into a single or several hosts.

The Container Placement (CP) strategy of assigning containers to VMs and

VMs to PMs must appropriately organize the containers and VMs to make

the most use of the resources available. The primary goal of CP is to lower

191

the cloud data center’s energy usage. This, in return, reduces maintenance

expenses and benefits the environment. Moreover, limiting the number of

VMs that run container is a sub-goal for lowering operational expenditure,

which includes VM creation and transfer. Containerization is a technique

that configures physical components in a container and transfers programs

and their requirements across many OSs. Energy efficiency of DC is a sig-

nificant issue that has been a concern for researchers, cloud providers and

environmentalists as it increases CO2 emissions and hence affects global

warming. Having a DC consuming less energy not only increases Return

on Investment (ROI) for the providers but also impacts the environment in

a positive way. It improves resource utilization levels by maximizing energy

efficiency through optimal container and server consolidation. Container

consolidation has been proposed as a means of adjusting the allotment of

containers and cloud servers in order to enable load balancing. Even though

containers have less overhead than VMs, the cost should not be overlooked

when performing the migration. Frequent container migration results in

significant expenditures when transferring containers across servers. As a

result, while delivering CaaS, there is a compromise between expense of

migration and load balancing and hence energy efficiency.

The importance of classifying and describing workloads in cloud data

centers is examined in research. Workload of different types are clustered

using two different clustering techniques. Workload distribution is accom-

plished by combining distinct workload pairings in both clustering modes.

After clustering is completed, the performance is examined to determine

which clustering works best. The majority of tasks according to K Means

algorithm (93.38%) have low resource utilization (CPU, memory, storage

space, and network bandwidth). Short administrative tasks and applica-

tion enquiries make up these virtual machines. GMM shows maximum

16.61 percent of the tasks consume CPU (very Low), Disk (very Low),

Network (very Low) and Memory (very high) resources. However, the re-

sults demonstrate that K means beats in both Calinski Harabasz Index and

the Davies-Bouldin Index. After clustering, classification is carried through

utilizing several classification techniques. The decision tree shows the max-

192

imum accuracy of 99.18 %. The suggested DFFLSM container placement

algorithm surpasses current algorithms such as FF, FFD, ACO, and DFF

and optimizes data center energy usage. When compared to all other meth-

ods, it reduces average DC energy usage by 9.32% and 40.85% in homo-

geneous and heterogeneous environments, respectively. It also decreases

the average active PM in homogeneous and heterogeneous environments

by 18.30% and 21.89%, respectively, when compared to pre-existing and

suggested methods. In terms of energy efficiency, DFF surpasses FF, FFD,

Random, and ACO container placement algorithms. When compared to

all other methods, it reduces DC energy usage by 6.62% and 34.06% in ho-

mogeneous and heterogeneous environments, respectively. It also decreases

the average active PM in homogeneous and heterogeneous environments

by 13.55% and 17.88%, respectively, when compared to pre-existing and

suggested methods. In container consolidation, the proposed algorithm

EEFFO reduces energy consumption of data center by 8.34% and 9.38%

in homogenous and heterogenous environment respectively as compared to

all other algorithms. It also reduces the average PM used by 16.35% and

11.65% in homogenous and heterogenous environment respectively as com-

pared to the pre-existing algorithms and proposed algorithms. The number

of overall SLA violations for EEFFO and EEACO is less in comparison to

pre-existing algorithms, thus improving QoS also.

8.2 Limitations and Future Work

There is a new sort of container known as an application container, which

is dedicated to a single process that executes the resident programme. Ap-

plication containers are considered a groundbreaking development in the

era of cloud computing. They are valued for their lightweight nature, ease

of construction and management, and the potential to substantially reduce

startup times. These containers serve as the cornerstone of modern Plat-

form as a Service (PaaS) offerings. In this research there a few issues in this

field, for reducing energy consumption in cloud data centre by determin-

ing effective VM sizes for container placement and container consolidation

193

techniques.

In future research, potential areas of investigation could include:

� Investigating the performance of intrusion phenomenon in the con-

tainer placement procedure, since this type of placement not only

tries to minimize energy usage but also the interference issues. Con-

tainer interference problems encompass difficulties and clashes that

may emerge when numerous containers utilize the same foundational

infrastructure or resources within a containerized environment, like

Docker or Kubernetes. These challenges frequently result from re-

source competition, dependency conflicts, or configuration issues, and

they have the potential to adversely affect the effectiveness, consis-

tency, and dependability of applications operating within containers.

� The consolidation algorithms can be enhanced to take into account

container communications. Accessing the networking at the container

level, on the other hand, raises the complexity of the techniques since

the amount of containers in a cloud data centre exceeds the number

of VMs. Containers are often more numerous than virtual computers.

The identification of underload and overload PMs necessitates the use

of migration of containers as well as virtual machines.

194

Chapter 9

References

9.1 References

Abdelbaky, M., Diaz-Montes, J., Parashar, M., Unuvar, M., and Stein-

der, M. (2015). Docker Containers across Multiple Clouds and Data Cen-

ters. Proceedings - 2015 IEEE/ACM 8th International Conference on Util-

ity and Cloud Computing, UCC 2015, 368–371.

Abts, D., Marty, M. R., Wells, P. M., Klausler, P. and Liu, H.: Energy

proportional datacenter networks. Proceedings - International Symposium

on Computer Architecture. 338–347 (2010) doi:10.1145/1815961.1816004

Affetti, L., Bresciani, G., and Guinea, S. (2015). aDock: a cloud infras-

tructure experimentation environment based on open stack and docker. In

roceedings of the 8th IEEE International Conference on Cloud Computing

(pp. 203–210).

Ahn, J. and Park, H. S.: Measurement and modeling the power consump-

tion of router interface. International Conference on Advanced Communi-

cation Technology. 860–863 (2014) doi:10.1109/ICACT.2014.6779082

Akindele, T., Tan, B., Mei, Y., and Ma, H. (2022). Hybrid Grouping Ge-

netic Algorithm for Large-Scale Two-Level Resource Allocation of Contain-

ers in the Cloud. Lecture Notes in Computer Science (Including Subseries

195

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics), 13151 LNAI, 519–530.

alibaba/clusterdata: cluster data collected from production clusters in Al-

ibaba for cluster management research. (n.d.). Retrieved March 17, 2022.

Ali-Eldin, A., Rezaie, A., Mehta, A., Razroev, S., Luna, S. S. de, Seleznjev,

O., Tordsson, J., and Elmroth, E. (2014). How will your workload look like

in 6 years? Analyzing Wikimedia’s workload. Proceedings - 2014 IEEE

International Conference on Cloud Engineering, IC2E 2014, 349–354.

https://doi.org/10.1109/IC2E.2014.50.

Al-Moalmi, A., Luo, J., Salah, A., Li, K., and Yin, L. (2021). A whale

optimization system for energy-efficient container placement in data cen-

ters. Expert Systems with Applications, 164, 113719.

Ammar, A. M., Luo, J., Tang, Z., and Wajdy, O. (2019). Intra-Balance

Virtual Machine Placement for Effective Reduction in Energy Consump-

tion and SLA Violation. IEEE Access, 7, 72387–72402.

https://doi.org/10.1109/ACCESS.2019.2920010.

Andrae, A. (2019). Comparison of Several Simplistic High-Level Approaches

for Estimating the Global Energy and Electricity Use of ICT Networks and

Data Centers. International Journal of Green Technology, 5(1), 50–63.

https://doi.org/10.30634/2414-2077.2019.05.06.

Andrae, A., and Edler, T. (2015). On Global Electricity Usage of Commu-

nication Technology: Trends to 2030. Challenges, 6(1), 117–157.

Anselmi, J., Amaldi, E., and Cremonesi, P. (2008, September). Service

consolidation with end-to-end response time constraints. In 2008 34th Eu-

romicro Conference Software Engineering and Advanced Applications (pp.

345-352). IEEE.

196

Attia, K. M., El-Hosseini, M. A. and Ali, H. A.: Dynamic power manage-

ment techniques in multi-core architectures: A survey study. Ain Shams

Engineering Journal. 8, 445–456 (2017).

Avram, M. G. (2014). Advantages and Challenges of Adopting Cloud Com-

puting from an Enterprise Perspective. Procedia Technology, 12, 529–534.

Balaji, K., Sai Kiran, P., and Sunil Kumar, M. (2023). Power aware virtual

machine placement in IaaS cloud using discrete firefly algorithm. Applied

Nanoscience (Switzerland), 13(3), 2003–2011.

https://doi.org/10.1007/S13204-021-02337-X/METRICS.

Barrett, D., and Kipper, G. (2010). How Virtualization Happens. Virtu-

alization and Forensics, 3–24. https://doi.org/10.1016/B978-1-59749-557-

8.00001-1.

Bazzi, H., Harb, A., Aziza, H. and Moreau, M.: Design of Hybrid CMOS

Non-Volatile SRAM Cells in 130nm RRAM Technology. Proceedings of

the International Conference on Microelectronics. 228–231 (2018)

Beloglazov, A., and Buyya, R. (2010). Energy efficient resource manage-

ment in virtualized cloud data centers. CCGrid 2010 - 10th IEEE/ACM

International Conference on Cluster, Cloud, and Grid Computing, 826–831.

Beloglazov, A., and Buyya, R. (2012). Optimal online deterministic al-

gorithms and adaptive heuristics for energy and performance efficient dy-

namic consolidation of virtual machines in Cloud data centers. Concur-

rency and Computation: Practice and Experience, 24(13), 1397–1420.

Birke, R., Chen, L. Y., and Smirni, E. (2014). Multi-resource characteri-

zation and their (in)dependencies in production datacenters. IEEE/IFIP

NOMS 2014 - IEEE/IFIP Network Operations and Management Sympo-

197

sium: Management in a Software Defined World.

Blankstein, A. et al.: Hyperbolic Caching: Flexible Caching for Web Ap-

plications. Proceedings of the 2017 USENIX Annual Technical Conference

(2017)

Bose, R., Roy, S., Mondal, H., Chowdhury, D. R., and Chakraborty, S.

(2021). Energy-efficient approach to lower the carbon emissions of data

centers. Computing, 103(8), 1703–1721. https://doi.org/10.1007/S00607-

020-00889-4/METRICS.

Bouaouda, A., Afdel, K., and Abounacer, R. (2022). Forecasting the En-

ergy Consumption of Cloud Data Centers Based on Container Placement

with Ant Colony Optimization and Bin Packing. 5th Conference on Cloud

and Internet of Things, CIoT 2022, 150–157.

Bouaouda, A., Afdel, K., and Abounacer, R. (2023). Meta-heuristic and

Heuristic Algorithms for Forecasting Workload Placement and Energy Con-

sumption in Cloud Data Centers. Advances in Science, Technology and En-

gineering Systems Journal, 8(1), 1–11. https://doi.org/10.25046/AJ080101.

Boukadi, K., Grati, R., Rekik, M., and Abdallah, H. ben. (2017). From

VM to container: A linear program for outsourcing a business process to

cloud containers. Lecture Notes in Computer Science (Including Subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics), 10573 LNCS, 488–504.

Caglar, F., Shekhar, S., and Gokhale, A. (2013). A performance Interference-

aware virtual machine placement strategy for supporting soft realtime ap-

plications in the cloud. Institute for Software Integrated Systems, Vander-

bilt University, Nashville, TN, USA, Tech. Rep. ISIS-13-105.

Calzarossa, M., and Serazzi, G. (1993). Workload characterization: A

198

survey. Proceedings of the IEEE, 81(8), 1136-1150.

Campbell, S., and Jeronimo, M. (2006). An introduction to virtualiza-

tion. Published in “Applied Virtualization”, Intel, 1-15.

Carla, C., MassariLuisa, and TesseraDaniele. (2016). Workload Char-

acterization. ACM Computing Surveys (CSUR), 2, 759–770.

Carroll, M., van der Merwe, A., and Kotzé, P. (2011). Secure cloud com-

puting: Benefits, risks and controls. 2011 Information Security for South

Africa - Proceedings of the ISSA 2011 Conference.

Carvalho, C. A. B. de, Andrade, R. M. de C., Castro, M. F. de, Coutinho,

E. F., and Agoulmine, N. (2017). State of the art and challenges of secu-

rity SLA for cloud computing. Computers and Electrical Engineering, 59,

141–152. https://doi.org/10.1016/J.COMPELECENG.2016.12.030

Characterizing Application Workloads on CPU Utilization for Utility Com-

puting. (n.d.). Retrieved March 17, 2022,

from https://www.hpl.hp.com/techreports/2004/HPL-2004-157.

Charles Reiss, Alexey Tumanov, Alexey Tumanov, Gregory R Ganger, and

Randy H Katz. (2012). Towards Understanding Heterogeneous Clouds at

Scale: Google Trace Analysis.

Chen, C., He, K., and Guan, Q. (2018). Minimum migration time selection

algorithm for container consolidation. 2018 IEEE International Conference

on Information and Automation, ICIA 2018, 1664–1668.

Chen, F., Zhou, X., and Shi, C. (2019, April). The container deploy-

ment strategy based on stable matching. In 2019 IEEE 4th International

Conference on Cloud Computing and Big Data Analysis (ICCCBDA) (pp.

215-221). IEEE.

199

Chen, L., Dai, W. and Qiu, M.: A Greedy Approach for Caching in Dis-

tributed Data Stores. Proceedings - 2nd IEEE International Conference on

Smart Cloud. 244–249 (2017) doi:10.1109/SmartCloud.2017.46

Chen, M., Zhang, H., Su, Y. Y., Wang, X., Jiang, G., and Yoshihira,

K. (2011, May). Effective VM sizing in virtualized data centers. In 12th

IFIP/IEEE International Symposium on Integrated Network Management

(IM 2011) and Workshops (pp. 594-601). IEEE.

Chen, Y.-L., Chang, M.-F., Yu, C.-W., Chen, X.-Z. and Liang, W.-Y.:

Learning-Directed Dynamic Voltage and Frequency Scaling Scheme with

Adjustable Performance for Single-Core and Multi-Core Embedded and

Mobile Systems. Sensors. 18, 3068 (2018).

Cheng, Y., Chai, Z., and Anwar, A. (2018). Characterizing co-located

datacenter workloads: An alibaba case study. Proceedings of the 9th Asia-

Pacific Workshop on Systems, APSys 2018.

Chhikara, P., Tekchandani, R., Kumar, N., and Obaidat, M. S. (2021). An

Efficient Container Management Scheme for Resource-Constrained Intelli-

gent IoT Devices. IEEE Internet of Things Journal, 8(16), 12597–12609.

Corradi, A., Fanelli, M., and Foschini, L. (2014). VM consolidation: A

real case based on OpenStack Cloud. Future Generation Computer Sys-

tems, 32(1), 118–127. https://doi.org/10.1016/J.FUTURE.2012.05.012.

Cuadrado-Cordero, I., Orgerie, A. C., and Menaud, J. M. (2017). Compar-

ative experimental analysis of the quality-of-service and energy-efficiency of

VMs and containers’ consolidation for cloud applications. 2017 25th Inter-

national Conference on Software, Telecommunications and Computer Net-

works, SoftCOM 2017. https://doi.org/10.23919/SOFTCOM.2017.8115516.

200

David, H., Fallin, C., Gorbatov, E., Hanebutte, U. R., and Mutlu, O.

(2011, June). Memory power management via dynamic voltage/frequency

scaling. In Proceedings of the 8th ACM international conference on Auto-

nomic computing (pp. 31-40).

Dayarathna, M., Wen, Y., and Fan, R. (2016). Data center energy con-

sumption modeling: A survey. IEEE Communications Surveys and Tuto-

rials, 18(1), 732–794. https://doi.org/10.1109/COMST.2015.2481183.

de Souza, E. A. G., Nagano, M. S., and Rolim, G. A. (2022). Dynamic

Programming algorithms and their applications in machine scheduling: A

review. Expert Systems with Applications, 190, 116180.

https://doi.org/10.1016/J.ESWA.2021.116180.

Delimitrou, C., and Kozyrakis, C. (2011). Cross-examination of datacenter

workload modeling techniques. Proceedings - International Conference on

Distributed Computing Systems, 72–79.

Deng, Q., Meisner, D., Bhattacharjee, A., Wenisch, T. F., and Bianchini,

R. (2012, December). Coscale: Coordinating cpu and memory system dvfs

in server systems. In 2012 45th annual IEEE/ACM international sympo-

sium on microarchitecture (pp. 143-154). IEEE.

Deng, Q., Meisner, D., Ramos, L., Wenisch, T. F., and Bianchini, R. (2011).

Memscale: active low-power modes for main memory. ACM SIGPLAN No-

tices, 46(3), 225-238.

Dhiman, G., Pusukuri, K. K., and Rosing, T. (2008). Analysis of dynamic

voltage scaling for system level energy management. USENIX HotPower, 8.

Ding, W., Gu, C., Luo, F., Chang, Y., Rugwiro, U., Li, X., and Wen,

G. (2018). DFA-VMP: An efficient and secure virtual machine place-

ment strategy under cloud environment. Peer-to-Peer Networking and

Applications, 11(2), 318–333. https://doi.org/10.1007/S12083-016-0502-

201

Z/METRICS.

Dong, Z., Zhuang, W., and Rojas-Cessa, R. (2014). Energy-aware schedul-

ing schemes for cloud data centers on Google trace data. 2014 IEEE Online

Conference on Green Communications, OnlineGreenComm 2014.

Dorronsoro, B. et al.: A hierarchical approach for energy-efficient schedul-

ing of large workloads in multicore distributed systems. Sustainable Com-

puting: Informatics and Systems. 4, 252–261 (2014).

Farzai, S., Shirvani, M. H., and Rabbani, M. (2020). Multi-objective

communication-aware optimization for virtual machine placement in cloud

datacenters. Sustainable Computing: Informatics and Systems, 28, 100374.

Feitelson, D. G. (2015). Workload modeling for computer systems per-

formance evaluation. Cambridge University Press.

Ferrari, D. (1972). Workload charaterization and selection in computer

performance measurement. Computer, 5(4), 18-24.

Forestiero, A., Mastroianni, C., Meo, M., Papuzzo, G., and Sheikhalishahi,

M. (2014). Hierarchical approach for green workload management in dis-

tributed data centers. In Euro-Par 2014: Parallel Processing Workshops:

Euro-Par 2014 International Workshops, Porto, Portugal, August 25-26,

2014, Revised Selected Papers, Part I 20 (pp. 323-334). Springer Interna-

tional Publishing.

Fujita, S. et al.: Novel memory hierarchy with e-STT-MRAM for near-

future applications. 2017 International Symposium on VLSI Technology,

Systems and Application. 3–4 (2017) doi:10.1109/VLSI-TSA.2017.7942444

Gao, Y., Zhang, H., Zhu, Y., Tang, B. and Ma, H.: A Load-Aware Data

Migration Scheme for Distributed Surveillance Video Processing with Hy-

202

brid Storage Architecture. Proceedings - 2017 IEEE 19th Intl Conference

on High Performance Computing and Communications, 2017 IEEE 15th

Intl Conference on Smart City and 2017 IEEE 3rd Intl Conference on Data

Science and Systems. 563–570 (2018)

Ghribi, C. (2014). Energy efficient resource allocation in cloud comput-

ing environments. https://theses.hal.science/tel-01149701.

Gill, S. S., and Buyya, R. (2018). A Taxonomy and Future Directions for

Sustainable Cloud Computing. ACM Computing Surveys (CSUR), 51(5).

Gmach, D., Rolia, J., Cherkasova, L., and Kemper, A. (2009). Resource

pool management: Reactive versus proactive or let’s be friends. Computer

Networks, 53(17), 2905-2922.

Guan, X., Wan, X., Choi, B. Y., Song, S., and Zhu, J. (2017). Applica-

tion Oriented Dynamic Resource Allocation for Data Centers Using Docker

Containers. IEEE Communications Letters, 21(3), 504–507.

Guzek, M., Kliazovich, D. and Bouvry, P.: HEROS: Energy-Efficient Load

Balancing for Heterogeneous Data Centers. Proceedings - 2015 IEEE 8th

International Conference on Cloud Computing. 742–749 (2015).

Hanafy, W. A., Mohamed, A. E., and Salem, S. A. (2018). Novel selection

policies for container-based cloud deployment models. ICENCO 2017 - 13th

International Computer Engineering Conference: Boundless Smart Soci-

eties, 2018-January, 237–242. https://doi.org/10.1109/ICENCO.2017.8289794.

He, J. and Callenes-Sloan, J.: Optimizing energy in a DRAM based hybrid

cache. Proceedings - International Symposium on Quality Electronic De-

sign. 37–42 (2018)

Heller, B. et al.: Elastictree: Saving energy in data center networks. Pro-

203

ceedings of NSDI 2010: 7th USENIX Symposium on Networked Systems

Design and Implementation 249–264 (2010)

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D.,

Katz, R., ... and Stoica, I. (2011). Mesos: A platform for Fine-Grained

resource sharing in the data center. In 8th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 11).

How Much Energy Do Data Centers Really Use? - Energy Innovation:

Policy and Technology. (n.d.). Retrieved February 4, 2023

Huang, D., and Wu, H. (2018). Virtualization. Mobile Cloud Comput-

ing, 31–64. https://doi.org/10.1016/B978-0-12-809641-3.00003-X.

Huang, S., and Feng, W. (2009). Energy-efficient cluster computing via ac-

curateworkload characterization. 2009 9th IEEE/ACM International Sym-

posium on Cluster Computing and the Grid, CCGRID 2009, 68–75.

Hussein, M. K., Mousa, M. H., and Alqarni, M. A. (2019). A placement

architecture for a container as a service (CaaS) in a cloud environment.

Journal of Cloud Computing, 8(1), 1–15. https://doi.org/10.1186/S13677-

019-0131-1/FIGURES/17.

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., and Hem-

ing, J. (2023). K-means clustering algorithms: A comprehensive review,

variants analysis, and advances in the era of big data. Information Sci-

ences, 622, 178-210.

Ismaeel, S., Al-Khazraji, A., and Miri, A. (2019). An efficient workload

clustering framework for large-scale data centers. 2019 8th International

Conference on Modeling Simulation and Applied Optimization, ICMSAO

2019.

204

Jain, N., and Choudhary, S. (2016). Overview of virtualization in cloud

computing. 2016 Symposium on Colossal Data Analysis and Networking,

CDAN 2016. https://doi.org/10.1109/CDAN.2016.7570950.

Johari, S. and Kumar, A.: Algorithmic approach for applying load bal-

ancing during task migration in multi-core system. Proceedings of 2014

3rd International Conference on Parallel, Distributed and Grid Comput-

ing. 27–32 (2015). doi:10.1109/PDGC.2014.7030710

Kabir, M. H., Shoja, G. C., and Ganti, S. (2014, December). VM place-

ment algorithms for hierarchical cloud infrastructure. In 2014 IEEE 6th

International Conference on Cloud Computing Technology and Science (pp.

656-659). IEEE.

Kalra, M., and Singh, S. (2015). A review of metaheuristic scheduling

techniques in cloud computing. Egyptian informatics journal, 16(3), 275-

295.

Kang, K. D., Alian, M., Kim, D., Huh, J., and Kim, N. S. (2018, Oc-

tober). VIP: Virtual performance-state for efficient power management of

virtual machines. In Proceedings of the ACM Symposium on Cloud Com-

puting (pp. 237-248).

Kansal, N. J., and Chana, I. (2016). Energy-aware Virtual Machine Mi-

gration for Cloud Computing - A Firefly Optimization Approach. Journal

of Grid Computing, 14(2), 327–345. https://doi.org/10.1007/S10723-016-

9364-0/METRICS.

Karmakar, K., Banerjee, S., Das, R. K., and Khatua, S. (2022). Utiliza-

tion aware and network I/O intensive virtual machine placement policies

for cloud data center. Journal of Network and Computer Applications, 205,

103442.

205

Kaur, K., Dhand, T., Kumar, N., and Zeadally, S. (2017). Container-

as-a-Service at the Edge: Trade-off between Energy Efficiency and Service

Availability at Fog Nano Data Centers. IEEE Wireless Communications,

24(3), 48–56.

Khosravi, A., Garg, S. K., and Buyya, R. (2013). Energy and carbon-

efficient placement of virtual machines in distributed cloud data centers. In

Euro-Par 2013 Parallel Processing: 19th International Conference, Aachen,

Germany, August 26-30, 2013. Proceedings 19 (pp. 317-328). Springer

Berlin Heidelberg.

Kim, K. H., Buyya, R., and Kim, J. (2007, May). Power aware schedul-

ing of bag-of-tasks applications with deadline constraints on DVS-enabled

clusters. In Seventh IEEE International Symposium on Cluster Computing

and the Grid (CCGrid’07) (pp. 541-548). IEEE.

Kliazovich, D., Arzo, S. T., Granelli, F., Bouvry, P. and Khan, S. U.:

e-STAB: Energy-efficient scheduling for cloud computing applications with

traffic load balancing. Proceedings - 2013 IEEE International Confer-

ence on Green Computing and Communications and IEEE Internet of

Things and IEEE Cyber, Physical and Social Computing. 7–13 (2013)

doi:10.1109/GreenCom-iThings-CPSCom.2013.28

Lasica, J. D. (2009). Identity in the Age of Cloud Computing: The next-

generation Internet’s impact on business, governance and social interaction.

Li, D., Shang, Y. and Chen, C.: Software defined green data center network

with exclusive routing. IEEE Conference on Computer Communications.

1743–1751 (2014) doi:10.1109/INFOCOM.2014.6848112

Li, L., Tang, T., and Chou, W. (2015). A rest service framework for fine-

grained resource management in container-based cloud. In Proceedings of

the 8th IEEE International Conference on Cloud Computing (pp. 645–652).

206

Liu, J., Wang, S., Zhou, A., Xu, J., and Yang, F. (2020). SLA-driven con-

tainer consolidation with usage prediction for green cloud computing. Fron-

tiers of Computer Science, 14(1), 42–52. https://doi.org/10.1007/S11704-

018-7172-3/METRICS.

LKML: Andrea Arcangeli: [PATCH 00/39] [RFC] AutoNUMA alpha10.

https://lkml.org/lkml/2012/3/26/398. Accessed 26 January 2021.

Ma, Z., Shao, S., Guo, S., Wang, Z., Qi, F., and Xiong, A. (2020). Con-

tainer Migration Mechanism for Load Balancing in Edge Network under

Power Internet of Things. IEEE Access, 8, 118405–118416.

https://doi.org/10.1109/ACCESS.2020.3004615.

Mahadevan, P., Banerjee, S. and Sharma, P.: Energy proportionality of

an enterprise network. Proceedings of the 1st ACM SIGCOMM Workshop

on Green Networking, Green Networking ’10, 53–59 (2010).

Mann, Z. Á. (2018). Resource optimization across the cloud stack. IEEE

Transactions on Parallel and Distributed Systems, 29(1), 169–182.

Mann, Z. A.: Multicore-Aware Virtual Machine Placement in Cloud Data

Centers. IEEE Transactions on Computers. 65, 3357–3369 (2016)

Masdari, M., Nabavi, S. S., and Ahmadi, V. (2016). An overview of virtual

machine placement schemes in cloud computing. Journal of Network and

Computer Applications, 66, 106–127.

Meng, X., Isci, C., Kephart, J., Zhang, L., Bouillet, E., and Pendarakis,

D. (2010, June). Efficient resource provisioning in compute clouds via vm

multiplexing. In Proceedings of the 7th international conference on Auto-

nomic computing (pp. 11-20).

207

Mishra, A. K., Hellerstein, J. L., Cirne, W., and Das, C. R. (2010). Towards

characterizing cloud backend workloads. ACM SIGMETRICS Performance

Evaluation Review, 37(4), 34–41. https://doi.org/10.1145/1773394.1773400.

Mohseni, Z., Kiani, V. and Masoud Rahmani, A.: A Task Scheduling Model

for Multi-CPU and Multi-Hard Disk Drive in Soft Real-time Systems. In-

ternational Journal of Information Technology and Computer Science. 1,

1–13 (2019)

Moro, A., Mumolo, E., and Nolich, M. (2009). Ergodic continuous hidden

markov models for workload characterization. ISPA 2009 - Proceedings

of the 6th International Symposium on Image and Signal Processing and

Analysis, 103–108. https://doi.org/10.1109/ISPA.2009.5297771.

Mulahuwaish, A., Korbel, S., and Qolomany, B. (2022). Improving dat-

acenter utilization through containerized service-based architecture. Jour-

nal of Cloud Computing, 11(1), 44.

Nardelli, M., Hochreiner, C., and Schulte, S. (2017). Elastic provisioning of

virtual machines for container deployment. ICPE 2017 - Companion of the

2017 ACM/SPEC International Conference on Performance Engineering,

5–10.

Niccolini, L., Iannaccone, G., Ratnasamy, S., Chandrashekar, J. and Rizzo,

L.: Building a power-proportional software router. Proceedings of the 2012

USENIX Annual Technical Conference. 89–100 (2019)

Onan, A. (2019). Consensus Clustering-Based Undersampling Approach

to Imbalanced Learning. Scientific Programming.

Pandit, D., Chattopadhyay, S., Chattopadhyay, M., and Chaki, N. (2014,

February). Resource allocation in cloud using simulated annealing. In 2014

Applications and Innovations in Mobile Computing (AIMoC) (pp. 21-27).

IEEE.

208

Panneerselvam, J., Liu, L., Antonopoulos, N., and Bo, Y. (2014). Work-

load analysis for the scope of user demand prediction model evaluations

in cloud environments. Proceedings - 2014 IEEE/ACM 7th International

Conference on Utility and Cloud Computing, UCC 2014, 883–889.

Park, K. S., and Pai, V. S. (2006). CoMon. ACM SIGOPS Operating

Systems Review, 40(1), 65–74. https://doi.org/10.1145/1113361.1113374.

Patel, E., and Kushwaha, D. S. (2020). Clustering Cloud Workloads:

K-Means vs Gaussian Mixture Model. Procedia Computer Science, 171,

158–167.

Patel, J., Jindal, V., Yen, I. L., Bastani, F., Xu, J., and Garraghan, P.

(2015). Workload Estimation for Improving Resource Management Deci-

sions in the Cloud. Proceedings - 2015 IEEE 12th International Symposium

on Autonomous Decentralized Systems, ISADS 2015, 25–32.

Patra, M. K., Misra, S., Sahoo, B., and Turuk, A. K. (2022). GWO-Based

Simulated Annealing Approach for Load Balancing in Cloud for Hosting

Container as a Service. Applied Sciences 2022, Vol. 12, Page 11115, 12(21),

11115. https://doi.org/10.3390/APP122111115.

Patra, S. S. (1 C.E.). Energy-Efficient Task Consolidation for Cloud Data

Center, 8(1), 117–142. https://doi.org/10.4018/IJCAC.2018010106.

Pietri, I., and Sakellariou, R. (2014, September). Energy-aware workflow

scheduling using frequency scaling. In 2014 43rd International Conference

on Parallel Processing Workshops (pp. 104-113). IEEE.

Piraghaj, S. F., Dastjerdi, A. V., Calheiros, R. N., and Buyya, R. (2015b).

A Framework and Algorithm for Energy Efficient Container Consolidation

in Cloud Data Centers. 2015 IEEE International Conference on Data Sci-

209

ence and Data Intensive Systems (DSDIS), 368–375.

Piraghaj, S. F., Dastjerdi, A., Calheiros, R. N., and Buyya, R. (2015a).

Efficient virtual machine sizing for hosting containers as a service. In ro-

ceedings of IEEEWorld Congress on Services. (pp. 31–38).

Prabhakaran, G. and Selvakumar, S. An diverse approach on virtual ma-

chines administration and power control in multi-level implicit servers.

Journal of Ambient Intelligence and Humanized Computing (2021)

Pudukotai Dinakarrao, S. M.: Self-aware power management for multi-

core microprocessors. Sustainable Computing: Informatics and Systems.

29, Part B, 100480 (2021) doi:10.1016/j.suscom.2020.100480.

Qiu, M., Ming, Z., Li, J., Gai, K. and Zong, Z.: Phase-Change Memory

Optimization for Green Cloud with Genetic Algorithm. IEEE Transactions

on Computers. 64, 3528–3540 (2015)

Raj, V. M., and Shriram, R. (2011, March). Power aware provisioning in

cloud computing environment. In 2011 International Conference on Com-

puter, Communication and Electrical Technology (ICCCET) (pp. 6-11).

IEEE.

Rasheduzzaman, M., Islam, M. A., Islam, T., Hossain, T., and Rahman,

R. M. (2014). Task shape classification and workload characterization of

google cluster trace. Souvenir of the 2014 IEEE International Advance

Computing Conference, IACC 2014, 893–898.

Saber, T., Thorburn, J., Murphy, L., and Ventresque, A. (2018). VM

reassignment in hybrid clouds for large decentralised companies: A multi-

objective challenge. Future Generation Computer Systems, 79, 751–764.

Sahinaslan, O., Sahinaslan, E., and Ari, I. S. (2022). A study on the

210

transition to container technologies in data centers. AIP Conference Pro-

ceedings, 2483(1), 070002. https://doi.org/10.1063/5.0115600.

Sakamoto, M. and Yamaguchi, S.: Dynamic Memory Allocation in Vir-

tual Machines based on Cache Hit Ratio. Proceedings - 2015 3rd In-

ternational Symposium on Computing and Networking. 613–615 (2016)

doi:10.1109/CANDAR.2015.34.

Shabeera, T. P., Madhu Kumar, S. D., Salam, S. M., and Murali Krishnan,

K. (2017). Optimizing VM allocation and data placement for data-intensive

applications in cloud using ACO metaheuristic algorithm. Engineering Sci-

ence and Technology, an International Journal, 20(2), 616–628.

Shekhawat, V. S., Gautam, A., and Thakrar, A. (2018). Datacenter Work-

load Classification and Characterization: An Empirical Approach. 2018

13th International Conference on Industrial and Information Systems, ICIIS

2018 - Proceedings, 1–7. https://doi.org/10.1109/ICIINFS.2018.8721402.

Shen, S., van Beek, V., and Iosup, A. (2015). Statistical characterization

of business-critical workloads hosted in cloud datacenters. Proceedings -

2015 IEEE / ACM 15th International Symposium on Cluster, Cloud, and

Grid Computing, CCGrid 2015, 465–474.

Shi, T., Ma, H., and Chen, G. (2018a). Energy-Aware Container Con-

solidation Based on PSO in Cloud Data Centers. 2018 IEEE Congress on

Evolutionary Computation, CEC 2018 - Proceedings.

Shi, T., Ma, H., and Chen, G. (2018b). Multi-objective container con-

solidation in cloud data centers. Lecture Notes in Computer Science (In-

cluding Subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 11320 LNAI, 783–795.

Shroff, G., and Shroff, G. (2011). Virtualization technology. Enterprise

211

Cloud Computing, 89–103. https://doi.org/10.1017/cbo9780511778476.012.

SMIMITE, O., and AFDEL, K. (2020). Hybrid Solution for Container

Placement and Load Balancing based on ACO and Bin Packing. Inter-

national Journal of Advanced Computer Science and Applications, 11(11),

606–615.

Spicuglia, S., Chen, L. Y., Birke, R., and Binder, W. (2015). Optimizing

capacity allocation for big data applications in cloud datacenters. Pro-

ceedings of the 2015 IFIP/IEEE International Symposium on Integrated

Network Management, IM 2015, 511–517.

Sturm, R., Pollard, C., and Craig, J. (2017). Managing Containerized

Applications. Application Performance Management (APM) in the Digital

Enterprise, 177–185. https://doi.org/10.1016/B978-0-12-804018-8.00013-

9.

Sun, X., Ansari, N., and Wang, R. (2016). Optimizing Resource Utiliza-

tion of a Data Center. IEEE Communications Surveys and Tutorials, 18(4),

2822–2846. https://doi.org/10.1109/COMST.2016.2558203.

Tan, B., Ma, H., and Mei, Y. (2019). A Hybrid Genetic Programming

Hyper-Heuristic Approach for Online Two-level Resource Allocation in

Container-based Clouds. 2019 IEEE Congress on Evolutionary Compu-

tation, CEC 2019 - Proceedings, 2681–2688.

Tang, Z., Wang, Y., Wang, Q. and Chu, X.: The impact of GPU DVFS

on the energy and performance of deep Learning: An Empirical Study. e-

Energy 2019 - Proceedings of the 10th ACM International Conference on

Future Energy Systems 315–325 (2019) doi:10.1145/3307772.3328315.

Tang, Z., Zhou, X., Zhang, F., Jia, W., and Zhao, W. (2019). Migra-

tion Modeling and Learning Algorithms for Containers in Fog Computing.

212

IEEE Transactions on Services Computing, 12(5), 712–725.

Terzi, C. and Korpeoglu, I.: 60 GHz wireless data center networks: A

survey. Computer Networks. 185, 107730 (2021)

Tomes, E. and Altiparmak, N.: A Comparative Study of HDD and SSD

RAIDs’ Impact on Server Energy Consumption. Proceedings - IEEE In-

ternational Conference on Cluster Computing. 625–626 (2017)

U-Chupala, P., Watashiba, Y., Ichikawa, K., Date, S., and Iida, H. (2017).

Container Rebalancing: Towards Proactive Linux Containers Placement

Optimization in a Data Center. Proceedings - International Computer

Software and Applications Conference, 1, 788–795.

Ukidave, Y., Li, X. and Kaeli, D.: Mystic: Predictive Scheduling for GPU

Based Cloud Servers Using Machine Learning. Proceedings - 2016 IEEE

30th International Parallel and Distributed Processing Symposium, IPDPS

2016 353–362 (2016) doi:10.1109/IPDPS.2016.73

Urgaonkar, R., Kozat, U. C., Igarashi, K., and Neely, M. J. (2010, April).

Dynamic resource allocation and power management in virtualized data

centers. In 2010 IEEE Network Operations and Management Symposium-

NOMS 2010 (pp. 479-486). IEEE.

Venkatesan, V., Tay, Y. C., Zhang, Y. I. and Wei, Q. A 3-level cache

miss model for a nonvolatile extension to transcendent memory. Proceed-

ings of the International Conference on Cloud Computing Technology and

Science. 218–225 (2015)

Wang, J. and Wang, B.: A hybrid main memory applied in virtualization

environments. 2016 1st IEEE International Conference on Computer Com-

munication and the Internet. 413–417 (2016) doi:10.1109/CCI.2016.7778955

213

Wang, K., Lin, M., Ciucu, F., Wierman, A., and Lin, C. (2015). Char-

acterizing the impact of the workload on the value of dynamic resizing in

data centers. Performance Evaluation, 85–86, 1–18.

Wang, N., Ho, K. H. and Pavlou, G.: AMPLE: An adaptive traffic engi-

neering system based on virtual routing topologies. IEEE Communications

Magazine. 50, 185–191 (2012)

Wikipedia access traces — WikiBench. (n.d.). Retrieved March 21, 2022,

from http://www.wikibench.eu/?page id=60.

Wu, W., Xia, W., Yu, Z. and Liu, Q.: Exploring the potential of coupled

array of SSD and HDD for multi-Tenant. 2018 3rd IEEE International

Conference on Cloud Computing and Big Data Analysis. 653–657 (2018)

doi:10.1109/ICCCBDA.2018.8386596

Xiao, P., Ni, Z., Liu, D. and Hu, Z. Improving the energy-efficiency of

virtual machines by I/O compensation. Journal of Supercomputing 77,

11135–11159 (2021).

Xu, J., and Fortes, J. A. B. (2010). Multi-objective virtual machine place-

ment in virtualized data center environments. Proceedings - 2010 IEEE/ACM

International Conference on Green Computing and Communications, Green-

Com 2010, 2010 IEEE/ACM International Conference on Cyber, Physical

and Social Computing, CPSCom 2010, 179–188.

Xu, Z., Dong, F., Jin, J., Luo, J. and Shen, J.: GScheduler: Optimiz-

ing resource provision by using GPU usage pattern extraction in cloud

environments. 2017 IEEE International Conference on Systems, Man, and

Cybernetics. 3225–3230 (2017).

Yan, W., Chen, J., and Li, L. (2018). A power-aware ACO algorithm for

the cloud computing platform. ACM International Conference Proceeding

214

Series, 1–6. https://doi.org/10.1145/3290420.3290428.

Yang, H. and Yan, X.: Memory Coherency Based CPU-Cache-FPGA Ac-

celeration Architecture for Cloud Computing. Proceedings - 2015 2nd In-

ternational Conference on Information Science and Control Engineering.

304–307 (2015) doi:10.1109/ICISCE.2015.74

Yaqub, E., Yahyapour, R., Wieder, P., Jehangiri, A. I., Lu, K., and Kot-

sokalis, C. (2014). Metaheuristics-based planning and optimization for

SLA-aware resource management in PaaS clouds. Proceedings - 2014 IEEE/ACM

7th International Conference on Utility and Cloud Computing, UCC 2014,

288–297. https://doi.org/10.1109/UCC.2014.38.

Yin, J., Lu, X., Zhao, X., Chen, H., and Liu, X. (2015). BURSE: A bursty

and self-similar workload generator for cloud computing. IEEE Transac-

tions on Parallel and Distributed Systems, 26(3), 668–680.

Zhang et al., (2011) Characterizing Task Usage Shapes in Google Com-

pute Clusters – Google Research. Retrieved March 17, 2022,

from https://research.google/pubs/pub37201

Zhang, H., Jiang, G., Yoshihira, K., and Chen, H. (2014). Proactive work-

load management in hybrid cloud computing. IEEE Transactions on Net-

work and Service Management, 11(1), 90–100.

Zhang, W., Chen, L., Luo, J., and Liu, J. (2022). A two-stage container

management in the cloud for optimizing the load balancing and migration

cost. Future Generation Computer Systems, 135, 303–314.

Zhao, W., Peng, Y., Xie, F., and Dai, Z. (2012). Modeling and simula-

tion of cloud computing: A review. Proceedings - 2012 IEEE Asia Pacific

Cloud Computing Congress, APCloudCC 2012, 20–24.

215

Zheng, S., Huang, F., Li, C., and Wang, H. (2021). A Cloud Resource

Prediction and Migration Method for Container Scheduling. 2021 IEEE

Conference on Telecommunications, Optics and Computer Science, TOCS

2021, 76–80. https://doi.org/10.1109/TOCS53301.2021.9689034.

Zhong, Z., and Buyya, R. (2020). A Cost-Efficient Container Orchestration

Strategy in Kubernetes-Based Cloud Computing Infrastructures with Het-

erogeneous Resources. ACM Transactions on Internet Technology, 20(2).

Zhu, Q. et al.: Hibernator: Helping disk arrays sleep through the winter.

Proceedings of the 20th ACM Symposium on Operating Systems Princi-

ples. 177–190 (2005) doi:10.1145/1095810.1095828

216

List of Publications

1. Avita Katal, Susheela Dahiya and Tanupriya Choudhury, “Energy

efficiency in cloud computing data center: a survey on hardware technolo-

gies”, Cluster Computing, 25, 675–705 (2022).

https://doi.org/10.1007/s10586-021-03431-z

2. Avita Katal, Susheela Dahiya and Tanupriya Choudhury, “Energy

efficiency in cloud computing data centers: a survey on software technolo-

gies”, Cluster Computing, 26, 1845–1875 (2023).

https://doi.org/10.1007/s10586-022-03713-0

3. Avita Katal, Susheela Dahiya and Tanupriya Choudhury, “Workload

Characterization and Classification: A Step Towards Better Resource Uti-

lization in a Cloud Data Center”, Pertanika Journal of Science and Tech-

nology, 31(5), 2559–2575 (2023) https://doi.org/10.47836/pjst.31.5.27

4. Avita Katal, Tanupriya Choudhury, Susheela Dahiya. (2023). Com-

parison and Analysis of Container Placement Algorithms in Cloud Data

Center. In: Rathore, V.S., Piuri, V., Babo, R., Ferreira, M.C. (eds)

Emerging Trends in Expert Applications and Security. ICETEAS 2023.

Lecture Notes in Networks and Systems, vol 682. Springer, Singapore.

https://doi.org/10.1007/978-981-99-1946-822

5. Avita Katal, Tanupriya Choudhury, Susheela Dahiya, “Energy op-

timized container placement for cloud data centers: a meta-heuristic ap-

proach”, Journal of Supercomputing (2023). https://doi.org/10.1007/s11227-

023-05462-2

i

Plagiarism Report

ii

	Declaration
	Certificate
	Certificate
	Abstract
	Acknowledgement
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Introduction
	Virtualization in Cloud
	Container Perspective: Paradigm Shift
	Energy Consumption in Data centre
	Energy Efficient Techniques in Cloud Data Centers

	Research Problems and Objectives
	Objectives
	Sub Objectives
	Research contribution
	Thesis Organization

	Background and Literature Review
	Background and Literature Review
	Hardware based techniques
	Software based techniques

	Summary

	Workload Characterization and Categorization
	Introduction
	Literature Review
	Methodology
	Dataset Characteristics
	Clustering Algorithms
	Classification Algorithms
	Process Flow

	Experimental Setup
	Results
	Summary

	Container Placement in Cloud Data Center
	Introduction
	Literature Review
	Methodology
	Problem formulation Container Placement in Cloud Data Center
	Process Flow
	Algorithms

	Experimental Setup
	Scenario 1: Homogenous Environment
	Scenario 2: Heterogenous Environment

	Results
	Homogenous Environment
	Heterogenous Environment

	Summary

	Container Consolidation in Cloud Data Center
	Introduction
	Literature Review
	Methodology
	Problem Formulation of Container Migration in Cloud Data Center
	Process Flow
	Algorithms

	Experimental Setup
	Scenario 1: Homogenous Environment
	Scenario 2: Heterogenous Environment

	Results
	Homogenous Environment
	Heterogenous Environment

	Summary

	Statistical Analysis
	Statistical Analysis
	Container Placement in Cloud Data Center
	Container Consolidation in Cloud Data Center

	Summary

	Discussion
	Discussion

	Conclusion and Future Work
	Conclusion and Future Work
	Limitations and Future Work

	References
	References
	List of Publications
	Plagiarism Report

