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ABSTRACT 

 In last few decades, due to the limitations of conventional sources of 

energy, global interest towards renewable energy sources such as solar, wind, 

fuel cells etc have been increased for supplying electric power to the grid 

isolated sites. Renewable sources of energy are clean, inexhaustible and 

environment friendly. If properly harnessed, these powerful energy sources 

can supply large grid isolated loads. Solar and wind energy are extensively 

used for this purpose due to their abundant availability. However, these 

energies have certain limitations like high investment cost and poor efficiency. 

Present work focuses on utilization of solar energy to drive isolated DC loads. 

Solar-driven energy production systems, at the very first stage of conversion, 

depend on climatic conditions such as solar irradiations, temperature, panel 

partial shading etc. Secondly, solar PV must provide maximum power to 

fulfill the connected load requirement under any circumstances. For this 

purpose, several maximum power point tracking (MPPT) controllers with 

different MPPT techniques are employed to enhance the power generation of 

PV systems. However there is a compromise between accuracy and stability 

around the maximum power point with each MPPT technique that influences 

the performance of PV systems. Besides this, the DC converter connected at 

the output of PV array to boost and buck the power also affects the 

performance of the system. Therefore, it is observed that there are several 

factors which affect the overall efficiency of the photovoltaic system. 

Considering all these factors, the need of the hour is to develop an efficient 

system to raise the overall efficiency, in order to utilize solar energy 

efficiently under various mentioned conditions. It is also recorded that the DC 

load connected to the PV system detroit its performance due to its variations; 

hence the effect of DC load under its variable static and dynamic conditions 

must also be considered while developing such a PV system for supplying grid 

isolated DC load.  
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 On account of all the shortcomings mentioned above, this work 

focuses on the modeling, optimization and control of standalone photovoltaic 

system that supplies electric energy to DC electrical load. With the aim of 

improving the performance of this system, we incorporate an MPPT controller 

based on novel “Umbrella Optimization Technique” (UOT) metaheuristic 

MPPT technique. The main objectives of this work are as follows: 

1. To develop and investigate novel metaheuristic approach based MPPT 

method for PV system performance under static/dynamic climatic 

conditions for fixed/variable load.  

2. To investigate and comparative study of transient analysis for proposed 

and conventional MPPT methods for static load under climatic 

condition 

3. Comprehensive comparative study with the integration of different 

DC-DC converter with proposed MPPT method. 

 This experimental study reports novel UOT to track MPP effectively 

under PSCs and load variations. Research is done in two phases. In phase 1 

novel UOT is developed and tested in standalone PV system incorporating 

inverse SEPIC DC-DC converter with resistive load against traditional P&O 

MPPT technique. Duty cycle of inverse SEPIC converter is controlled by these 

MPPT algorithms to track MPP under PSCs. P&O is an effective MPPT 

technique to track MPP in unshaded conditions but in PSCs, it suffers from the 

drawback of step size misleading and hence chase MPP in wrong direction. 

Proposed UOT works effectively in PSCs and able to detect GMPP from many 

observed peaks. Experiment validation in real time revels that UOT shows its 

superior performance in comparison with P&O MPPT technique on account of 

PV system output current, power, tracking time, tracking efficiency and many 

more. Experimentally under PSCs UOT shows a power boost of 3.39- 4.14% 

with 9.09- 16.66% faster tracking in contrast to conventional P&O MPPT 

technique. UOT also stabilizes quickly at GMPP with low oscillations around 

it. 

In second phase of this research, performance of novel UOT is evaluated 



vii 
 

against more metaheuristic MPPT techniques with different DC-DC converter. 

Standalone PV system with resistive load is taken for the study. PSO, TLBO 

and P&O performance is evaluated against novel UOT under PSCs. Inverse 

SEPIC and Luo DC-DC converters are incorporated in PV system separately 

to evaluate the compatability of each technique with them under real time 

working environment. Load variation effect on MPPT performance is also 

carried out in this phase of study. 

 With inverse SEPIC DC-DC converter, a power boost in GMPP by 

novel UOT in contrast to PSO, TLBO and P&O is 4.67% - 5.04% with 

22.28% - 28.41% faster tracking. Average tracking efficiency of novel UOT is 

98.6% under real time test scenarios of considered PSCs. With Luo DC-DC 

converter, novel UOT again exhibits a power boost of 4.90 – 5.71% with 

48.00 - 57.88% quicker time in comparison to PSO, TLBO and P&O 

techniques. Average tracking efficiency of UOT is recorded 98.19% with this 

DC converter. Effect of load variation on all four MPPT techniques is studied 

with inverse SEPIC converter in standalone PV system. In this test scenario, 

novel UOT again shows its superiority over PSO, TLBO and P&O MPPT 

technique by maintaining 5.07 – 7.77% high PV system output current. It also 

takes 35.47 – 35.80% less time to stabilize output current of PV system. 

 Thus real time experimental validation shows that performance of 

novel UOT over P&O, PSO and TLBO is higher in terms of system output 

power, output current, tracking efficiency, tracking time, low oscillations 

around GMPP and low system complexity in both PSCs and variable load 

circumstances. 
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CHAPTER 1 

INTRODUCTION 

 

The rapid growth in economic and industrial development raises the 

demand of energy in developing countries [Verma et al., 2016]. Various 

sources of energies are available to them on earth. Broadly, these sources are 

classified into two main categories which are non renewable and renewable 

energy resources. Resources that cannot be replaced once utilized falls under 

the group of conventional sources of energy e.g., coal, gas and oil. Humans 

use these resources from ancient time. These resources of energy are limited 

and will exhaust within few years if human beings keep on utilizing them. As 

a result, humans will face energy crises because energy demands will not be 

met against its supply. Moreover, usage of these resources causes global 

warming [Sharma et al., 2018]. On the other side, renewable resources are 

those which can be used again and again to generate energy and doesn’t 

produce green house gases, thus helps in preventing global warming. They are 

environment friendly, safe, clean and efficient. These factors are primary 

motivator for the usage of renewable energy sources [Fernandez et al., 2019]. 

In fact, approx 3% total renewable energy generation increases in every year, 

resulting in rise of global power generation from 22% in 2012 to 29% in 2040 

[Patel and Agarwal, 2008]. Heat or electricity can be easily obtained by 

converting energy from sun, geothermal, biomass, wind and water with the 

help of renewable energy generation system. Solar energy can be transformed 

into electrical one through PV systems. Wind kinetic energy can be converted 

to get electricity through wind electric generators. Moreover, in remote 

locations wind pumps are installed for pumping water. Bio- energy obtained 

from biomass finds its applications in various fields of conventional sources 

such as cooking, mechanical applications and pumping etc. Potential energy 

generated by falling waters and tidal energy are utilized to obtained power for
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residential buildings, hotels and in remote areas etc. 

Out of many renewable energy sources, electricity generated from solar energy 

gets attention of researchers in many areas because of widespread availability of solar 

irradiance. Solar irradiance acts as an input power to PV systems. It is a brilliant idea 

to harness solar energy and feed it to electrical equipments. Electricity bills are no 

more a pain to our pockets, there is no need to plug anything in and there is an 

endless source of free energy that doesn't harm the environment. Of course, reality is 

bit different in harnessing solar energy. PV Systems employed in converting solar 

energy into electricity has poor converting efficiency on account of many 

environment conditions. Therefore, research is still going on in this field to extract 

maximum energy from solar systems under any environmental conditions. 

Since early twenties, this sector has been changed by significant 

technological advancement and cost reductions. Systems that were costly or 

impracticable just few years ago are now affordable and feasible. Solar panels 

are available now in smaller sizes along with effective costs than ever before. 

Solar is presently the most cost-effective technique to generate electricity for a 

wide range of uses. All indications indicate that technology and industry will 

continue to evolve this area at a faster rate in the future. PV systems will be 

the cheapest way to generate electricity in future, eliminating electricity 

generators used so far such as coal-fired power plants. Solar energy is 

anticipated to be integrated into more daily services like transportation, home 

appliances, cellular phones and backpacks etc. Meanwhile, advancement in 

this technology makes a revolution in many parts of Asia and Africa, by 

providing electricity to the entire communities [Elmetennani et al., 2016]. 

Solar is unrivalled as an easy-to-use energy source. It has enormous potential 

to change the way of our thinking about energy in the future. It is causing 

revolution for families and businesses in rural areas of INDIA. 

 

1.1 Solar energy's source 

      In the sun's core, tremendous nuclear activity produces massive amount of 

radiations. As a result, these radiations produce light energy in the form of 

photons. Physical mass of these photons are zero but they convey enormous 

amounts of energy with momentum. Light wavelengths are carried by distinct 

photons. These photons radiate from the sun's core and reach its surface over 
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one million years. The speed of these photons when they leave the sun's 

surface is 670 million miles per hour. It takes them about eight minutes to 

reach Earth. Several of these photons are absorbed by our atmosphere when 

they reach the earth's surface. When the sun is above our head, photons reach 

us by passing a thin layer of atmosphere; compared to when the sun is at a 

different angle, these photons must pass through an atmosphere that is far 

thicker. These photons are utilized in generating electricity by PV systems. 

 

1.2 Solar photovoltaic system 

A solar power system uses photovoltaic principle to produce electricity. 

Several components are incorporated in these systems to convert solar energy 

efficiently into electricity. PV array, DC converter, Inverter, Mounting and 

cabling are few of its basic components. Based on particular applications, size 

of this system varies. Basic building block of any PV systems is solar cells. 

These cells are made up of semiconducting material generally silicon. Two 

semiconducting materials are combined to form two layered structure as 

shown in fig.1.1. One layer has deficit of electrons. When these cells are 

exposed to sunlight, upper layer absorbs photons. This phenomenon excites 

some of the electrons causing them to jump to another layer creating an 

electric charge. Higher the number of photons absorbed, more will be the 

current generated. This process is known as photovoltaic effect [Guangul and 

Chala, 2019]. 

N Layer

P Layer

Sun

Load

PN

Junction

 

Fig.1.1. Photovoltaic cell 
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One solar cell generally generate less electricity, therefore they are 

combined together in a single unit to form solar module. A typical solar 

module consists of 60 cells in series. Sometimes, solar module is mistaken for 

solar panel but technically when a group of solar modules is configured as a 

single unit; it is termed as a solar panel.  Solar panel generates comparatively 

less amount of electricity as required by the connected load, therefore, many 

solar panels are connected together to generate more energy and the combined 

unit is referred as solar array as shown in fig 1.2. 

Solar

Cell
Solar

Module

Solar Array

 

Fig.1.2. PV cell, Module and Array structure  

 

Using solar panels, DC electricity is generated. PV systems are frequently 

utilized to provide power grid with electricity; hence, inverters are employed 

to convert the array's DC output to AC. PV systems are categorized according 

to how they were installed [Vivas et al., 2018], with each possessing its own 

benefits and drawbacks:  

1. Grid Connected 

2. Off grid/ Standalone system 

 

1.2.1. Grid connected solar PV system 

     These systems are outlined & interconnected to work in conjunction with 

power grid. Inverter is the main part of these systems. PV sources produce DC 

electricity, which is transformed into AC power to meet grid voltage and 

power quality requirements. The system delivers power to the utility grid till 
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the time it is energized. These systems are equipped with bi-directional 

interface, which controls the AC power of photovoltaic set-up to supply either 

power grid or it’s on site loads. Distribution panel is used for the same. Main 

components of these systems are PV module, inverter and distribution panel. 

}
Sun

PV Array

DC-DC Converter

Control Unit

Vpv

Ipv

DC-AC Inverter

Distribution

Panel

Electric

Utility Grid

AC load

Fig.1.3. Solar PV system with grid connectivity schematic 

 

1.2.2. Off Grid/Standalone solar system 

     These systems are implemented to work autonomously with power grid and 

are planned to supply selected DC/AC loads. PV array output is the only 

source of power of these systems. Direct coupling is the basic sort of 

standalone PV setup because PV array output is directly tied to PV system 

load. There are no batteries in these systems for storing power, therefore loads 

work only during day time. Fig 1.4 shows schematics of direct coupled PV 

set-up.  

}
Sun

PV Array

DC-DC Converter

MPPT Control

Load

Vpv

Ipv

 

Fig.1.4. Standalone PV set-up 
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      These designs are commonly used in applications like water pumps, 

ventilation fans, etc. These systems are designed for matching the impedance 

of DC loads for maximizing the photovoltaic system's output power. For this 

reason, a power electronic converter (DC-DC Converters) with MPPT control 

is incorporated in PV set-up.  

 

1.3. Benefits of installing PV systems:  

 Noiseless operating system 

 Low cost of maintenance 

 Long span of life. 

 Free input fuel. 

 Environment friendly. 

 Appropriate for mobile loads. 

 

1.4. Difficulties faced while installing PV systems 

 High initial cost 

 Irregularity of solar energy. 

 Poor efficiency. 

 Requirement of large area for installation. 

 Energy storage devices such as batteries are required. 

 Energy generation problem during cloudy or rainy season. 

 

1.5. PV cell modeling 

      A PV cell can be simulated by parallel connecting current source and 

diode. For assessing the performances of solar cells, SDM and DDM are 

frequently utilized. On account of contact resistances and manufacturing 

defects, a series and shunt resistance are also incorporated in these models 

[Tamrakar and Gupta, 2015]. Fig.1.5 (a)-(b) illustrates SDM and DDM of 

PV cell respectively. 

 A PV cell can produce current in case of a SDM as, 

                                                                                         (1.1) 
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   (a) 

 

(b) 

Fig.1.5. Solar cell (a) SDM (b) DDM 

 

The Shockley equation can be used to calculate diode current as 

                                         
 

      
                                  (1.2) 

Current through the shunt resistance can be calculated by applying ohms law 

as 

                       
           

   
                      (1.3) 

By using    and     from Eq. (1.2) and (1.3), cell output current can be 

evaluated as  

 

                               
 

   
                   

           

   
         (1.4) 

           

 In SDM, "n" (ideality factor) is regarded as constant; however, it varies 

with voltage on the device's connectors. When the voltage is high, its value is 

almost one. However, it turns into two at low voltages owing to junction 

recombination and its impact can be seen by parallelly connecting a second 
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diode, creating a DDM as depicted in fig 1.5 (b). Value of "n" is set to 2 in 

DDM. 

 

1.6. Power, voltage & current characteristics of PV cell 

 This section describes the main electrical characteristics of solar 

cell/module in association with current & voltage relationship that formed a 

solar cell I-V curve. Because, solar irradiance and temperature affects solar 

cell output current and output voltage respectively, I-V characteristics curves 

depicts the operation of solar cell under various circumstances of irradiance 

and temperature. These curves help in providing necessary information to 

make a PV system that operates at MPP. 

I-V Characteristics: Fig.1.6 displays the silicon PV module's I-V graph under 

normal operating circumstances. If from short circuit to open circuit 

conditions, point to point multiplication of cell output voltage is done with cell 

output current, then power curve for a specified irradiance level is obtained as 

shown in fig.1.6.  Some of the important electrical specifications of solar 

cell/module which can be obtained from these characteristics curve are: 

 Voc:  The utmost voltage generated by solar cell/module when it is not 

connected to any load i.e., its open circuit condition. Current at this 

value is zero. 

 Isc: Current obtained when solar cell/module output terminals are 

shorted. Voltage across the cell is zero at this value. 

 Vmpp: Voltage where maximum power is delivered by the 

cell/module. This value of voltage is less than Voc.  

 Impp: The value of current at the same point where maximum power 

voltage Vmmp is obtained. This value of current is less than Isc. 

  

If Vmpp is multiplied by Impp, we get maximum power delivered by solar 

cell/module. This point is generally found near the bend of I-V curve. Thus, it 

is important for all application of this system that it should operate at a point 

of combination Vmpp & Impp to deliver maximum power at all times 

throughout its operation. 
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Fig.1.6. PV module (I-V) and (P-V) characteristic curves. 

  

 Significant factor that affects a PV module's performance include a minor 

variation in its surrounding temperature & level of irradiance falling on it. 

Temperature of PV cell greatly affects its Voc. During energy conversion, 

internal power dissipation generates excessive heat that raises the temperature 

of the solar cell. Changing weather conditions also contributes to the rise in 

temperature on these cells. As a result, Voc will decrease [Singh and 

Goswami, 2018]. This will reduce their power output. Effect of temperature 

variation on PV module (I-V) and (P-V) characteristics curves is depicted in 

fig.1.7.(a)-(b).   
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     (a)                (b) 

Fig.1.7. Effect of changing temperature on (a) I-V curve (b) P-V curve. 

 

 Likewise, solar irradiance "W w/m
2
" fluctuation affects output of PV 

module because irradiance directly affects how much current a PV module 

produces. As irradiance increases, rise in output current of PV module is 
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observed. Effect of changing irradiance on (I-V) and (P-V) characteristics 

curves of solar PV module is illustrated in fig.1.8.(a)-(b). 
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(a)                             (b) 

Fig.1.8. Effect of changing irradiation on (a) I-V curve (b) P-V curve. 

 

1.7. Effect of partial shading  

 A shadow formed on solar modules due to any obstruction that intercepts 

sun rays causes partial shading on PV module. Shading on PV module due to 

various factors greatly influences the performance of PV systems. Uniform 

irradiance on PV modules is not possible at all times owing to several 

environmental conditions like storms, clouds and rain etc. Also, shades from 

nearby trees and buildings cannot be ignored while installing a PV system in 

urban areas. Due to these shading effects, a PV system generates less power at 

its output [Bayrak et al., 2017]. A PV system operating in this scenario is 

known as partial shading conditions of its operation. Operation of PV system 

in partial shading conditions can lead to: 

 Many LMPP exist on PV module (P-V) curve making them highly non 

linear, resulting in solar cell damage due to production of hotspots. 

 Mismatch between PV array voltage and current. 

 Output power of PV system fall drastically. 

 Many peaks on (P-V) curve are observed as effect of partial shading 

goes on an increase. 

Fig.1.9 shows the root causes of partial shading along with their impact and 

remedies. If one of the cells of a PV module cells string is shaded, than current 

flowing through it will drops down. This makes the unshaded cells to carry 
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more current. Thus, in reverse direction these cells act as a diode. Moreover, 

output power of PV string will drop on account of string current drop due to 

shaded cell. The string of these cells is coupled to a bypass diode to counteract 

this impact. With this kind of a setup, flow of current will be unidirectional. 

Partial shading impact on PV module characteristics curves is illustrated in fig 

1.10 (a-b) respectively. 

PV

SYSTEM

      Trees

      Poles

      Buildings

      Lifeless Leaves

      Passing clouds

PSCs

Causes

   High Power Loss

   Low Efficiency

   Multiple MPP

   Reduced FF

   Hot Spot

PSCs

Impacts

    MPPT

    Sun Tracking

    Array reconfiguration

    Cyclic maintenance

PSCs

Reduction

 

Fig.1.9. Partial shading Root causes, effects and remedies to boost PV 

performance 

      

(a)                                                             (b) 

Fig.1.10. (a) I-V curve (b) P-V curve of PV module under PSCs. 

 

1.8. Role of MPPT techniques in PV systems  

 Electrical energy derived from PV system finds numerous applications in 

different fields such as in space satellite, street lighting system, solar vehicle 

and power supply in remote areas. PV system output current and voltage are 
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different for each irradiation and temperature combination, as discussed 

previously. From (P-V) and (I-V) curve it is also studied that for each 

combination of temperature and irradiation there is only one MPP. Driving the 

PV array to operate at MPP-referenced voltage will significantly boost the 

amount of energy produced. This will enhance the energy production which 

can be related to cost saving. Thus, MPPT system plays a significant role in 

these systems with implementing MPPT techniques in them. To mitigate the 

rapid change in environmental conditions or load variations, tracking of MPP 

requires a smart and faster MPP controller. MPPT is an electronic tracking of 

MPP implemented by the combination of hardware and software in a 

controller. DC-DC converter with its switching control with software control 

made MPPT controller. Extracting utmost power from a PV array is main goal 

of an MPPT controller by ensuring that array must operate at most efficient 

voltage. Output of PV array is monitored and compared with the load 

requirement. Best power that PV array can provide to load is then determined 

and converted to optimal voltage to deliver maximum current to the load. With 

adjustment in DC-DC converter duty cycle, they matched the impedance of 

load to PV array. Microcontrollers are used to manage this task in these 

controllers. MPPT control is achieved by incorporating various MPPT 

techniques in these digital controllers [Kchaou et al., 2017]. These techniques 

differ from each other in terms of computational complexity, cost, tracking 

response, tracking efficiency and on many other factors. These algorithms are 

made to make sure that PV array output is constantly at its MPP. Since PSCs 

extremely deteriorates the performance of PV array, MPPT techniques plays a 

significant role in maximizing the solar energy generation.  

 There are many other advantages of MPPT controller in PV system such 

as: 

 High efficiency. 

 Capability to optimize DC load and voltage discrepancies. 

 Appropriate for larger networks when solar panel output greatly 

outpaces battery voltage.  

 Enhance the system capacity. 
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 Works well in cold weather. 

 Different researchers report different MPPT techniques in past years 

[Gupta et al., 2016; Baba et al., 2020]. A reported comparison of these 

techniques under PSCs and uniform irradiance is given in [Podder et al., 

2019; Verma et al., 2022]. P&O [Szemes and Melhem, 2020], INC 

[Christopher and Ramesh, 2013], FOCV [Huang and Hsu, 2016], HC 

[Jately et al., 2012] and FSSC [Noguchi et al., 2002] are traditional MPPT 

techniques to chase maximum power in PV system. These techniques work 

well under uniform irradiation conditions and are modified from time to time 

[Ali et al., 2020; Batarseh and Za’ter, 2018] for improving a PV system's 

efficiency. With the advancement in intelligence network various AI 

[Kermadi and Berkouk, 2017] based techniques are now invented which 

raises a PV system's efficiency specially in PSCs. FLC [Farajdadian and 

Hosseini, 2019], ANN [Messalti et al., 2015] & ECI [Megantoro et al., 2018] 

shows a drastic improvement in PV system performance under PSCs. 

Nowadays, techniques based on biological behavior of species in BI [ Pathy et 

al., 2018] and SI [Pilakkat et al., 2020] catches the attention of many 

researchers towards them in achieving MPP. A complete survey of MPPT 

techniques is given in next chapter of the report. 

 However, the selection of a particular MPPT technique remains 

ambiguous. Consequently, there is a critical requirement to regularly explore 

and review the created MPPT approaches, since this will help in deciding on a 

particular methodology based on particular circumstances. 
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CHAPTER 2 

LITERATURE SURVEY 

 

 Solar PV systems have high potential of power generation amongst various 

other renewable sources of energy [Guangul and Chala, 2019]. But owing to 

variable environmental conditions & irradiations, power generated by these 

systems shows significant fluctuations, thereby calling for some backup 

system [Vikas et al., 2018]. Every PV module has a distinct MPP in different 

climatic conditions. MPPT algorithms are thus utilized to extract most power 

from it. MPPT techniques are well-known operating point matching 

technology, put in between power converter and PV array. Electronic 

converters are used to execute these techniques. Though these strategies, 

improving the PV system's effectiveness, concerns regarding detecting GMPP 

under PSCs are common amongst researchers. Microcontrollers are used to 

implement these algorithms. These algorithms alter DC-DC converter duty 

cycle, which is used in PV systems, after periodic sampling of important PV 

array parameters. Maximum power at PV system output is obtained through 

this process because it alters the impedance seen by PV module. Many MPPT 

techniques have been reported till now and practically applied to PV systems 

in order to optimize their power generation in unshaded and PSCs which are 

broadly classified as shown in fig 2.1.  

 MPPT techniques are utilized to extract utmost power from PV system 

which is a function of irradiance level and temperature on PV module. 

Unfortunately, nonlinearity of temperature and irradiance variation has a 

negative impact on the PV system's efficiency. Consequently, many LMPP 

appears on    (P-V) and (I-V) characteristics when the whole PV array doesn’t 

receive homogeneous solar irradiations. To optimize the output of a PV 

system, several MPPT techniques have been used. However, complexity arises 

while selecting particular MPPT technique in changing weather circumstances   
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and for specific PV set up configurations; since each approach has its own 

prospective and consequences. Numerous evaluations on this subject have 

been published to assist researchers and field engineers in selecting an 

acceptable MPPT for a certain PV system [Dash et al., 2015].  
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 Fig.2.1. MPPT Techniques Classifications 

 

 Broadly, Conventional and AI based are two major categories of MPPT 

techniques. P&O, INC, FOCV and FSSC fall under the category of 

conventional MPPT techniques. AI based techniques finds its applicability in 

metaheuristic techniques, ANN, FLC and evolutionary MPPT algorithms. 

Metaheuristic MPPT techniques are BIO inspired and swarm intelligence 

based. Firefly, cuckoo search and flying squirrel search fall under bio inspired 

MPPT metaheuristic approaches while salp swarm, GWO, ABC, ACO and 

PSO come under swarm intelligence MPPT metaheuristic techniques. Thus, it 

is required to have a complete review of these MPPT techniques along with 

their latest implementation. 
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2.1. Conventional MPPT techniques: 

2.1.1. P & O MPPT technique  

 This MPPT technique is most popular in tracking MPP due to its numerous 

advantages such as low computational complexity, low cost of implementation 

and requires few numbers of sensors [Nkamblue et al., 2019; Reddy et al., 

2018]. It’s an iterative technique which works by voltage alteration of PV 

array and monitoring its outcome on array output power and this is achieved 

by altering DC-DC converter duty cycle. Voltage at output terminals of PV 

array is continuously monitored and perturbed by a tiny amount, resulting in 

variation of power as illustrated in table 1. Operational point on P-V 

characteristics is on the left side, if there is a rise in voltage, it results a rise in 

power. If power decreases as voltage rises, this point lies on right part of the 

P-V characteristics. Thus, in order to track MPP, the path of perturbation must 

converge towards a specific destination.  

  

Start

Sample  PV Module

V(k) & I(k)

P(k)= V(k) X I(k)

P>0

V>0 V>0 

 Duty Cycle is raised Duty Cycle is lowerd

Update the Parameters

Return

Y

Y Y

N

NN

 

Fig.2.2. MPPT technique using P&O [Reddy et al., 2018]. 
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 This iteration technique is then repeated until MPP is attained. This 

technique suffers from the drawback of steady state oscillations under PSCs, 

high power losses and low system efficiency [Szemes and Melhem, 2020]. 

P&O is modified time to time [Ahmed and Salam, 2016] and its benefits are 

taken by combining with other MPPT approaches. Working of P&O can be 

easily understood with simplified flowchart demonstrated in fig 2.2. 

 

Table 2.1: Working of P&O based MPPT technique 

Present 

Perturbation  

Change in 

Power 

  Next perturbation 

direction  

ΔV < 0 ΔP < 0 Positive 

ΔV < 0 ΔP > 0 Negative 

ΔV > 0 ΔP < 0 Negative 

ΔV > 0 ΔP > 0 Positive 

 

2.1.2. INC MPPT technique 

 INC is an enhanced form of P&O and it has the ability to track MPP is 

varying irradiance conditions [Bouksaim et al., 2021]. Working principle of 

this technique is power ‘p’ slope evaluation on P-V characteristics. 

Instantaneous power can be evaluated from instantaneous voltage and current 

as 

                                                                                   (2.1) 

 

          Slope of P-V characteristics can be found by differentiating 

instantaneous power with respect to instantaneous voltage as 

      
      

  
 

 

   
  

  
    

  

  
  

 

                                                     
  

  
                                                   (2.2) 
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 If the array operating point is at its MPP, than Eq. (2.3) holds good while if 

it is towards left and right part of P-V characteristics, than Eq. (2.4) and (2.5) 

holds good. 

 

                                                
       

                              (2.3) 

 

                                               
       

                                                   (2.4) 

 

                                               
       

                                                  (2.5) 

 

 MPP can be obtained by altering DC-DC converter duty cycle equipped 

with INC algorithm illustrated in table 2.2. 

Table 2.2: INC MPPT technique. 

Mode Perturbation Status 

   
       

                     

    
       

            Raise the voltage till  

          

   
       

            Lowering the voltage till  

          

 

 Thus, instantaneous conductance is compared with incremental 

conductance by this technique at P-V curve [Sera et al., 2006; Bouksaim et 

al., 2021] to track MPP. INC is widely used same as P&O. In INC, Duty cycle 

of DC-DC converter is altered in fixed and variable steps based on P-V curve 

slope till MPP is attained. With large step size, MPP can be achieved in less 

time but results in oscillations around it [Esram and Chapman, 2007; 

Kumar et al., 2018]. On the other hand, as step size decreases, oscillations 

near GMPP can be reduced which increases system efficiency but results in 

low tracking speed. Simplified steps of INC MPPT technique is illustrated in 

fig 2.3 flowchart. 
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Fig.2.3. MPPT technique using INC [Sera et al., 2006]. 

 

2.1.3. FOCV MPPT Technique. 

 The P-V characteristics show that the Vmpp of a PV array is nearly constant 

in relation to its VOC. Thus, PV array may be made to work based on its open-

circuit voltage. This technique can be implemented by momentarily 

disconnecting the solar array from the PV system and measuring VOC. The 

technique then calculates right operating point and modulates PV array voltage 

till computed voltage at MPP is achieved. Correct operating point is calculated 

by evaluating voltage at MPP as 

                                                                         (2.6) 

 

 Where range of “b” is 0.71 < b < 0.78 [Ch et al., 2011] and depends on 

environmental & PV modules conditions. This MPPT technique is very simple 

to apply, however, it has two main flaws. The first is the problem in 

determining the ideal constant value i.e. the ratio of      to     . The other is a 
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short cutoff of PV power to measure open-circuit voltage. The latter problem 

can be solved by employing pilot cells. Fig. 2.4 demonstrates the working of 

FOCV based MPPT technique. 

Start

Measure Voc

Initialize ‘b’

Calculate Vmodule = b x Voc

Vmodule= Voc

Stop

Upgrade ‘b’

Y

N

 

Fig.2.4. MPPT technique using FOCV [Ch et al., 2011]. 

  

2.1.4 FSCC MPPT Technique. 

 It is also found that the relationship between short-circuit current and 

maximum power corresponding current is nearly constant. As a result, MPPT 

technique with constant-current that estimates the current at MPP as a constant 

ratio of ISC can be used [Yuvarajan and Xu, 2003; Veerachary et al., 2002]. 

This technique, like FOCV, is an indirect way for tracking MPP. ISC is sensed 

and current at MPP is computed; FSCC technique then modulates the PV array 

output current till the estimated MPP current is achieved. Current at MPP is 

calculated as 

 

                                                                                             (2.7) 

 

           “d” lies in the range of 0.78 < d < 0.92 [Kumari et al., 2011]. FSCC 

has the same flaws as FOCV technique. However, FOCV technique is 

typically preferred since measuring VOC is simpler than measuring ISC. The 
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use of a pilot cell can prevent a brief interruption in the steady voltage or 

current.  

Start

Measure Isc

Initialize ‘d’

Compute Imodule = d X Isc

Imodule= Isc

Stop

Upgrade ‘d’

N

Y

 

Fig.2.5. MPPT technique using FSCC [Kumari et al., 2011]. 

           

 Simple steps of FSCC technique is demonstrated in flowchart shown in fig 

2.5. These traditional methodologies forms the basis for monitoring GMPP in 

PSCs. Taxonomy related  to monitoring MPP by these traditional MPPT 

techniques is tabulated in table 2.3, while table 2.4 discusses their pros and 

cons. Percent improved in GMPP is calculated as 

                                                    

                   
                                                   

                             
         (2.8) 

 

2.2. SI based metaheuristic MPPT techniques 

 This section describes in depth, a range of SI based MPPT techniques and 

reports recent literature based on it in table 2.5 while table 2.6 tabulates their 

pros and cons during GMPP tracking in PSCs. 

 

2.2.1. Ant colony optimization  

 ACO is inspired by ants' supporting hunt activities for straight line 

between their colony and food source. Initially, ants scuttle around randomly.  
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Table 2.3: Literature survey taxonomy on conventional techniques for GMPP Tracking. 

Authors 

[Reference No.] 

PV system 

size 

PV 

module 

Pm(W) 

Optimization 

Techniques  

Best 

optimization 

Techniques 

Irradiance  

(W/m
2
) 

GMPP(W) Improved 

GMPP(%) 

Tracking 

Time (s) 

Shading  

patterns 

Numan et al., 

2021 

2 PV module 

in series 

71.8 P&O 

Variable step P&O  

Variable step 

P&O 

200 to 800 106.2 ,116.1, 

29.22 

0 2, 4.8 Uniform 

Gil-Velasco et 

al., 2021  

5 PV module 

in series 

250 P&O, ACO, 

ACO-P&O, Proposed 

Proposed 200 to 1000 30.49, 44.97 35.15, 102.9 1.12 Uniform 

Efendi et al., 

2018 

3 PV module 

in series 

50 P&O,  

Modified P&O 

Modified 

P&O 

 

828 to 946 6322, 7385, 

6037, 7051, 

5387 

27.69, 31.63, 

8.30, 61.42, 

31.19 

Not 

Available 

Uniform 

Shang et al., 

2020 

1 PV module 49.8 Conventional INC 

Proposed INC 

Proposed 

INC 

300 to 800 27.61, 25.1, 

40.18, 25.1 

0.217, 0.199, 

0.424, 0.039 

0.3, 0.35,  

0.16, 0.05 

Uniform 

Zand et al., 

2021 

1X1 100.17 INC, SP-INC SP-INC 800 to 1000 81.292, 

94.097, 

98.981 

1.615, 1.179, 

1.811 

Not 

Available 

Uniform 

Baimel et 

al.,2019 

Not 

Available 

Not 

Available 

FOCV, PC, SPC SPC 200 to 1000 04.83, 15.76,  

27.11 

11.03, 0.83, 

10.98, 11.01, 

0.89, 0.93 

Not 

Available 

Uniform 

Hua et al., 2014 4 PV module 

in series 

60  CSAM, Proposed Proposed 300 to 1000 470.95 7.27 0.043, 0.049 Uniform 

Nadeem et al., 3 PV module 245.328 Analytical FOCV, Proposed  600 to 1000 438.15 0.51, 89.67 Not Uniform 
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2020 in series Offline FOCV, 

Proposed  

Available 

Fapi et al.,2021 1PV module 145 FSCC, Proposed Proposed Not 

Available 

85 13.33 0.7 NA 

Sarika et 

al.,2020 

1PV module 100 Proposed, VSS, P&O, 

VSS Fuzzy 

Proposed 

 

600 to 1000 65.27, 76.50  2.99, 4.08 0.01 Non uniform 

 Li et al.,2016  Not 

Available 

178.4 Proposed INC, Fixed 

step INC, Variable step 

INC 

Proposed 

INC 

 

00 to 1000 175.6 1.738 0.38, 0.14, 

0.165 

Non uniform 

Owusu-Nyarko 

et al.,2021 

Not 

Available 

60 Proposed, Variable step 

size methods 

Proposed 

 

400 to 1000 596.9 0.285 0.0126 Non uniform 

Sarwar et 

al.,2022 

4X1 315.072 PSO, DFO, INC, 

Hybrid, CS, FA, ACO 

Hybrid 200 to 1000 780.4, 511.4 9.6, 57.53 0.48, 0.20 Non uniform 

Hafeez et 

al.,2022 

4 PV module 

in series 

Not 

Available 

Hybrid, DFO, ACS, 

WCA, PSO, P&O. 

Hybrid 

 

200 to 1000 1077.0, 794.8, 

593.2,, 1259.9   

0.937, 0.353, 

7.32, 1.933 

0.16, 0.25, 

0.4, 0.17 

Non uniform 

González-

Castaño et 

al.,2021 

4 PV module 

in series 

200 SPF-P&O, P&O SPF-P&O 

 

120 to 1000 331.85, 

405.63 

30.53, 4.59 NA Uniform & 

Non uniform 
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Table 2.4: Literature survey based on conventional MPPT techniques: Pros 

and Cons. 

Authors 

[Reference No.] 

Pros Cons 

Numan et al., 

2021 

 Computationally less 

complex to implement. 

 Oscillations are observed in 

steady state.  

 Loss of power when 

tracking GMPP 

 Tracking time is high 

Gil-Velasco et 

al., 2021  

 Quick convergence 

time 

  Tracking efficiency is 

high 

 Oscillations are observed in 

steady state.  

 Power loss due to 

oscillations around GMPP 

Efendi et al., 

2018 

 Computationally less 

complex to implement. 

 Tracking time is not 

reported. 

 Additional sensors are 

required. 

Shang et al., 

2020 

 Ability to determine the 

right direction of 

disturbance. 

  Tracking accuracy is 

high. 

 Power loss due to 

oscillations in steady state. 

 Boost in GMPP is low. 

Zand et al., 2021  Less Complex to 

implement 

 Tracking efficiency is 

high. 

 Oscillations are GMPP is 

observed. 

 No record of tracking time. 

Baimel et 

al.,2019 

 Overall system 

efficiency is enhanced. 

 Power loss on account of   

switching, switches & output 

power of semi pilot cell  
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Hua et al., 2014  Highly accurate. 

 Tracking time is low. 

 Required additional sensors.  

 Oscillations in steady state. 

Nadeem et al., 

2020 

 Voc may be measured 

constantly without 

detaching the PV 

module. 

 Tracking efficiency is 

high. 

 Required more sensors. 

 Highly complex to 

implement. 

 Tracking time is not 

recorded. 

Fapi et al.,2021  Output power contains 

low ripples. 

 Tracking efficiency is 

high. 

 Required additional sensors 

to implement. 

 More parameters must be 

initialized first. 

Sarika et 

al.,2020 

 Tracking time is low 

 Output current contain 

low ripples. 

 Oscillations in steady state is 

observed. 

 

 Li et al.,2016   Tracking performance 

is improved by 

automatically regulated 

step size . 

 Fast dynamic response. 

 Oscillations around GMPP is 

observed. 

 Computationally more 

complex.. 

Owusu-Nyarko 

et al.,2021  

 Dynamic performance 

is improved by 

modifying the scaling 

factor in response to 

irradiance. 

 Low overshoot. 

 Oscillations are observed in 

steady state . 

 

Sarwar et 

al.,2022 

 Tracking efficiency is 

high. 

 Settling time is low. 

 Oscillations are observed 

around GMPP. 

 Computationally more 



26 
 

complex in design. 

Hafeez et 

al.,2022 

 Tracking efficiency is 

high. 

 Can deal with complex 

partial scenarios. 

 Oscillations are observed 

around GMPP. 

 Computationally more 

complex in design. 

González-

Castaño et 

al.,2021 

 Reliable and prompt 

tracking response. 

 No oscillations in 

steady state under 

PSCs. 

 Tracking factor is low 

system start up. 

 Settling time is high. 

 

 Once food source is discovered by an ant, it returns to its home province, 

producing pheromone trails behind. This pheromone is made up of certain 

chemical substances that biological organisms use to communicate signals to rest 

members within the same group. In the event of additional colony ants arrive onto 

a path, they take them to the source of food rather than wandering aimlessly. 

When ants return to their habitat, they leave pheromones that boost the pre-

existing pheromone level. The intensity of the pheromone is concentrated and it 

disappears with time. Finally, the ants control and establish shortest route to the 

food source. ACO starts with a solo artificial ant’s colony positioned randomly in 

that colony. Assume that N parameters represent ants and with utilization of ant 

magnetic ability in colony they attract other ants. On the strength of 

this attractive force, they move from the weaker intensity zone towards stronger 

intensity zone. Following each iteration cycle, enticing potential resolute and ants 

follow the best alternative route on the basis of results. 

 Consider the task of tuning 'n' artificial ants (parameters) such that A  n. 

Value 'A' is kept in solution register, which reflects the most recently constructed 

arbitrary solutions. Eq. (2.9) shows the final outcome, which was sited based on 

their fitness significance f(si) as 

                         f(s1)   f(s2)    f(s3)   f(s4) ………….. f(sn)                  ( 2.9) 
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Start

Initialize ACO

parameters & solutions

Compute each artificial ant

current, Voltage & Power

Evaluate each artificial ant

Gaussian kernal, Standard

deviation, Mean & weight function

Is Ant_Num = n?

Rank (Y+Z) solution, while

retain ‘Y’ solution

i=i+1, start with first ant

(Ant_Num=1)

Is i > imax

(maximum iteration

number)?

MPP not changed

Is operating

conditions changes

suddenly ?

Best solution acheived

Stop

Solution is

Re-initializeY

Y

Y

N

N

N

 

Fig.2.6. MPPT technique using ACO [Jiang et al., 2013] 

 

 Likewise, Kth solution can be found by Gaussian Kernel function to make 

new conditions to find the locations of these ants with sampling for ith 

dimensions as [Verma et al.,2021]. 

                                                     

           
 
      

         
 
   

 

      
  

  
       

   

     
   

 

                   (2.10) 
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 Depending on parameters, number needs to be enhanced and the investigation 

cycle continues. Unique 'Y' solutions are created. These solutions are then added 

to the initial 'Z' solutions. Following that, Z + Y solutions must be entered into the 

search field. Z's most successful arrangements are quickly restored. As a result, 

the entire cycle is repeated for the required iteration numbers [Jiang et al., 2013]. 

ACO is more favorable than standard MPPT approaches due to its high 

convergence rate, effective GMPP tracking and less iteration numbers in its 

execution. This MPPT algorithm suffers from the drawback of iterations causing 

changes in the probability distribution and uncertain convergence time. Fig.2.6 

depicts basic steps to implement an ACO in the form of flow chart. 

 

2.2.2. Particle Swarm Optimization 

 This optimization technique uses randomized search tactics and is based on 

maximization of nonlinear continuous functions. It adheres to the natural patterns 

of flock collecting and fish schooling. This approach employs a number of 

connected birds, each of whom signifies a particle. Fitness value of each particle 

in search area is mapped by velocity & position vector. The fitness rating of each 

particle determines its direction and steps. Subsequently, a solution is presented 

by each particle by integrating the details obtained throughout their own 

exploration phase to land at most suitable solution. 

  PSO begins with a set of arbitrary solution groups depending on positions 

of particles and their velocity in search space. Particles fitness value is changed 

after every iteration using their intellectual and social trade-off. Individual and 



29 
 

societal best positions are attained as a result of trade-offs. Best position of each 

particle is memorized by them while acquiring the global best location [Oliveira 

et al., 2015]. Fig.2.7 demonstrates the simplified flowchart of PSO based MPPT 

technique. After every cycle, the swarm seeks out a superior solution by driving 

its velocity & position. Thereafter, each particle quickly achieves a global 

maximum. With velocity 'V' and position 'X', condition is updated by nth particle 

for kth cycle as shown below. 

                                                                

                      (2.14)                  

                                                         (2.15) 

 

               

 

 When an improvised condition, such as in Eq.(2.16), satisfied the initialization 

criterion, the methodology update is in accordance with Eq (2.17). Function 'Ft' 

should be maximized. 

 

                                                                                              (2.16) 

 

                                            (2.17) 

 

 The duty ratio was employed as the particle position and the incremental 

adjustment in it is considered as velocity while utilizing PSO MPPT technique in 

PV systems. The fitness function is the PV system's model. The key issue in 

actual PSO operation is the utilization of random values on the PV system, which 

might influence system’s stability. Furthermore, the key concern in applying PSO 

approach in PV system MPPT is to have a lesser particle numbers to achieve a 

reliable solution. Using traditional PSO will not meet this criterion as quickly as 

needed. As a result, a quick technique for obtaining optimal duty change will aid 

in strengthening the robustness of the PV system.  
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Start
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Swarm

Reached the

GMPP?

Output : global best

position ( p g,best )

Stop

Compute fitness

function ‘Ft(X)’

for each particle

A

A

K=k+1

Y

Y

Y

N

N

N

 

Fig.2.7. MPPT technique using PSO [Oliveira et al., 2015]. 

 

 Thus, PSO is modified from time to time by many researchers to achieve 

GMPP in PSCs with high accuracy and efficiency. Less oscillations in steady 

state, quick response in partial shading scenarios and high tracking efficiency 

makes PSO very familiar MPPT technique in PV systems. 

 

2.2.3. Artificial Bee Colony 

 Foraging abilities of honey bees is the main basis of this optimization 

technique. It’s a rational, smart, and exploratory global optimization approach. 

Honey bees communicate within their hives through a transfer of pheromones 

chemical and shake dance. If food i.e., honey supply is discovered by a bee, food 
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source site is executed by their shake dance while it returns to its colony. The 

potency and duration of this dance pattern express abundance of sources of 

identified food source. 

 ABC algorithm generates employed, scout and onlooker types of artificial 

bees. The beehive is equally split among onlooker and employed bees. Finding 

best honey source (food) is main aim of entire bee population. Initially, food is 

discovered by employed bees. On returning to their hive they disseminate their 

food discovery to other two groups of bees using shake dance steps. Onlooker 

bees strive to identify a food supply by attentively observing employee bees shake 

dance, whereas scout bees ambiguously stare for fresh sources of food. As a result 

of their coordination and communication, these bees reach at optimal solution in 

shortest feasible time [Benyoucef et al., 2015; Mohapatra et al., 2017]. As 

detailed below, the ABC algorithm tracks GMPP in five stages. 

Phase 1: Initialization phase 

 In the hunt area, generate    food sources at randomly. The algorithm's 

efficiency increases as the group size grows. According to Eq. (2.18), each 

solution n-dimensional vector    distributes the total employed bee correspondent 

with every distinct food source with n optimization parameters designated as 

 

                                                                     ( 2.18) 

                            

Phase 2: Employed bee phase 

 Identifying source of food site with greatest nectar in the exploring region 

(i.e., GMPP) is main objective. According to Eq. (2.19), each employed bee 

advances to its fresh location (Xi, k) within the nearby area by using prior 

location value (Yi) to keep  previous location value (Yi) stored in reminiscence. 

 

                                                                                    (2.19) 
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 Range of      is [-1,1] and     is other than    i.e     . When employed bees 

are looking for a new food source, they use a gluttonous assortment approach. In 

this method, quantity of nectar available previously and in most recent places is 

compared. Accordingly, a superior choice is preserved. 

Phase 3: Onlooker bee phase 

 Onlooker bees use a stochastic selection technique to locate solutions (sources 

of food) with fitness factor f(x) using information concerning sources of food 

collected via shake dance of employed bees as per Eq.(2.20). 

    
     

      
  
   

                                             (2.20) 

Start

Set the control Parameters &

Initialize Employed bee location

Yi,k ( i.e initial duty cycle)

Compute initial duty cycle

Alter Yi,k ( i.e initial duty cycle) &

compute them;

Start greedy selection process;

Evaluate each food source

probability of selection Pi

Select spectator bees &

compute their duty cycle;

Start greedy selection process

Determine the scout bees'

abandoned duty cycle;

Replace & re-evaluate them

according to eq (2.18)

Stores best global duty

cycle till achieved;

cycle = cycle + 1

Is power

unchanged ?

Best duty cycle till

achieved ‘Dbest’

Is operating

conditions changes

suddenly ?

Re-initialize the

duty cycle as per eq

(2.18) & cycle = 1

Best solution
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Stop

Y

YN

N

Scout bees phase

Spectator bees phase

Employed bees phase

Initialization phase

 

Fig.2.8. MPPT technique using ABC [Mohapatra et al., 2017]. 
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Phase 4: Scout bee phase 

 Bees of this phase can use Eq. (2.20) to find new viable solutions in the 

neighborhood of the chosen source of food. In any case, despite a complete 

inspection of the whole inspected region by employed and onlooker bees, fitness 

value of source of food stays intact for the existing step. In the next stage, these 

employee bees become scout bees, which utilize Eq. (2.18) to explore new 

feasible solutions. 

Phase 5: Conclusion phase 

  If the power generated doesn't quite improve further, the technique is 

terminated. The method, on the contrary, will resume if the output power 

fluctuates due to a variety of causes. One of these is irradiance fluctuation and 

such alterations can be expressed as 

 

                                              
            

       
                                               (2.21) 

 

 If Eq. (2.21) is verified, ABC resumes its search for GMPP. As a result, ABC 

works effectively in PSCs. The ABC MPPT technique flowchart is shown in 

fig.2.8. 

 

2.2.4. Grey wolf optimization 

 This optimization approach is inspired by social hierarchy and hunting 

behavioral characteristics of grey wolves [Eltamaly and Farh, 2019] and was 

reported in 2014. Grey wolves generally live in packs that are around the size of a 

family (5,12). Grey wolves are categorized into four groups as alpha ( ) wolves, 

beta (β) wolves, delta (δ) wolves and omega (ω) wolves, depending on their 

dominance in their communities, as shown in fig.2.9. Forerunners are ( ) wolves 

on top level and hence considered as foremost explanation for a particular 

optimization issue. ( ) wolves are followed by (β) wolves.  They assist them 

to achieve their goals and acquire their place if ( ) one dies. Pack's hunters, 

guards and investigators are (δ) wolves and form the pack's second end group. 
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Thus (β) wolves are second and (δ) wolves are third-best solutions. Youngest 

members are in (ω) wolves’ category and form the final group and hence 

represent the residual solution [Mohanty et al., 2016]. 

 







Leaders

Assist the leaders

Hunters, Keepers

& Explorers

Young Members

 

Fig.2.9.The Grey Wolf's Hierarchy. 

 

 Wolf domination decreases when the rank of wolves decreases in the 

hierarchy structure from top to bottom. Apart from wolf community order, 

collective hunting has a strong influence on grey wolf social behaviour. 

Considering this, GWO algorithm’s mathematical model examines the following 

criterion [Mohanty et al., 2016] as: 

 

Step-1:  Social Hierarchy:  

 To mimic the hierarchal structure of wolves, GWO algorithm assumes ( ) as 

the best option, subsequently (β) as second and (δ) as third best solution. (ω) is 

regarded to be the last remaining viable solution. Thus,   wolves lead the hunting 

party, with wolves chasing after. 

 

Step-2: Tracking and Encircling the Prey 

 Eq.(2.22) and  Eq.(2.23) demonstrate mathematical behavior of grey wolfs 

during chasing phase when they encircle prey (with i iteration). With the present 

iteration, wolf’s distance vector ‘d’ from prey can be calculated by Eq. (2.22) 

 

                                                              
                  

                                       (2.22) 
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                                                    (2.23) 

                                                                                                                  (2.24) 

                                                                                                                       (2.25) 

 Range of               is [0,1] and     linearly reduce to 0 from 2 during each iteration 

 

Step-3: Hunting 

 A wolf can reach any location between the spots with the help of               

arbitrary vectors. The top 3 solutions (i.e  , β and δ wolves locations) are saved 

primarily. Places of other investigating wolves are changed according to the most 

recent solution information. Therefore, this approach is utilized by grey wolf to 

better their positioning at all tracks. 

 

Step-4: Attack the prey 

 Because     decreases linearly to 0 from 2 in each cycle, prey arrives at an 

unchangeable halt condition & attacked by grey wolves once |A| < 1 is reached. 

 

Step-5: Searches for Prey 

 Grey wolves are forced to seek prey if condition |A|>1 is met. This procedure 

describes investigation approach, in which wolves roam apart from one another in 

pursuit of prey and then converge to hunt the prey. Complete procedure of GWO 

based MPPT technique is depicted in fig 2.10. 

 The GWO based MPPT approach addresses the constraints of conventional 

MPPT techniques, such as low tracking efficiency, oscillations & transients in 

steady-state and demonstrates efficient performance when compared to other 

well-known MPPT optimizers. Simplicity, flexibility, ease of implementation, 

robustness and tuning of less numbers of parameters makes GWO technique 

popular amongst other metaheuristic MPPT techniques. However, it suffers from 
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the drawback of low speed of convergence, low accuracy and tendency to get 

trapped in local solutions. 

Start

Initialize GWO technique

Set i = 1

Arbitrary develop duty

cycle ‘D’ for each wolf

Measure solar array Vpv & Ipv

Evaluate solar array Ppv

Is P(i) > P(i-1) ?

Update Pbest ,i = P(i-1)

   Is Gbest >

Pbest,i ?

Is n = N ?

i.e All wolves fitness

value computed ?

Update wolves phase

Is convergence

criterion met?

Stop

i = i+1

n = n+1

Next Wolf

 Update Gbest

 Update Pbest ,i = P(i)
Y

Y

Y

Y

N

N

N

N

 

Fig. 2.10. MPPT technique using GWO [Mohanty et al., 2016]. 
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2.2.5. Salp swarm algorithm   

 This optimization approach was proposed in 2017 which simulates salps' 

swarm behaviour. Salps are zooplankton which has a body that resembles jelly 

and are barrel-shaped; they reside in the warm and deep ocean. It travels by 

pumping water through its gelatinous body, which is astringent. It creates a 

manacle around one leader, and the remainder of the chain follows it [Faris et al., 

2019]. Fig.2.11 depicts the basic steps of SSA algorithm in the form of flowchart.  

Start

Initialize Salp Population

Compute each Salp initial fitness value

Rectify best fitness value particle ;

Set best particle as leader

Upgrade weight constriants

Set Food fitness & position =

best Salp fitness & position

Upgrade iteration parameters

Upgrade leader Salp position

Upgrade follower Salp position

Adjust Salp swarm within space wound

Is convergence

criterion achieved?

 Best solution is produced

Stop

Is initial operating

conditions changed?

Y

Y

N

N

 

Fig.2.11. MPPT technique using SSA [Verma et al., 2021]. 
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For leader, candidate solution is updated first, followed by the candidate solution 

for the followers using the leaders' solutions. Suppose primary solution of the 

entire chain is given by     . ‘m’ is size of salp chain and ‘n’ is number of verdict 

variable.                               respectively.  

Solutions proposed by the leader are justified by 

                               
               

     
        

                        (2.26) 

 

                          
               

     
        

                            (2.27) 

 According to the Eq.(2.28), random numbers         are dispersed equally 

between [0,1] with current iteration ‘i’ and its maximum count ‘I’. 

                                                                    
                                          (2.28) 

This approach helps to update followers' potential solutions as 

 

                                                     
     

            

 
                                       (2.29) 

If minimum and maximum requirements of decision variables are still violated by 

candidate solutions, whole chain after the candidate solutions have been modified 

as advised in Equations (2.26), (2.27), and (2.29), the candidate solutions must be 

initiated again at proper upper and lower bounds of verdict variables. 

 

2.3. BI based Metaheuristic MPPT techniques 

           MPPT strategies that were motivated by the biological behaviour of 

diverse organisms are elaborated in this section. Additionally, numerous recent 

studies that track MPP and incorporate these methodologies are listed in tables 2.7 

and 2.8. 

2.3.1 Firefly MPPT algorithm 

 Insects that produce glow during night and use a particular light pattern to 

communicate with one another are fireflies. Each species' light colour is distinct. 

Brightness is equated to firefly attractiveness, which determines the FFA's hunt 

mould.  
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Table 2.5: Literature survey taxonomy on SI based techniques for GMPP Tracking. 

Authors, Year 
PV system 

size 

PV 

module 

Pm(W) 

Optimization 

Techniques 

Best 

optimization 

Techniques 

Irradiance 

(W/m
2
) 

GMPP(W) 
Improved 

GMPP(%) 

Tracking 

Time (s) 

Shading 

patterns 

Krishnan et al., 

2020. 

4X4 

3X6 
20 

Proposed, ACO, 

PSO, P&O 

Proposed 

ACO 
NA 48.75, 63 32.29, 1.00 1.56, 1.5 Non -Uniform 

Sridhar et al., 

2016. 

3 PV module 

in series 
NA ACO, P&O ACO NA 61.4 261.1 0.076 Non -Uniform 

Alshareef  et al., 

2019. 
NA NA APSO, PSO, P&O APSO NA 

76.51, 73.33,  

40.56 

73.49, 4.29, 

13.07 
1.9-2.4 NA 

Pandal et al., 

2018. 
4×1 60 

Modified PSO 

PSO, P&O 
Modified PSO 400 to 1000 116.4 105.3 0.9 Non -Uniform 

Gopalakrishnan 

et al., 2020 

4×4 

3×6 
20 

Proposed PSO 

PSO, P&O 
Proposed PSO NA 48.75, 56.25 32.29, 18.42 1.7, 1.9 Non -Uniform 

Mao et al., 2017. 3×1 83.2824 
Proposed, 

PSO 
Proposed 300 to 1000 

148.38, 60.8, 

245.31 
1.54, 32.83, -0.28 

0.012-

0.016 

Non –Uniform 

 

Koad et al., 2017. 4×1 NA 
LIPSO, P&O 

INC, PSO 

LIPSO 

 
200 to 1000 

11.67, 24.29, 

36.58, 48.76, 

60.64 

16.23, 8.80, 

12.79, 4.98 
NA Uniform 

Belghith et al., 

2016 
1 PV module 150 

PSO, Fuzzy_TS, 

P&O 
PSO 400 to 1000 

55.67, 

122.81,148.4

6 

5.69, 2.36, 1.48 

 

0.003-

0.043 

 

Non -Uniform 
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Obukhov et al., 

2020. 

3 PV, 4 PV & 

8 PV module 

in series 

320.4 
VCPSO, 

CFPSO 
VCPSO 100 to 1000 

312.3, 477.8, 

478.8, 960.2 

0.192, 0.378, 

0.041, 0.376 
0.48-0.66 Non -Uniform 

Li et al., 2019. 
3 PV module 

in series 
101.3 

OD-PSO 

Firefly, P&O-PSO 

OD-PSO 

 
300 to 1000 

110.85, 

112.85 
4.00, -10.48 1.64, 2.08 Non -Uniform 

Suhardi et al., 

2019. 
NA 200 GWO, INC GWO 400 to 1000 

35.9, 142.2, 

203.2 

-50.72, 54.76, 

112.19 
0.55 

Non –Uniform 

 

 

Kumar and Rao, 

2017. 

4 PV module 

in series, 2×2 
200 

EGWO, GWO, 

PSO 
EGWO 400 to 1000 

401.027, 

522.763, 

401.044, 

522.629 

7.91, -0.05, 

2.707, 0.938 
3.6-4.8 Non -Uniform 

Shi et al., 2018. 4×1 60 

P&O, PSO, GWO, 

GWO-P&O, GWO-

GSO 

GWO-GSO 300 to 1000 100.72 100.95 0.64 Non -Uniform 

Ilyas and Ghazal, 

2021 

4 PV module 

in series, 2×2 
100 

Modified GWO, 

GWO 

Modified 

GWO 
NA 

435.76, 

444.65 
0.045, 0.234 

0.189, 

0.21 
Non -Uniform 

Kraiem et al., 

2021 

4 PV module 

in series 
249 PSO, GWO PSO 200 to 1000 

359.1, 633.9, 

645.6 

0.447, 0.939, 

0.077 

 

0.0561-

0.071 

Non -Uniform 

Jamaludin et al., 

2021. 
4×1 59.85 

SSA, PSO, GOA, 

GWO, BOA, HC 
SSA 500 to 1000 

176.9, 114.3, 

136.3 

58.93, 107.7, 

23.5 

 

0.22, 2.3, 

4.2 

Non -Uniform 
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Dagal et al., 2022 
4 PV module 

in series 
60 

hybrid SSPSO, 

P&O, FA, DE, 

ISSA 

SSPSO 400 to 1000 124.09 6.55 0.29 Non -Uniform 

Krishnan and 

Sathiyasekar, 

2020 

3 PV module 

in series 

2X2 

220.5 SSO, WOA, GWO SSO 500 to 750 

02.7, 445.2, 

38.5, 525.4, 

41.8, 294.8 

 

28.43, 14.97, 

14.67, 39.92, 

10.04, 5.58 

0.0245-

0.0749 
Non -Uniform 

Farzaneh and 

Karsaz, 2020 

4 PV module 

in series 
60 

P&O, FFA, PSO, 

DE, SSA, ISSA 
ISSA 400 to 1000 115.59 6.53 1.22 Non -Uniform 

Ali et al., 2022 NA NA P&O, SSO SSO 200 843.5 2.55 0.72 Uniform 

Balaji and 

Fathima, 2020. 

4 PV module 

in series 
50 

Hybrid SSPO, SS, 

PO 
Hybrid SSPO 200 to 1000 

85.1, 96.1, 

78.2, 50.3 

 

0.09, 51.10, 

24.32, 27.66 

0.52-0.57 Non -Uniform 

Restrepo et al., 

2021. 

4 PV module 

in series 
200.143 

ABC-P&O, 

GMPPT P&O 

ABC-P&O 

 
120 to 900 597.95 54.19 NA Non -Uniform 

Sawant et al., 

2016 
NA 75 ABC, PSO ABC 800 to 1000 74, 61 2.77, 3.38 NA 

 

Non –Uniform 

 

Li et al., 2019. 
2 PV module 

in series 
NA 

P&O, PSO 

ABC, MABC 

Modified 

MABC 
800 to 1000 850 70.68 0.39 Non –Uniform 

Wan et al., 2019. 
3 PV module 

in series 
35 

SSA-GWO, P&O , 

PSO, SSA 

SSA-GWO 

 
300 to 1000 

69.32, 

104.88, 44.55 

 

1.612, 0.788, 

28.60 

0.46, 0.53, 

0.47 
Non uniform 
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Hayder et al., 

2020. 
NA 120 

IPSO, PSO-P&O, 

ANN-PSO 
IPSO 400 to 1000 

45.3924, 

94.9073, 

119.9720, 

69.9888 

NA 1.5 Non uniform 

Almutairi et al., 

2020. 
NA 60 OGWO, P&O OGWO NA 23, 60, 47.8 32.77 0.5, <1, Non uniform 

Sharma et al., 

2022. 

3PV module 

in series 
85 

TSA-PSO, FPA, 

GWO, TSA, PSO, 

P&O 

TSA-PSO 

 
300 to 1000 

122.88, 

103.36, 

156.84 

5.97, 22.20 

13.11 

0.54, 

0.40, 0.38 
Non uniform 

Chao and Li, 

2022. 
4X3 20 

I-ABC, PSO, 

P&O, ABC 
I-ABC NA 

198.6, 107.1, 

77.1, 246.6, 

148.8 

2.00, 17.43, 

66.88, 0.08, 

0.881 

0.63,  

1.48, 

1.14, 

0.38, 

0.89 

Non uniform 

Alaraj et al., 

2022. 
5X5 450 HGWO, PSO, INC HGWO 400 to 1000 

8256, 6441, 

6347, 5567 

13.09, 22.86, 

13.23, 20.50 

0.08, 

0.07 
Non uniform 

Windarko et al., 

2021. 

3 PV module 

in series 
100 

Proposed, 

DE, FF, PSO, 

GWO 

Proposed 100 to 1000 
172.9, 80.9, 

170.9 

5.81,  226.2, 

65.60 

0.45,  

0.52, 

0.41 

Non uniform 

Chawda et al., 

2020. 
NA NA 

ICPSO, P&O, INC, 

GA based FLC, 

PSO based FLC 

PSO-GA-FLC 

ICPSO 

 
300 to 1000 94.2, 60, 97.3 11.77, 7.955 0.1 Non uniform 
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Table 2.6:Literature survey based on SI MPPT methodologies: Pros & Cons. 

Authors, Year Pros Cons 

Krishnan et al., 

2020. 

 Tracking efficiency 

is high. 

 Required less 

numbers of 

iterations. 

  Ripples in output 

power is low 

 Low convergence time  

 Highly intricate in 

designing. 

Sridhar et al., 

2016. 

 High tracking 

response in PSCs. 

 High tracking time. 

 High numbers of 

iterations are required. 

Alshareef  et al., 

2019. 

 GMPP & LMPP are 

easily identified. 

  Dynamic response is 

high. 

 Further improvement 

in tracking time is 

required. 

 Oscillations in steady 

state. 

Pandal et al., 

2018. 

 Steady state has zero 

oscillations. 

 Algorithm 

considered all 

conditions of 

particle. 

 Computationally more 

complex. 

 High numbers of 

iterations are required 

Gopalakrishnan 

et al., 2020 

 High dynamic 

response in PSCs. 

 Steady state shows 

oscillations around 

GMPP. 

 Tracking time is high. 

Mao et al., 2017. 
 Tracking time is 

enhanced by 

 Highly intricate in 

designing. 
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adaptive inertia 

factor. 

 Low tracking error in 

PSCs. 

 Oscillations in steady 

state. 

 High numbers of 

iterations are required 

Koad et al., 2017. 

 Tracking efficiency 

is high. 

 Required less 

numbers of 

iterations. 

 Estimation of duty 

cycle in three sets 

make it 

computationally more 

complex. 

Belghith et al., 

2016 

 Low tracking time. 

 Accuracy is high. 

 GMPP tracking is lost 

in complex PSCs. 

Obukhov et al., 

2020. 

 PSO optimal 

parameters  are 

suitably selected   

 Further improvement 

in tracking time is 

required. 

Li et al., 2019. 

 Number of iteration 

required is less. 

 Power fluctuations 

are low in steady 

state. 

 Tracking time is high 

 Can not chase GMPP 

is some cases of PSCs. 

Suhardi et al., 

2019. 

 Power loss is low in 

chasing GMPP. 

 Tracking is lost in 

complex PSCs. 

 Tracking time is high. 

Kumar and Rao, 

2017. 

 Standard deviation is 

low. 

 Tracking time is very 

high. 

 Trapped in LMPP in 

some cases. 

Shi et al., 2018. 

 Accuracy is high 

 Varying decision 

weight accelerate the 

 Power loss on account 

of large number of 

iterations. 
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hunting process.  Computationally more 

complex.  

Ilyas and Ghazal, 

2021 

 Tracking efficiency 

is high. 

 Algorithm modified 

the surrounding & 

hunting behaviour 

which finds the 

optimum solution 

correctly 

 Oscillations around 

GMPP 

 Computationally more 

complex 

Kraiem et al., 

2021 

 Tracking time is low. 

 Low oscillations in 

steady state. 

 Highly intricate in 

desiging. 

 

Jamaludin et al., 

2021. 

 Accuracy is high. 

  Oscillations in 

steady state is zero. 

 Convergence speed 

is high. 

 Tracking is lost in 

rapidly changing 

weather conditions. 

 Information regarding 

change in landscape 

fitness is not 

considered while 

tracking GMPP 

 Periodic tuning is 

required. 

Dagal et al., 2022 
 Tracking efficiency 

is high. 

 Real time testing is 

required. 

Krishnan and 

Sathiyasekar, 

2020 

 No periodic tuning is 

required 

 Low computational 

complexity in 

 Oscillations around 

GMPP 

 Requires large number 

of iterations 
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comparison to other 

metahurestic 

approaches  

Farzaneh and 

Karsaz, 2020 

 No oscillations 

around GMPP 

 High tracking 

efficiency 

 High tracking time 

 Computationally more 

complex to design 

Ali et al., 2022 
 High tracking 

efficiency 

 Oscillations around 

GMPP 

Balaji and 

Fathima, 2020. 

 fewer initializations 

of parameters 

 reduced oscillations 

in initial stage of 

tracking 

 Hardware validation is 

not done 

 

Restrepo et al., 

2021. 

 Rapid control loops 

 Quick response 

 High computational 

constraint 

Sawant et al., 

2016 

 Highly accurate  Intricate to design 

 Hardware validation is 

not done 

Li et al., 2019. 
 High tracking 

efficiency 

 Computationally more 

complex to design 

Wan et al., 2019. 

 Accurate GMPP 

tracking. 

 Low power 

fluctuations. 

 Parameter initialization 

is required. 

 Low oscillations in 

steady state. 

Hayder et al., 

2020. 

 High accuracy.  Temperature effect is 

neglected in testing 

Almutairi et al., 

2020. 

 Low fluctuation of 

power in steady state 

 High tracking time. 

 More number of 
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around MPP. iterations are required. 

Sharma et al., 

2022. 

 Fast tracking 

capability 

 Less number of 

iteration is required. 

 High computational 

complexity. 

Chao and Li, 

2022. 

 Low power losses 

during power 

generation process. 

 High tracking time in 

complex PSCs. 

Alaraj et al., 

2022. 

 Low convergence 

factor. 

 Low rise and settling 

time. 

 Highly intricate to 

design. 

 

Windarko et al., 

2021. 

 High energy tracking 

capability. 

 Random calculations 

are avoided which 

minimize 

unnecessary duty 

cycle. 

 High cost of 

implementation. 

Chawda et al., 

2020. 

 Low tracking time. 

 INC is utilized to 

update particle 

position & velocity 

resulting in high 

dynamic response. 

 Computationally more 

complex. 

 

 

 Brighter firefly attracts the dimmer one and dimmer will shift randomly if 

their brightness levels are the same [Teshome et al., 2017]. In FFA, flashing is 

done to attract other fireflies and drawn their objective. Firefly intensity and 
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objective function value both have an impact on how appealing they are. 

Attraction value ‘µ’ is determined by assessment of other fireflies and differ 

based on the distance       between ‘i’ & ‘j’ fireflies.  

 

Start

Set firefly population

Evaluate the fitness value & set

the best value for each firefly

By attraction, update the

fireflies light intensity

Select fireflies movement direction

as per attractive parameters

Formulate fireflies location &

fetch fittest firefly

Is convergence

criterion achieved ?

Output the

best solution

Stop

Is initial operating

condition changed ?

Y
Y

N

N

 

Fig. 2.12. MPPT technique using FFA [Verma et al., 2021]. 

 With two fireflies separation ‘d’, arbitrary constant ‘β’ (ranges between 0.1 to 

10) and dimension number ‘n’, both can be evaluated according to Eqs (2.30) and 

(2.31) as 

                                    
    

                                        (2.30) 

 

                                                        
 
   

                             (2.31) 

 d=1, being a 1 dimensional situation, is used in MPPT issues. The FFA 

flowchart is displayed in fig.2.12. 
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2.3.2. Cuckoo search 

 In 2009, biologically inspired strategy based on brood-parasitism, a parasitic 

simulation mechanism used by the cuckoo species was reported [Nugraha et al., 

2019]. Some bird species, including cuckoos (Tapera), practice social parasitism. 

With its use of this strategy, Tapera—a smart avian that blends in with the host 

birds—encourages the survival of future generations. Cuckoo lays their eggs in 

other bird’s nests rather than creating its own nest. The female cuckoo bird 

wanders irregularly in search of a nest with eggs that are identical to its own in 

most cases. Cuckoo eggs have the best chance of developing and insuring her new 

generation after locating the best nest. Cuckoo formulates little, try to help 

incubating bird to lay her eggs in good area so that they have a higher chance of 

survival. Due to the ease with which host birds may be fooled into identifying the 

odd eggs, cuckoos may probably throw eggs of host species from the nest. Eggs 

of cuckoo will undoubtedly be thrown out from nest if host bird finds that they are 

imported eggs. The resident bird can even destroy the nest. 

 The CS approach is a powerful meta-heuristic tool for optimization goals. 

This tactic is implemented using the following three idealized principles: 

• In a hurriedly selected host nest, every cuckoo bird only lays one egg at one 

time. 

• The total number of host nests that can be reached in the hunt region is fixed. 

•The supremacy eggs nest will propagate the cuckoos' next generation (i.e., the 

best solutions). 

 In implementation of CS algorithm, cuckoo birds stand in for particles 

assigned to locate the solution, and their eggs denote the optimization problem's 

present iteration's solution. Comparable to looking for food, looking for a nest is 

characterized by Levy flying in CS. An arbitrary flight ‘y’ known as Levy flight 

where step sizes is evaluated using the Levy distribution and a power law [Assis 

and Mathew, 2016] as 

 

                                                                     (2.32) 
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 The variance of "y" is therefore infinite. For nth particle, it is possible to 

produce new solution of cuckoo        for the ith iteration cycle as 

 

                             
       

                          (2.33) 

 

Mathematical operator     is the entry-wise multiplication of the 

multidimensional problem. Every particle sends a Levy flight throughout each 

cycle of iteration until it locates GMPP. Main characteristics of this algorithm are 

 A cuckoo egg signifies a new solution, but every egg in the nest indicates 

a solution. 

 The goal is to use cuckoos as a replacement for less-than-ideal solutions in 

the nest in order to provide a new and possibly superior option. 

 Each nest contains one egg in its most basic form. 

 The technique can be expanded to handle more complex situations in 

which each nest has many eggs that stand for a number of potential 

solutions. 

 Apart from finding application in solar system, this algorithm is 

widely used in scheduling of manufacturing processes, train neural and wireless 

sensor networks. Since, cuckoo search was developed by fusing cuckoos' brood 

parasitism with model simulations of Levy flying, this method offers a suggestion 

for how to find the best path, namely by repeatedly choosing the best option until 

the globally ideal decision is reached. Cuckoo search is therefore more 

advantageous in particular situations as compared to other optimum path 

algorithms. Although, the algorithm is still rapidly developing and improving, 

some links' processing still requires ongoing tuning. Only continuous problems 

may be resolved with the original cuckoo search. But it doesn't work well with 

discrete problems or problems with several objectives. This algorithm also has 

issues with flexibility and obtaining perfect search results and its capacity to 

resolve complicated issues is constrained. The flowchart for the CS method to 

track GMPP is shown in fig. 2.13.  
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Start

Initiate nest ‘n’ particles

Evaluate each particle fitness

function (i.e initial power)

Update global best nest (i.e Pg ,best)

Find worst nest (i.e Pg,worst)

corresponding to Vmin

Is destroy =1?

Use levy flight for generating

cuckoos new generation

Evaluate each new nest fitness value

Update the global best nest

Is convergence

criterion achieved ?

Stop

Generate new nest

randomly & replace

worst nest by it

Calculate fitness

function for generated

nest & update global

best nest

Y

Y

N

N

 

Fig. 2.13. MPPT technique using CS [Nugraha et al., 2019]. 

 

2.3.3. Flying squirrel search optimization 

 Developed in 2020 [Singh et al., 2020], this biologically inspired optimization 

method for tracking GMPP imitates the southern flying squirrels' highly 

successful hunting strategy. This method, likewise, imitates the way that squirrels 

move in the air with buoyant headways. FS posture referred as possible outcome 

vector and equivalent wellness as source of food respectively.  

Three districts of the posture address sets depending on wellness values are 

described as 
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1. BS- Hickory nut tree   

2. US –Ordinary tree 

3. CBS-Acorn nut tree  

 When using FSSO [Singh et al., 2020] to trace GMPP, the following 

presumptions are made: 

1. The yield of solar energy is comparable to the food supply point. 

2. This technique considers the duty ratio (∂) of DC converter as an optional 

variable (i.e., posture). 

3. The FSSO technique is specifically tailored by removing the presence of 

hunters in order to decrease the tracking time. 

 When employing the FSSO approach, the following procedures are taken into 

consideration. 

1. Starting: Initial placement of FSs "N" numbers involves dispersed 

placement. For ‘i’ iteration count, these points in the solution region can 

be used to estimate the duty ratio of the DC converter: 

 

                                     
                

 
                               (2.34) 

2. Wellness evaluation: Each duty ratio in this sequence steadily brings the 

DC converter in use to operation (i.e., with the posture of each FS). 

Instantaneous yield of power PV (∂) for each ‘∂’ is displayed for each 

food source characteristic and For each ‘∂’, this chain is repeated. In 

contrast, wellness function of MPPT target ‘    ’  can be calculated as 

follows: 

                                                         (2.35) 

3. Declaration & Categorization: Acorn trees are seen to be the best FS 

placements, while Hickory trees are regarded to be the duty cycle where 

the system produces the most power at output. 

4. Posture update: The duty cycle is modified after the evaluation of the 

occasional observation circumstances and wellness is then evaluated after 

that position. 
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The following are crucial criteria used by the FSSA: 

1. Occasional observing conditions: These considerations aid FSSA from 

being trapped in LMPP. For a one-dimensional space with           as the 

count of the current cycles and the maximum number of cycles permitted, 

the cyclic constant (  )  and its base value (    )  are as follows: 

 

                                                          
       

                                           (2.36) 

 

                                                              

   

 
  

    
                        (2.37) 

 

Levy distribution is used to investigate the superior search area. The effect 

is a relocation of duty cycle of OTFS. 

2. Groove contemporized: Hickory tree squirrels hold onto their positions. In 

contrast, the acorn tree squirrels manage to get accessibility to the hickory 

tree. Hickory tree is chosen by randomly selected squirrel (ATFS) among 

usual trees, whereas, remaining squirrel (NTFS - ATFS) is forced towards 

CBS. Corresponding duty cycle is regulated as 

 

                                   
       

           
     

                   (2.38) 

 

                                   
       

           
     

                        (2.39) 

 

                                    
       

           
     

                        (2.40) 

 

3. Convergence Resolution:  The algorithm ended at maximum number of 

iterations point, where it provides duty cycle at which DC converter 

executes GMPP. 
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4. Re-initialization : FSs posture i.e., duty ratio is re-initialized to search 

fresh GMPP in line with Eq. (2.41) under quickly changing environmental 

circumstances as 

                                        
   

       
 

   
                                        (2.41) 

          The full process of the FSSO method is shown in fig.2.14.  

Start

Initiate FSSA parameters

Set i=1

Arbitrary generate duty cycle

for each flying squirrel

Observe Vpv , Ipv  & compute Ppv

Is n = N? n = n+1

Y

N

Categorize FSs in Hickory,

Acorn & ordinary tree FSs

  Is occasional

observing condition

satisfied ?

Update OTFS

according to posture

update section

Observe Vpv , Ipv

& compute Ppv

Y

N

Update FSs on acorn, closer to

hickory tree & than duty cycle as

per ‘groove contemporized’

Choose ATFS from NTFS

 Is solution

belongs to ATFS ?

Upgrade (NTFSs-ATFSs)

closer to acorn tree FSs

position & than Duty cycle

Upgrade ATFS closer to

hickory tree FSs position &

than Duty cycle

N Y

Is convergence

criterion met ?

A

A

i= i+1

N

Make DC converter

to operate at duty

cycle corresponding

to hickory tree FSs

Y

 Is condition in

(41) is true ?

N Y

 

Fig.2.14. MPPT technique using FSSO [Singh et al., 2020]. 
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Table 2.7: Literature survey taxonomy on Bio inspired techniques for GMPP Tracking. 

Authors, Year PV system size 

PV 

module 

Pm(W) 

Optimization 

Techniques 

Best 

optimization 

Techniques 

Irradiance 

(W/m
2
) 

GMPP(W) 
Improved 

GMPP(%) 

Tracking 

Time (s) 

Shading 

patterns 

Saad et al., 2022. 1PV module 200 
Proposed , 

FA, P&O 
Proposed 200 & 1000 

37.7, 201.7 

 
8.02 2.40 NA Non uniform 

Farzaneh et al., 

2018. 

4 PV module in 

series 
200.143 

MFA, P&O, 

PSO, FA 

MFA 

 
400 to 1000 397.52 9.41 2.22 Non uniform 

Nusaif and 

Mahmood, 2020. 
3×3 265.737 

MFA, P&O 

PSO, FA 

MFA 

 
100 to1000 

1264, 1582, 834, 

1206 

1.77, 17.70, 

27.91, 31.08 

0.085-

0.124 
Non uniform 

Abo-Khalil et al., 

2021 
NA NA 

OFA, FA 

P&O 
OFA NA 48, 29, 36.5 

0.418, 34.88, 

2.24 
0.2-0.33 Non uniform 

Shi et al., 2017. 4×1 60 
INC-FA, P&O 

INC, FA 

INC-FA 

 
100 to1000 81.4 76.19 0.98 Non uniform 

Omar and 

Kulaksiz, 2021. 

3 PV module in 

series 
NA 

Proposed FA 

P&O 

Proposed FA 

 
NA 

100, 200, 400,  

150, 300, 500 

25.00, 108.33,  

110.52,  2.04, 

100, 170.27 

1.3 Non uniform 

Chitra et al., 

2020. 

2 PV module in 

series 
200.143 

INC, FA, 

MFA 
MFA 600 to 1000 255, 330 3.23, 6.24 

0.0018-

0.0064 
Non uniform 

Mosaad et al., 

2019. 
1PV module 59.9 CS, NN, INC 

CS 

 
800 to 1000 48.24, 60.47 3.36, 2.68 NA uniform 

Shi et al., 2016. 
4 PV module in 

series 
60 

ICS, CS, PSO, 

P&O 
ICS 200 to 1000 87.547 74.97 0.88 Non uniform 
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Hidayat et al., 

2021. 

2 PV module in 

series 
72 CSA, P&O CSA 495 to 944 

97, 107.63, 

124.56, 72.58, 

107.92, 114.94, 

74.53 

45.86, 63.99, 

81.52, 0.276, 

70.75, 77.89, 

5.40 

NA Non uniform 

Bilgin and 

Yazici, 2021. 

3 PV module in 

series 
NA 

FFO, PSO, 

CSO, BOA 
FFO 278 to 1000 377.63, 531.46 4.26, 5.73 NA Non uniform 

Ibrahim et al., 

2021. 

4 PV module in 

series 
250 

CSA, MPSO, 

MP&O, ANN 
CSA 400 to 1000 

699.6, 534.7, 

928.5, 694.7 

67.93, 13.25, 

29.40, 4.215 
0.5-0.7 

 

 

Non uniform 

 

 

Bentata et al., 

2021. 

2×2, 4 PV 

module in 

series, 3×2, 6 

PV module in 

series 

249 DCSA, CSA DCSA 200 to 1000 
989.29, 797.3, 

482.06, 656.45 

0.00, 6.40, 

13.31, 16.09 

0.046- 

0.085 
Non uniform 

Singh et al., 

2021. 

4 PV module in 

series, 2×2 
40 

FSSO, P&O, 

PSO, GWO 
FSSO 100 to 900 

61.66, 79.75, 

48.65,  35.37 

107.53, 61.73, 

85.68, 3.23 
0.3-1.8 Non uniform 

Fares et al., 2021. 
3 PV module in 

series 
135 

ISSA, SSA, 

PSO, GA 
ISSA 100 to 900 

227.83, 98.79, 

142.82 

0.065, 0.050, 

0.098 
0.2 Non uniform 

Al-Shammaa et 

al., 2022. 

4 PV module in 

series 
NA CS, PSO CS 200 to 1000 

293.57, 578.96, 

415.38 

0.00,  0.52, 

0.67 

1.32, 1.28, 

1.29 
Non uniform 

Watanabe et al., 

2022. 

3 PV module in 

series 
213.15 FF, P&O FF 300 to 1000 

638.7, 316.9, 

553.1 

0.251, 58.05, 

31.87 

0.18,  0.21, 

0.22 
Non uniform 
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Table 2.8: Literature survey based on Bio inspired methodologies: Pros and 

Cons. 

Authors, Year. Pros Cons 

Saad et al., 

2022. 

 Zero oscillations 

around GMPP 

 High tracking 

efficiency 

 Algorithm is not 

validated on hardware 

 Highly intricate to 

design 

Farzaneh et al., 

2018. 

 Required no periodic 

tuning 

 High accuracy 

 Very high tracking 

time 

 

Nusaif and 

Mahmood, 

2020. 

 Varying Population 

size is adapted in each 

iteration resulting in 

improved tracking 

time & efficiency 

 Oscillations around 

GMPP 

Abo-Khalil et 

al., 2021 

 High tracking 

efficiency 

 Able to process 

examine MPP 

 Power oscillations 

around GMPP 

Shi et al., 2017. 

 High switching speed 

during shaded to 

unshaded conditions 

 No oscillations in 

steady state 

 High tracking time 

 Computationally 

complex compared to 

other MPPT 

approaches  

Omar and 

Kulaksiz, 2021. 

 High tracking 

efficiency 

 Less complex to 

implement 

 High convergence time 

 Required sensors for its 

operation 

Chitra et al.,  Very low tracking  Low tracking 
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2020. time efficiency 

 Many parameters 

initializations are 

required 

Mosaad et al., 

2019. 

 Randomization 

process makes the 

algorithm more 

effective 

 Required tuning of 

parameters 

Shi et al., 2016. 

 Tracking ability is 

enhanced by 

introducing adaptive 

step concept 

 Random steps of CS is 

eliminated 

 

 High computational 

complexity 

 

Hidayat et al., 

2021. 

 Track MPP efficiently 

in different PSCs 

 Levy flight affects the 

convergence level 

 Oscillations around 

GMPP 

Bilgin and 

Yazici, 2021. 

 High tracking 

efficiency 

 No record of tracking 

time in different PSCs 

 Large no of iterations 

are required 

Ibrahim et al., 

2021. 

 Not dependent on 

initial location 

 Low oscillations 

around GMPP 

Bentata et al., 

2021. 

 Initial particles are 

independent 

 Required less number 

of iterations which 

 Required more number 

of particles 

 Highly intricate to 

design  
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saves power 

Singh et al., 

2021. 

 Predators are 

eliminated for 

modifying squirrel 

positions 

 High tracking time 

 High computational 

cost 

Fares et al., 

2021. 

 High tracking 

efficiency 

 

 High execution 

intricacy 

 Oscillations around 

GMPP 

Al-Shammaa et 

al., 2022. 

 Only two control 

parameters are 

required. 

 No initial situations 

are assumed for 

working. 

 High tracking time 

 Oscillations in steady 

state. 

Watanabe et 

al., 2022. 

 Low tracking time.  Power variations in 

steady state. 

 

2.4. Other AI based MPPT techniques 

 In addition to the reported several recent studies conducted in this area, this 

segment of study describes other AI techniques used to track MPP under PSCs 

from PV array with the taxonomy of recently reported works described in table 

2.9 with their pros and cons in table 2.10. 

 

2.4.1. Fuzzy logic control 

 Digital values are generated from analogue input by FLC. PV array output 

power is investigated using this method for each sample. FLC increases voltage 

by altering duty cycle if the changing fraction is more than zero and vice versa. 

The maximum power ratio is therefore 0. Schematic diagram of FLC control is 

shown in fig.2.15. Fuzzification, interference, rule-based design and 
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defuzzification are the four processes involved in designing an FLC. By utilising 

various unique membership functions, input variables are transformed into 

linguistic one. Input error of FLC    & its variation      with       time samples 

can be evaluated as 

                                                
               

               
                                         (2.42) 

 

                                                                                               (2.43) 

 Then, by means of "if-then" rule and the requisite scheme behaviour, they are 

altered. Lastly, they are translated into their equivalent number [Farajdadian and 

Hosseini, 2019]. Following the calculation of    &     , the MPPT control 

produces the duty cycle as output  by glancing a rule-based table after converting 

these inputs into linguistic variables. The inference is utilised to identify the fuzzy 

logic's output. Compared to traditional MPPT techniques, this method exhibits 

less oscillations, a rapid response [Almajid et al., 2018] and good tracking 

efficiency. But it has a huge computational complexity problem. 

 

Fuzzification

Inference

Defuzzification

Rule Base
Crisp

Input
Crisp

Output

Fuzzy

Input

Fuzzy

Output

 

Fig. 2.15 Block diagram of MPPT based on FLC. 

 

2.4.2 Artificial neural network  

 This method mimics a biological neural system for accurately anticipating 

each input and producing a precise output. It is made up of a group of static 

learning models. In fig.2.15, an ANN is depicted as having three layers, each of 

which has a different number of neurons according to the circumstances. These 

networks can predict best voltage or power values that can be obtained at a 
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specific time as part of an MPP system. These values serve as the starting point 

for determining DC-DC converter duty cycle. The input variables typically 

include the parameters of PV modules and atmosphere, which are subsequently 

processed by the network's hidden layers. The procreation procedure assesses in 

an error and is retroactive. The output is then sent back via the input neurons 

using the centre layer's neurons. Eq. (2.44) is used to determine whether hidden 

neurons are present or not. 

 

                                                          
 

 
                              (2.44) 

  

x

y

z

Irradiance

Temperature

Bias

Bias

Wyz
Wxy

Duty
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Input Layer Output LayerHidden Layer

 

Fig. 2.16: ANN's three-layer structure [Jyothy and Sindhu, 2018]. 

 

 The collection of data is aided by an extensive experimental setup. In order to 

determine the output Vm and Pm, the dataset is then generated by injecting the 

ANN with the environmental conditions and array parameters. These sets are 
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subsequently converted into an instructional one that enters the simulated ANN 

and instructs it on how to execute. Additionally, the generated ANN model uses 

the operations of the input data as instruction data. 

 The model then develops the ability to operate independently. Following the 

instruction phase, the effectiveness of the created ANN is evaluated using 

assessment datasets and once the weights of every neuron have been correctly 

adjusted, the errors are transmitted back to the ANN. With ANN, MPPT is more 

precise and exhibits less fluctuations near MPP [Jyothy and Sindhu, 2018]. Due 

to their great computational complexity, these techniques have a downside. 

 

2.4.3 Evolutionary computational techniques 

 Biological evolution served as the inspiration for a group of global 

optimization algorithms studied in the field of evolutionary computation (subfield 

of AI and soft computing). Precisely, they fall in a group of metaheuristic-based 

trial and error problem solvers or stochastic optimization. A starting collection of 

potential solutions is produced and regularly upgraded in evolutionary 

computation. The process of producing every new generation involves 

stochastically eliminating fewer desirable solutions and making modest random 

alterations. A population of alternatives is put through ecological (or artificial) 

selection, as well as mutation, in biological terms. This will cause the population, 

or the algorithm's selected fitness function, to gradually develop to become more 

fit. These techniques are common in computer science field because they can give 

extremely competent solutions in context to numerous problems. There are 

numerous additions and variations that cater to further dedicated families of 

subject. One of them are GA & DE, used in tracking GMPP under PSCs. 

 GA is a chromosome-based evolution computer model. Information about a 

feasible solution for an issue is carried on these chromosomes. Each chromosome 

has a unique collection of traits. Many applications use this algorithm. Given that 

they are seemed to project system's upcoming situations, GA present 
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methodologies for modeling biological systems and systems biology that are 

associated with dynamical systems theory.  

Start

Initiate starting population

Evaluate individuals fitness values

Is convergence

criterion met?

Gives the finest individuals

Stop

Selection, Crossover,

Mutation

Initiate new population

Insertion

Y

N

 

Fig. 2.17. Steps of GA [Selivanov et al., 2014]. 

 

 This is simply a spectacular (but possibly deceptive) way of highlighting the 

highly structured, well-ordered and orderly nature of biological development. 

Nevertheless, beyond the connection to system dynamics, the application of 

algorithms and informatics, specifically, computational concepts, is equally 

relevant to comprehend evolution itself. In solar area of tracking MPP, It has the 

ability to raise PV voltage, representing chromosomes as well as their fitness 

value in relation to its power. The fundamental concept is to genetically modify a 

population of individuals and identify the best ones who best meet the fitness 

function. Fig. 2.17 depicts the GA flowchart. 

 Another evolutionary computing approach called DE is used to solve issues 

involving global optimization. GMPP can be tracked under shading scenarios 

owing to its easier execution and extensive hunt flexibility. This method uses duty 

cycle of DC converter as target vector     . For every generation and iteration, 

initialization of the target vector (which has two dimensions) is done by setting  
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     as population. After one generation, it selects three randomly generated 

particles to speed up execution. After that, the related powers     of the PV array 

are determined using the chosen duty cycles. From      and      sets,         and 

         are taken as maximum power and best duty cycle respectively. Weight 

difference between any two target vectors is then used by a mutation factor (M) 

and adds this disparity to leftover target vector to create mutated particle. Other 

name of mutated particle is donor vector represented by      . The direction of 

mutation should be approaching        . Crossover technique is used to merge 

target and donor vectors to form trial vectors after the process of mutation to form 

      trial vectors, which calculates PV array power. 

 Table 2.11 provides results of a comparative research that was conducted after 

a thorough analysis of all these MPPT methodologies. Thus it is seen that due to 

the abundant sunlight, solar PV systems are considered as most effective energy 

source in renewable power generation systems. Unpredictability of the 

environmental conditions reduces their productivity. Therefore, with the aim of 

extracting utmost power from PV systems regardless of environmental conditions, 

MPPT techniques are applied.  

 A number of studies have been performed in this sector up to this point, but 

choosing an effective technique for certain conditions has always proved tricky. 

For the aforementioned rationale, this survey is conducted as fresh evaluation of 

many MPPT optimization algorithms that have been reported by various scholars 

so far in a unique way. With the intention of understanding the concept, each 

MPPT technique fully comprehends their fundamental concepts. Various MPPT 

approaches (conventional and AI-based) are independently explained through 

simple flowcharts and mathematical equations in their relevant sections. After 

each study and through proper evaluation, a tabular overview on PV system key 

characteristics in PSC like array size, % rise in GMPP,  irradiance level and 

tracking duration is prepared, resulting in innovative datasheets. The taxonomy 

tables of MPPT strategies can assist in understanding how each MPPT strategy 

performs in various climatic, shaded, unshaded and partially shaded conditions. 
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Table 2.9: Literature survey taxonomy on other AI based techniques for GMPP Tracking. 

Authors, 

Year. 

PV system 

size 

PV 

module 

Pm(W) 

Optimization 

Techniques 

Best 

optimization 

Techniques 

Irradiance 

(W/m
2
) 

GMPP(W) 
Improved 

GMPP(%) 

Tracking 

Time (s) 

Shading 

patterns 

Verma et al., 

2020. 

3 PV module 

in series 
360 AFLC, FLC, P&O AFLC 100 to 900 

521.5, 198.1, 

250.6 
7.30, 4.26, 0.642 0.1-0.19 

Non 

uniform 

Rahman and 

Islam, 2020. 

4 PV module 

in series 
60.53 PSO-ANN, PSO PSO-ANN 400 to 900 202.1, 135.9 -0.04, 0.00 0.21, 0.22 

Non 

uniform 

Farzaneh, 

2019. 

3 PV module 

in series 
60 

Proposed, P&O, 

PSO 

Proposed 

 
300 to 1000 116.74, 87.12 94.17, 46.00 0.1, 0.15 

Non 

uniform 

Manikandan 

and 

Selvaperuma, 

2020. 

1 PV module 320 Proposed, P&O 
Proposed 

 
400 to 1200 

36.88, 37.66, 

37.2 

53.73, 51.36, 

50.12 
NA 

Non 

uniform 

Al-Majidi et 

al., 2019. 

5 PV module 

in series 
185 ANFIS, FLC, P&O ANFIS 1000 924 0.2168 0.07 Uniform 

Aymen et al., 

2016. 
1PV module 60 

Neuro Fuzzy, 

Fuzzy 

Neuro Fuzzy 

 
600 to 1000 

50.262, 40.856, 

30.156, 45.736, 

35.633 

0.001, 0.0171, 

0.0763, -0.004, 

0.0533 

NA 
Non 

uniform 

Farajdadian 

and Hosseini, 

2019. 

NA 220.7 
AF-FA, AF-PSO, 

SF, PSO, P&O 

AF-FA 

 
600 to 1000 

220.5, 124.3, 

175.1 
1.37, 72.87, 20.26 NA 

 

Non 

uniform 
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Eltamalya and 

Farh, 2019. 
NA 185.22 GWO-FLC, PSO 

GWO-FLC 

 
200 to 1000 92.8, 54.6 20.51, 40.00 NA 

Non 

uniform 

Chen et al., 

2016. 
NA 60 

Proposed, Fixed-

step INC, FLC-

HC, ASVSS 

Proposed 300 & 1000  46.83, 157.3 2.51, 5.92 0.52, 0.42 
Non 

uniform 

Raj and Gupta, 

2021. 
NA NA 

ANN-INC, INC, 

P&O 

ANN-INC 

 
NA 450 6.13 NA 

Non 

uniform 

Abdellatif et 

al., 2021. 
NA 305.226 FB, P&O, INC 

FB 

 
600 to 1000 

100.38, 59.87, 

80.17 
3.14, 3.11, 3.13 NA 

Non 

uniform 

Mohammed et 

al., 2021. 
1 PV module 60 

GA Fuzzy, Fuzzy, 

ANFICS 

GA Fuzzy 

 
481.1 to 791 

44.17, 41.68, 

24.07, 36.11, 

41.70 

0.546, 0.506, 

11.22, 5.64, 0.870  
NA 

Non 

uniform 

 

Tandel and 

Vora, 2016. 

16 PV 

module in 

series 

200.143 GA, P&O 
GA 

 
250 to 1000 1319.12 81.16 NA 

Non 

uniform 

Karthika et al., 

2017. 
7×7 200 GA tuned PI, PI GA tuned PI 200 & 1000 7020 56.69 0.001 

Non 

uniform 

Dehghani et 

al., 2021. 
NA 1S 

PSO-GA, PSO, 

GA, INC, P&O 

PSO-GA 

 
600 to 1000 

98.85, 58.64, 

78.69 
9.67, 9.23, 9.30 < 0.3 

Non 

uniform 

Bendary et al., 

2016. 
NA 40.9081 

ANFIS-GA, 

ANFIS, NN, FLC 

ANFIS-GA 

 
500 to 1000 

40.90, 19.28, 

27.78 
15.24, 1.10, 0.908 < 0.3 

Non 

uniform 

Firmanza et 

al., 2020. 

2 PV module 

in series 
100 Proposed DE, PSO Proposed DE 400 to 1000 

170.5, 152, 87.9,  

130.9 

1.66, 0.462, -0.34, 

0.383 

0.233- 

0.371 

Non 

uniform 
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Neethu and 

Senthilkumar, 

2020. 

4 PV module 

in series 
215 DE, PSO DE 600 to 900 663.8 81.41 366 

Non 

uniform 

Kamaruddina 

et al., 2020. 
3×3 125 DE, P&O DE 250 to 1000 497.2, 489.3  56.40, 39.87 NA 

Non 

uniform 

Joisher et al., 

2020. 

2 PV module 

in series 
95 

Proposed, 

PSO, DE 
Proposed NA 11, 13.88, 20.33 120.0, 16.5, 18.40 1.0 

Non 

uniform 

Algarín et al., 

2017. 
1 PV module 65 FLC, P&O 

FLC 

 
200 to 1000 

11.7 , 37.7,  64.9, 

24.4, 51.3 
0.00 NA 

Non 

uniform 

Cheng et al., 

2015. 
NA 220 

Asymmetrical 

FLC, 

Symmetrical FLC, 

P&O 

Asymmetrical 

FLC 

 

200 & 1000  222.18, 44.12 04.53, 6.134 5.6, 0.7   
Non 

uniform 

Liu et al., 

2014. 
NA 220 

Asymmetrical 

FLC,Symmetrical 

FLC, P&O 

Asymmetrical 

FLC 

 

1000 222.69 7.63 0.91 Uniform 

Kececioglu et 

al., 2020. 
1 PV module 250 Proposed, AIC 

Proposed 

 
600 to 1000 244.2, 249.4  0.825, 0.605 0.008 

Non 

uniform 

Hayder et al., 

2022. 
1 PV Module 120 NN-P&O, IPSO 

NN-P&O 

 
600 to 1100 

90.2943, 

73.076, 55.2495, 

98.6604 

0.00 

0.2003, 

0.7003, 

0.0003, 

0.0003 

 

 

Uniform 
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Hua et al., 

2021 

3 PV module 

in series 
21.31 

Proposed, 

P&O+PSO, GA 
Proposed 300 to 1000 

42.90, 32.56, 

22.06, 37.38, 

26.73 

2.21, 0.618, 5.499, 

0.402, 0.074 
12, 15, 16 

Non 

uniform 

Zhang and Sui, 

2020. 
4X3 NA 

Improved DE, DE, 

PSO 
Improved DE 350 to 800 857.56, 644.57 0.282, 0.041 

0.02, 

0.019 

Non 

uniform 

Bakkar et al., 

2021. 
1 PV module 80 

DSM based FLC, 

FLC 

DSM based 

FLC 
700 80 122.2 NA 

Non 

uniform 

Batainesh and 

Eid, 2018. 
1 PV module 270 

Hybrid, 

FLC+P&O,FLC 

Hybrid 

FLC+P&O 
100 to 1000 

127.9, 126.2, 

57.9, 46.1 

4.40, 18.16, 3.02, 

21.31 
NA 

Non 

uniform 

Guerra et al., 

2021. 
NA 245 

ANIFS, P&O,, 

ANN, FUZZY 

 

ANN 303 to 548 
956.6, 2190, 

1674, 1631 

0.525, 0.274, 

0.600, 0.803 
NA 

Non 

uniform 
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Table 2.10: Literature survey based on other AI based methodologies: Pros 

and Cons. 

Authors, 

Year. 

Pros Cons 

Verma et al., 

2020. 

 Shading losses are 

less 

  Settling time is low 

 Highly intricate in 

design 

Rahman and 

Islam, 2020. 

 Tracking time is 

improved 

 Tracking efficiency 

is high 

 No improvement in 

GMPP 

 Not tested in real time  

Farzaneh, 

2019. 

 High accuracy 

 Fewer training data 

are needed, which 

eliminates tracking 

error. 

 Extremely intricate 

design 

Manikandan 

and 

Selvaperuma, 

2020. 

 Improved optimal 

solution 

 Inefficient tracking 

 Oscillations near GMPP 

Al-Majidi et 

al., 2019. 

 Avoidance of the 

drift issue 

 Rapid convergence 

 Oscillations exist in 

steady-state conditions  

 High implementation 

costs 

Aymen et al., 

2016. 

 High resiliency 

 Combines the 

benefits of ANN 

learning ability and 

FLC adaptability. 

 More difficult to 

compute 

 Expensive to implement 
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Farajdadian 

and Hosseini, 

2019. 

 High GMPP tracking 

accuracy 

 Low MPP error 

percentage 

 Fluctuation in power 

exist 

 Extremely complex to 

intricate 

Eltamalya 

and Farh, 

2019. 

 Re-initializing 

structure helps 

searchers to adhere 

to updated GMPP 

 The size of the array is 

not stated 

 There is no record of 

the tracking duration 

 Output power still 

oscillates 

Chen et al., 

2016. 

 High tracking 

efficiency 

 Quick tracking 

 The size of the array is 

not stated 

 Expensive to implement 

Raj and 

Gupta, 2021. 

 Small ripples in 

output power  

 Inefficient tracking 

Abdellatif et 

al., 2021. 

 The steady state 

oscillations are 

decreased 

 The size of the array is 

not stated 

 Extremely complex to 

design 

Mohammed 

et al., 2021. 

 High accuracy and 

tracking efficiency 

 Complexes in terms of 

computation 

Tandel and 

Vora, 2016. 

 GMPP detection is 

extremely accurate. 

 

 Need a lot of iterations 

Karthika et 

al., 2017. 

 Capability to 

monitor GMPP in a 

variety of short time 

frames 

 

 Only one irradiance 

change was used for 

testing. 
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Dehghani et 

al., 2021. 

 High accuracy and 

rapid response times 

 Not hardware tested 

 Extremely complex in 

design 

Bendary et 

al., 2016. 

 Effective tracking 

performance 

 Exorbitant 

implementation costs 

Firmanza et 

al., 2020. 

 Rapid convergence 

because of the 

mutation factor 

 In some instances, the 

algorithm loses GMPP 

tracking 

 Oscillations near GMPP 

Neethu and 

Senthilkumar, 

2020. 

 Minimal oscillations 

near GMPP 

 Tuning time is high 

 Expensive computation 

Kamaruddina 

et al., 2020. 

 Capable of tracking 

actual GMPP  

 Necessary minimal 

control parameters 

 Need a lot of iterations  

 Computationally more 

complex 

Joisher et al., 

2020. 

 Capable of tracking 

actual GMPP  

 At output, there are 

power oscillations 

 The computation is 

more difficult 

Algarín et al., 

2017. 

 Lower oscillations in 

steady state 

 Zero power loss 

 More difficult to 

compute 

 Produces errors when 

measuring low powers 

Cheng et al., 

2015. 

 Better tracking 

performance without 

adding to the 

workload associated 

with calculations 

 Tracking time is high 

 Accuracy is low 
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Liu et al., 

2014. 

 Improved MPPT 

performance due to 

increased tracking 

precision and 

asymmetrical 

membership 

function. 

 Oscillations around 

GMPP 

 Transient time is high 

 Complex in terms of 

computation 

Kececioglu et 

al., 2020. 

 Steady state output 

no longer oscillates. 

 Complex in terms of 

computation 

Hayder et al., 

2022. 

 Transient time is low 

 

 The algorithm's 

performance isn't 

improved if the 

irradiance is constant 

for a long time. 

 Complex in terms of 

computation 

Hua et al., 

2021 

 Steady state has no 

oscillations 

 

 Tracking time is high 

 Expensive computation 

Zhang and 

Sui, 2020. 

 Reduced random 

search due to 

modified mutation 

factor 

 Quick tracking 

 Relatively required high 

iteration count  

 Complicated 

computational 

requirements 

Bakkar et al., 

2021. 

 Accuracy is high 

 

 Problems in identifying 

a safe operating area 

 High computational 

cost 
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Batainesh and 

Eid, 2018. 

 No entrapment in 

LMPP 

 High accuracy 

 Oscillations near GMPP 

 High computational 

cost 

Guerra et al., 

2021. 

 Minimal oscillations 

near GMPP 

 Rapid tracking 

response 

 High computational 

cost  

 More difficult to 

compute 

 

Table 2.11: Comparative evaluation of different MPPT 
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*L=Low, M=Medium, H=High, ~Z= Nearly Zero, D=Digital, 

A/D=Analog/Digital 

 It is simple to conclude after thorough consideration that conventional 

MPPT methods are less complicated and effective in environments without shade. 

The downside, though, is that they respond slowly. While having low steady-state 

oscillations, great precision and high tracking efficiencies in PSCs, AI approaches 

struggle with significant computational complexities With the help of Pros & 

Cons in tabular form of each examined paper make it simpler to identify gap in 

research that exist in this area. One can choose a most effective MPPT strategy 

for a particular scenario with the use of a performance comparison summary table 

based on key characteristics when integrating particular MPPT into PV systems. 

This analysis also demonstrates that the optimum solution for handling PSCs is 

MPP controllers based on AI. Thus, this field may have numerous new study 

opportunities. 

 

2.5 Research gap and findings 

 In this literature survey, 16 different strategies are studied. Conventional, SI, 

bio-inspired and other AI-based techniques are covered in 23, 40, 21 and 34 

publications respectively. Thus, a total of 118 papers that specifically address 

these MPPT approaches are principally examined. Fig. 2.18 illustrates how 

articles concentrating on various methodologies are categorized. 

 One can readily identify the following gaps in this field after completing a 

thorough review of metaheuristic MPPT techniques utilizing traditional & AI 

based techniques as: 

• Conventional MPPT techniques have the disadvantage of slow response, 

although they are less complex to implement and performing better in unshaded 

conditions. In their tracking response results, oscillations near GMPP are seen. 

• Despite of frequent modifications, power loss still happens while observing ISC 

or VOC in these techniques. These technologies also require a lot of sensors to 

work, however, the number of sensors needed can be reduced. 
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• Though effective in PSCs, AI based techniques suffer from the drawback of 

being extremely computational complex. 

• Due to the high number of iterations, these approaches take a long time to 

follow GMPP. The importance of real-world authentication remains 

essential even though several of these are only evaluated on virtual platforms. 

• The majority of the cited work disregards the importance of load variation when 

designing a PV system, which is crucial from PV system designing point of view. 

 

 

Fig. 2.18. Articles focusing on various MPPT strategies 

 

2.6. Challenges 

 This survey describes in detail a number of newly published studies to 

measure GMPP in PSCs, along with their benefits and drawbacks. Currently, 

there are more than 80 MPPT optimization strategies published and more than 4 

advanced MPPT innovations are reported in every year. The most recent research 

in each MPPT approach is tabulated in this literature survey. Choosing one 

optimization strategy amongst numerous strategies that are described in the 

literature is difficult. Any optimization technique must prevent from being struck 

in local MPP and PV array local hotspots. Additionally, managing energy is 

necessary when these algorithms are being developed. Future research on 

effective MPPT can be rationalized by taking into account a number of additional 

Conventional 
MPPT 

Techniques 
16% 

Swarm 
Intelligence 

MPPT 
Techniques 

28% 
Bio- Inspired 

MPPT 
Techniques 

16% 

Other AI Based 
MPPT 

Techniques  
21% 

Other 
19% 
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crucial elements, including local hotspots, reconfiguration of PV array and 

material of solar cells etc. that assist in generating power in PSCs. Smart phones 

make it possible to set up MPPT applications to run at any time over the Internet. 

 

2.7. Motivation for research contribution 

The motivation for performing this research work is as follows: 

1. The foremost requirement of a solar system is to provide maximum power 

at its output throughout the day irrespective of varying environmental 

conditions. Various methods have been proposed in the past for extracting 

maximum power from solar module but there is always a conflict between 

accuracy and stability near maximum power point in each technique. 

Hence, the need of the hour is to develop a new technique to overcome 

this conflict. 

2.  It has been observed during literature survey that hardware 

implementation for most of the techniques designed to achieve maximum 

power point throughout the day have not been realized  and those 

techniques which are implemented through hardware are not cost 

effective, Thus it is required to develop a reliable and cost effective 

hardware which can be utilized commercially. 

3. Most of the researchers have focused on test cases related to 

environmental conditions such as varying irradiance and temperature, 

whereas varying load condition is mostly neglected, therefore it is required 

to design a technique that give accurate and stable output under both, 

varying environmental and load conditions. 

 

2.8. Objectives of research work 

 Listed below are the objectives that have been identified for research under 

the title “Design of novel MPPT method to improve solar photovoltaic system 

performance under different environmental conditions”: 
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1. To develop and investigate novel metaheuristic approach based MPPT 

method for PV system performance under static/dynamic climatic 

conditions for fixed/variable load.  

2. To investigate and comparative study of transient analysis for proposed 

and conventional MPPT methods for static load under climatic condition 

3. Comprehensive comparative study with the integration of different DC-

DC converter with proposed MPPT method. 
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CHAPTER 3 

 NOVEL UMBRELLA OPTIMIZATION TECHNIQUE 

 

Algorithms have been developed by researchers that can handle a variety 

of drastic changes in the environment, like PSCs and variable irradiance. The 

process of overcoming difficult obstacles takes time. Additional computational 

effort will lead to a higher implementation cost and slower tracking speed. The 

P&O technique is the quickest and easiest approach for obtaining MPP as 

compared to other approaches. It has a number of benefits and a few drawbacks, 

including: 

• It wasn’t able to stop oscillation near MPP. 

• Reduced efficiency when solar irradiation is low. 

• Whenever the irradiance increases rapidly, the algorithm loses its direction 

of tracking. The overall process will therefore fail, and tracking of MPP will 

be lost. 

 A research model of novel MPPT approach called UOT is being designed for 

PV systems together with an experimental environment to verify the efficacy of 

the established algorithm in order to address these inadequacies and carry out a 

thorough assessment in terms of tracking time, tracking efficiency and other 

parameters. Since, UOT requires less space in memory and less processing time 

when tracking GMPP than other MPPT optimization algorithms, it is less 

computationally complex and this makes it unique. UOT verifies itself whether it 

is at GMPP or LMPP at specific time intervals at every point during each cycle. 

UOT moves its operating point in the direction of GMPP when it is within its 

calculated range and this procedure is repeated for each cycle. UOT stabilizes its 

operation at the most recently attained GMPP if no new GMPP is found. This 

method generates a raindrop pattern initially consisting of all potential GMPPs by 
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computing them all at once in real-time. As a result of this, the ROM of the PIC 

Microcontroller needs less space as less data is generated in the whole process. 

Hence, there is a huge decrease in power consumption as a result of reduced 

calculations, less oscillations near GMPP and a quicker convergence time. 

Additionally, compared to the traditional P&O technique, UOT exhibits improved 

performance in terms of tracking time, output power, tracking efficiency and 

output current when executed experimentally in this section. 

 

3.1 Photovoltaic Technology  

 In the past, several researchers have created a wide variety of mathematical 

models for PV cells. The single diode approach is popular due to its simplicity 

and precision, as seen in fig 3.1. 

pvI

pR

sR
I

V

DI pI

 

Fig. 3.1. PV cell SDM 

 

           A PV cell SDM produces current (I) as a supply of varying current in terms 

of photocurrent (Ipv) parallel to the diode as, 

                                    exp 1
s s

pv o

s s p

qV qR I V R I
I I I

N K Ta R

   
    

 
                   (3.1) 

 PV modules are connected in series and parallel to increase voltage and 

current thus making up a PV array. LMPP and GMPP are found in P-V 

characteristic during PSCs since bypass diodes are incorporated in them. 

Whenever, the shadowed module works as a load instead of a source of 

electricity, a bypass diode or relay logic connected in parallel with each PV 

module minimizes the risk of hot spots. A series-parallel (2x2) arrangement of PV 
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array with two different shading patterns and corresponding P-V curves is seen in 

fig. 3.2. 
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(a) One shaded PV module                  (b) Two shaded PV module 

 

Fig. 3.2.(a)-(b) shading scenario 1 and 2 on PV array (c) LMPP and GMPP 

existence on P-V curves 

 In this study, two shading circumstances with solar irradiation of 601W/m2 

and 202W/m2 are compared with modules that are unshaded, which have an 

irradiance of 1000 W/m2. In first case, only one PV module is shaded i.e., M1, 

while other PV modules of array have irradiance of 1000W/m2, as shown in 

fig.3.2(a). Its irradiance drops to 601W/m2. In second case, another module M3  is 

also shaded together with module M1. In this case, irradiance on M3 decreases to 

202W/m
2 

from 1000W/m
2
 whereas M1 is kept in 601W/m

2
 irradiance level and 4M  

in 1000W/m
2
 irradiance level respectively as depicted in fig.3.2(b). Additionally, 
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fig.3.2(c) depicts P-V curves for evaluating the performance parameters. 

Specifications of used panels are listed in table 3.2. 

 

3.2. MPPT techniques to detect GMPP 

 This section discusses the two MPPT techniques to detect GMPP in PSCs. 

Conventional P&O MPPT technique and developed Novel UOT is elaborated 

along with their basic steps and simplified flowcharts. P&O MPPT technique is 

compared further experimentally with UOT in further sections of this chapter. 

3.2.1. P&O MPPT Technique: 

           This MPP tracking algorithm that is most widely used is P&O due to its 

simplicity and ease of implementation. The P&O approach undergoes a modest 

modification to adjust PV module's power. Output power of PV array is checked 

periodically and compared with its previous value. This cycle continues until the 

PV output power increases, following which the perturbation is reversed. By 

adjusting voltage of PV array, it is possible to find out whether power has raised 

or lowered. If power increases with a raise in voltage, operational point on PV 

module is on left side of MPP.  

Start

Measure V(k) & I(k)

P(k) = V(k)    I(k)

 P = P(k) - P(k-1)

  P > 0

V(k)-V(k-1)>0

Decrease PV Module

Output Voltage

Increase PV Module

Output Voltage






V(k)-V(k-1)>0

No Yes

Yes Yes

No No

Update

V(k-1) = V(k)

P(k-1) = P(k)
 

Fig. 3.3. MPPT technique using P&O [Christopher and Ramesh, 2013]. 
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 Accordingly, if power declines with an enhanced voltage, operating point on 

PV module is located to the right of MPP and to achieve MPP, more perturbation 

to the left is necessary [Christopher and Ramesh, 2013]. Figure 3.3 depicts the 

P&O algorithm's flowchart and appendix A contains the pseudocode needed to 

run this algorithm. P&O algorithm includes a number of steps in its search for 

MPP as 

Step-1: Initially, it captures the current and voltage values at any instant ‘ k ’ 

Step-2: Power at ‘ k ’ is evaluated & P  is calculated by subtracting power at ‘ k

’ & previous power ‘ 1k   

Step-3: Afterwards, algorithm checks if 0P  . 

 If Yes, check for ( ) ( 1) 0V k V k    . 

o If Yes, Voltage output from PV modules is raised 

o If No, Voltage output from PV modules is reduced 

 If No, check for ( ) ( 1) 0V k V k   . 

o If Yes, Voltage output from PV modules is reduced 

o If No, Voltage output from PV modules is raised 

Step-4: These values are restored by the system, and it begins searching for MPP. 

 

3.2.2. UOT MPPT Technique 

 This algorithm is designed to detect GMPP in several LMPP in less time 

under PSCs as compared to the P&O algorithm. In figure.3.4, raindrop pattern 

shows the maximum possible values of calculated power ( calP ). The calculated 

power is the product of calculated voltage ( calV ) and current ( calI ) at a particular 

interval of time. This calculated voltage and current depends on the panel’s 

configuration ( ocV  and scI ). The value of calV  and calI  varies from zero to ocV  and 

scI
 respectively. On the other hand, real power rP  has been calculated by 

multiplying the real values of voltage ( rV ) and current ( rI ) of the panel on same 

intervals as used for calP . Then, system tracks the places where the difference        

( cal rP P ) is minimum for the maximum value of calP . However, more than one 
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possible peak may be detected, but the algorithm differentiates between these 

peaks and segregates the local and global peaks. The main aim of this algorithm is 

to spot global peak, because, for the maximum value of calP , there is only one 

highest peak. The system repeats this operation at particular intervals of time and 

adjusts the calP and correspondingly converters duty cycle. Fig.3.4,  shows the 

place where the difference ( cal rP P ) is minimum. There are two power peaks, 

one is local and the other one is global power peak as shown in fig.3.4. The places 

at which the difference ( cal rP P ) is minimum, forms a shape that looks like an 

umbrella. 
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GMPP
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Fig. 3.4 Terminology of UOT based MPPT 

 

These peaks may be one, two or multiple on the same plane which 

depends on panel configuration and shading effects.  The calI  can be calculated 

as;  

             
0

scI

cal cI I dt                                                (3.2) 

 The calP can be calculated as    

                            Cal Cal Cal
P V I                                             (3.3) 

RI  Coming from the solar PV panel can be calculated by using the RI at a 

particular time of interval & can vary from zero to maximum value of panel’s 

short circuit current ( maxscI ). In this  shape, the algorithm detects all the possible 

peaks and selects a peak for which calP  is maximum. 



84 
 

Start

VMPPT = MPPT.Min

Track Mode = Global

Delay Tms

Track

Mode
InitializeInitialize

PNew<POld

Start Global

Track Timer

PNew>POld

VPeak  = VMPPT
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Fig.3.5. Flowchart of UOT based MPPT 

Flow chart to express the behaviour of UOT based MPPT technique is 

shown in fig.3.5, where GMPP is detected and duty cycle of DC converter is 

adjusted accordingly.  

The step-wise explanation of UOT based MPPT can be well understood as 

follows, 

Step-1: MPPT begins searching in global mode. 

Step-2: At 30 ms, time delay will begin. 

Step-3: Tracking mode with local and global search will then be initiated. 
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 IN GLOBAL MODE 

 Global timer is activated. 

 Meanwhile, the algorithm verifies if  PNew < POld 

 If No  

 After that, examine slopes (X) =1 

 If Yes  

 Then Slope (X-1) 

 Next, seek out for slope=1 

 verify for Slope =1 

 If Yes 

o Step size should be increased 

 Else 

o Step size should be decreased 

Step-4: Once the global tracking period finishes, all conditions will be examined 

and cycle is ENDED or else, cycle is initialized. 

 IN LOCAL MODE 

 Initialize 

 If Yes 

o Check  VMPPT= VMPPT.Minimum  and POld=0 

 Else 

o Verify PNew>POld 

o If Yes  VPeak= VMPPT 

o Else raised the step size 

 Verify  VMPPT = MPPT.Maximum 

 If Yes  

o The  VMPPT = VPeak 

o Track mode is local 

o Initialzed = Yes 

 Else 

 Cycle is ENDED. 
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 At each specific cycle, UOT initializes and determines whether power point is 

local or global by examining its status. Its pseudo code is given in Appendix B.  

 

3.3. Formation of Rain drop (Pcal) pattern 

 calP are the drops of rain forming the raindrop pattern. calP is obtained by 

multiplying instantaneous values of output current and voltage of PV array at 

specific time intervals as illustrated in fig.3.6. Possible different values of PV 

array voltage and current combines to form multiple power values that are spread 

over a plane. Highest values of these electrical quantities can go up to panels ocV

and scI ratings and these figures differ for each panel.     
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Fig.3.6. Raindrops formation matrix 

 

3.4. Experimental Study 

Inverse SEPIC DC-DC converter built on PCB is incorporated in small 

prototype standalone PV system with resistive load for evaluation of MPPT 

algorithms’ performances. Table 3.1 lists necessary components specifications 

while designing this model. MPPT algorithms control the switching of DC-DC 

converter which is placed between PV array and resistive load to extract 

maximum power from PV array under PSCs. Current is measured by applying 

ohms law across one ohm resistor. For programming, the PIC-16F15325 
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microcontroller is employed. Complete experimental setup developed in 

laboratory for this study is shown in fig.3.7. 

 

Load

DC-DC

Converter

Unshaded

Panel
Shaded

Panel

For PIC Controller

programming purpose

DSO

MultimeterPIC Kit 3

 

Fig.3.7. Hardware implementation of MPPT assisted PV system. 

 

Table 3.1: List of experimental setup components 

Components                Ratings 

Capacitor           220pf -48µf 

Microcontroller         PIC 16F15325 

Regulator               SI4154 

Resistances           0.1k-200kΩ 

 

Table 3.2: PV module (SS-PV0808P) specifications 

Parameters Values 

maxP  8W 

ocV  10.5V 

scI  1.11A 

mV  8.01V 

mI  1.01A 
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3.5. DC-DC converter 

 It is a crucial component of an MPPT assisted PV system. It forces the PV 

array to operate at GMPP using an impedance matching process. Such converters 

can be categorized as follows based on their input output DC isolation ability as:    

 Isolated Converter: For isolation, transformers are employed by these 

converters. Because of their complicated structure, other DC-DC Converters 

are chosen. 

 Non-isolated Converter: These single circuit converters are less complicated 

in design because their inputs and outputs are not isolated. Cuk , SEPIC and 

buck-boost converters are their common configurations.   

 The operating region of these converters can be find out by equations that 

represents current and voltage behaviour. Impedance of these converters is 

obtained by dividing voltage by current equation. PV array output impedance 

serves as their input impedance while load impedance is their output impedance. 

In order to obtain maximum power, these two impedances must be equal. 

Schematic of zeta converter is illustrated in fig 3.8. In PV system, load impedance 

is considered as outZ  which nearly remains constant and inZ   can vary by varying 

converter duty cycle 'D' ranges between 0 and 1. Working at MPP is not possible 

if outZ < MPPZ  for buck converters and if outZ > MPPZ  for boost converters because 

this situation results in the formation of a non-operational area. Due to this, a DC-

DC converter which can raise or lowers the output voltage is preferable because it 

prevents the reason of the non-operational area. Aside from that, opposite polarity 

of output voltage of Cuk and Buck-Boost converters may have an effect on their 

output connections as well as the system's grounding connections. SEPIC DC-DC 

converters are used to prevent these situations by giving non inverted output 

voltage. 

 Primary shortcoming of buck-boost converter is their revered output voltage. 

This issue is addressed by its other topology, inverse-SEPIC, which maintains DC 

isolation in its output and input. It differs from SEPIC converter, in that it 

produces a constant output current, which makes it a great choice in applications 
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like battery charging. Core of these converters are made from two n-channel 

enhancement mode MOSFETS ( ,1 2M M ), two inductors, coupling and charging 

capacitors. Switching of 1M  & 2M  is controlled by PIC microcontroller [Rosu-

Hamzescu and Oprea, 2013]. Microcontroller is programmed in such a way that 

it operates 1M  & 2M in out of phase i.e when one on other one is off and vice 

versa. 

2M

1M Cc

Cchg1L

2L

inV outV LR

 

Fig.3.8. Zeta converter schematic 

 

 Energy is stored by 1L  and given to output with the help of cC  and 2L  during 

the on period of 1M . When 2M is on, cC starts discharging through 1L  until its 

current attains retune position. Output in this condition is supplied by energy 

stored in 2L . chgC  helps in maintaining continuous load current. This cycle 

continues in two steps. MOSFETS switching are controlled by NCO designed for 

PFM with 2 µs on pulse time. It is concluded that with an increase in duty cycle, 

practical switching increases from 0 to 550 kHz. Operating frequency of this 

control loop is nearby 1 kHz with 25ms maximum power point tracking time 

interval. 8 samples are incorporated in an average MPPT with 21 & 8.4 as 

maximum and minimum volts. Inverse SEPIC converter duty cycle in CCM mode 

can be given in Eq. (3.4)-(3.5) as,  

out

in out

V
D

V V



                                  (3.4)        

           
1 ( )

in out

out in

D I V

D I V k
 


                              (3.5) 

Duty cycle is maximum on low input voltage and vice versa. Implementation 

inverse DC-DC converter is shown in fig.3.9 in accordance with table 3.3 
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specifications.  

Table 3.3: Inverse SEPIC DC-DC converter specifications 

Parameters           Specification 

Output Voltage(VL )                 14.4 V 

Input Voltage Range                 9-20V 

Output Current (IL)                2 A (max) 

Output Power (PL)            28.8 W (max) 

 For boost operation            Vinput<14.4 V 

For buck operation            Vinput>14.4 V 

 scaling factor (N)                    2 

Inductor (L)       30 mH & 88.4 Mh 

Capacitor (C)                  40F 

 

 Voltage Regulator

 PIC Microcontroller
1 Inductor L

2 Inductor L

 

 

Converter

Output

1 MOSFET M
 

  

Capacitors for

DC isolation

2 MOSFET M

Charging Capacitors

  

   

Current Control

OP Amp

  

   

Voltage Control

OP Amp

 3 

 

PIC kit

Programming port



  PV module input

  

Fig.3.9. Design and development of DC-DC Converter 

 

3.6. Results & Discussion 

Experiment is conducted in real time environment considering change in 

irradiance under PSCs. Transient performances of UOT and P&O MPPT 

techniques are recorded in three test scenarios of shadings as 

 Case-1: Module M1 is shaded.    
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 Case-2: Module M1 and M3 are shaded.  

 Case-3: No PV modules are shaded.  

Standalone PV system connected with a resistive load is taken for this 

study. Fig.3.2 (a-b) shows the configuration of 2x2 PV array taken for study. 

When array is under unshaded condition i.e., case 3, all modules of PV array 

receive 1000 W/m
2
 irradiance. Performance of UOT and P&O are analyzed under 

three test cases as mentioned above. In case one, only one module of PV array i.e 

M1 is shaded and other three modules are not shaded. Irradiance on M1 falls to 

601 W/m
2
 from 1000 W/m

2
 while its value on other three modules is 1000 W/m

2
. 

In second case, two modules of PV array is shaded i.e. M1 and M3. Irradiance on 

M1 is kept at 601 W/m
2
 and on M2 & M4 at 1000 W/m

2
whereas irradiance on M3 

falls to 202 W/m
2
 from 1000 W/m

2
. DSO is used to capture the transient 

performances of both MPPT algorithms. PV system output current and voltage is 

captured by channel 1 and 2 by blue and red color respectively. Power assessment 

is done by math function (multiplication) represented by green wave on DSO 

screen. 

Fig.3.10 (a-c) shows transient performance of P&O MPPT algorithm in 

changing above mentioned three cases. Fig.3.10 (a) shows P&O MPPT 

performance under test case 1. In this case, due to shading of one module, output 

power of PV system falls to 21.7140W from 27.2754 W. Output current of PV 

system falls to 1.5400A from 1.9344A in 72ms. In case 2, when two panels of PV 

array are shaded, performance of P&O algorithm in tracking GMPP is traced in 

fig.3.10 (b). Now P&O is able to maintained output power at 10.8570W from its 

previous value and output current at 0.7700A from 1.5400A 78 ms. Performance 

in case 3 is depicted in fig.3.10 (c). When array comes in unshaded condition 

from case 2 condition, P&O raises the output power again to 27.2751W from 

10.8570W. Also current again rose to 1.9343A from 0.7700A in 88 ms.        
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(a) 

 

(b) 

 

(c) 

Fig.3.10. Voltage, current and power transient response using P&O MPPT 

 

 Assessment of UOT MPPT technique is done on same experimental setup 

under same test scenarios as considered in P&O assessment. All test cases 

performances are depicted in fig. 3.11 (a-c). Curves of fig.3.11 (a) depict UOT 
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performance in case 1. When one panel is shaded, UOT maintained the output 

power of system at 22.5600W from 28.2000W and output current at 1.6000A 

from 2.0000A in 60 ms.  

         

 

(a) 

 

(b) 

 

(c) 

Fig.3.11. Voltage, current and power transient response using UOT MPPT 
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 In case 2, UOT maintained the output current at 0.8020A from 1.6000A IN 70 

ms and power at 11.3082W from 22.5600W as shown in fig. 3.11 (b). UOT 

performance in case-3 i.e., when PV array comes in unshaded condition from 

case-2 condition is shown in fig. 3.11 (c). Under this test scenario, UOT again 

maintained the power at 28.2000W from 11.3082W and system current at 

2.0000A from 0.8020A in 80ms.   

Table 3.4: Performance analysis of UOT and P&O under PSCs. 

Test 

Cases 

MPPT 

Technique 
inV (V)  inI (A)  outV (V)
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2021] 
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P&O 

[Manohara

n et al., 

2021] 
14-18 

0.7843- 

2.0000 
14.1 

0.7700-1.9343 88 
10.8570- 

27.2751 

UOT 0.8020-2.0000 80 
11.3082-

28.2001 

 

 The quantitative analysis of transient responses of both MPPT devices is 

carried out in the framework of the above observations. All observations reveal 
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that performance of UOT is higher in comparison to traditional P&O MPPT 

technique under all considered test scenarios of PSCs.         

 Comprehensive analysis of both MPPT techniques are summarized in table 

3.4 on important attributes of PV system such as output voltage, output current, 

tracking time and output power. It is also concluded from the transient responses 

that UOT always tracks the power in right direction as compared to P&O 

technique. Tracking efficiencies of both MPPT devices are computed in table 3.5 

for all three cases of PSCs.  

Table 3.5: Tracking efficiency comparison of UOT and P&O MPPT 

Test Cases MPPT Pout (W) Pin  (W) Ƞ % 

Un-shaded 

Condition 

P&O  

[Manoharan et al., 

2021] 

27.2754 28.7110 94.99 

UOT 28.2000 28.7110 98.22 

Single 

shaded 

Module 

P&O  

[Manoharan et al., 

2021] 

21.7140 22.9852 94.46 

UOT 22.5600 22.9852 98.15 

Two shaded 

Module 

P&O 

[Manoharan et al., 

2021] 

10.8570 11.5295 94.16 

UOT 11.3082 11.5295 98.08 

 

 UOT shows 98.22% efficiency in test case-3 and P&O shows 94.99% in this 

test case. In test case-1, when only M1 is shaded, tracking efficiency of UOT and 

P&O is 98.15% and 94.46% respectively. While UOT and P&O shows an 

efficiency of 98.08% and 94.16% respectively in test case-3. Performance 

comparative analysis is shown in fig.3.12 (a-d) based on tracking time, tracking 

efficiency, load current and power respectively that  illustrates that UOT is able to 
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identify GMPP accurately while maintaining the PV system output current under 

shading conditions. 

Case-1 Case-2 Case-3
0

20

40

60

80

T
ra

c
k

in
g

 T
im

e
 (

m
S

e
c
)

 P&O

 UOT

                 

(a)

Case-1 Case-2 Case-3
0

20

40

60

80

100

E
ff

ic
ie

n
c
y

 (
%

)

 P&O

 UOT

          

(b)        

Case-1 Case-2 Case-3
0.0

0.4

0.8

1.2

1.6

2.0

L
o

a
d

 c
u

rr
e
n

t 
(A

)

 P&O

 UOT

  (c)                         

Case-1 Case-2 Case-3
0

5

10

15

20

25

30

P
o

w
er

 (
W

)

 P&O

 UOT

        (d)

Fig.3.12. UOT and P&O MPPT comparative study based on (a) tracking time (b) 

tracking efficiency (c) load current (d) output power 
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[Manoharan et 

al., 2021] 

ABC-PO 

[Pilakkat and 

Kanthalakshmi, 

2020] 

H M L M H H 

FSSO 

[Singh et al., 

2020] 

H H M M M Z 

ACO-P&O 

[Selvakumar et 

al., 2018] 

H H H H M Z 

MGWO 

[Ilyas and 

Ghazal, 2021] 

H H H H H H 

M-P&O 

[Gil-Velasco 

and Aguilar-

Castillo, 2021] 

M M VH M M M 

MFO  

[Shi et al., 2019] 
M H M H H L 

GTOA 

[Zafar et al., 

2020] 

H V M H M H 

HSSA  

[Premkumar et 

al., 2020] 

H H L H H H 

MPSO 

[Hoang and Le, 

2020] 

M M M M H Z 



98 
 

L-Low, M-Medium, H-High, Z-Zero, VL-Very Low, VH-Very High, V-Variable 

Table 3.6 clearly shows the superiority of UOT algorithm over recently published 

optimization MPPT techniques. 

 This chapter demonstrates a novel MPPT technique i.e. UOT, which is 

employed to enhance the performance of standalone PV system connected to a 

resistive load. Uniqueness of UOT lies in the fact that it takes less memory space 

in microcontroller employed and time to track GMPP while extracting MPP under 

PSCs. This makes it computationally less complex. This novel MPPT technique is 

compared experimentally with traditional P&O technique under various PSCs 

scenarios in real time environment on small prototype experimental setup. After 

comprehensive analysis of both MPPT algorithms in three test scenarios, it is 

drawn that UOT can track 9.09-16.66% faster with 3.39-4.14% high power boost 

in comparison to P&O MPPT technique. Also UOT is able to maintain high 

Output current of PV system with high tracking efficiency. Because of its rapid 

settling at GMPP as well as low oscillations near GMPP, UOT can save power 

and thus perform better in obtaining the most energy from the solar power plant. 

Comparative study of recently reported MPPT techniques with UOT on various 

parameters in table 3.6 reveals the effectiveness of UOT over them. 
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CHAPTER 4 

PERFORMANCE EVALUATION OF MPPT TECHNIQUES 

UNDER SHADING SCENARIO AND LOAD VARIATION 

 

 This chapter provides major contribution in the field of implementing MPPT 

techniques in SPV by testing four different MPPT metaheuristic approaches in 

real time environment under PSCs and their performance with different DC-DC 

converters & load variations. A novel UOT shows its superiority over 

conventional P&O MPPT method in terms of GMPP, tracking time, tracking 

efficiency & computational complexity etc in previous chapter.  In this chapter, 

UOT is tested against well known PSO, TLBO and P&O MPPT approaches, in 

order to evaluate their performances on laboratory hardware in real time with 

changing conditions like PSCs, different DC converters & under load variations.  

As the study provides a technical data in real time environment, it helps new 

learners & industry researchers working in the same field. Moreover this work 

promotes the effective utilization of renewable energy source. 

 

4.1 . Problem formulation 

 Basic element of any SPV system is its SPV array. An SPV array is made up 

of several SPV modules which in turns are constituted by series and parallel 

connection of solar cells. These cells can be model in two types of equivalent 

circuits, DDM and SDM. SDM is chosen for the design and analysis of SPV 

systems since it requires less parameter for exact modeling & less computing 

overheads. Fig.4.1 shows commonly used SDM of a SPV module. Functional Eq. 

can be used to model SPV module mathematically. Under uniform irradiance its 

I-V relationship can be written as 
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Fig.4.1. SDM of PV cell 

 

By considering series and parallel connected cells, above Eq. can be written as  
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                  (4.2) 

Shockley Eq. can be used to evaluate current through the diode as 
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                            (4.3) 

 Variation in incoming radiations on different modules in SPV array is caused 

by many factors as shown in fig.4.2, which causes the happening of partial 

shading. The yield power of several modules in the array will slump significantly 

under PSCs, leading to imbalanced conditions throughout the entire system by 

creating hotspots in them. Bypass diodes are used to eliminate this issue.  

PSCs CausesPassing Clouds

Trees Dust Formation

Poles

Buildings

Lifeless Leaves

 

Fig.4.2. Root causes of PSCs 
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 This experimental study is conducted on a 2x2 SPV array configuration as 

shown in fig.4.3 with B07XQ8KTF5 SPV module having specifications as listed 

in table 4.1. In order to eliminate problems that arises in SPV systems due to 

PSCs, this study is conducted by choosing three MPPT metaheuristic techniques 

under three test cases with SPs as listed in table 4.2 with two different DC-DC 

converters employed in each case separately. 
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Fig. 4.3. 2x2 SPV array configuration in (a) SP-1 (b) SP-2 (c) SP-3 

 

Table 4.1: SPV module B07XQ8KTF5 specifications at STC 

Parameters Specifications 

Maximum power(Pmax) 5W 

Maximum power voltage(Vmp) 9.01V 

Maximum power Current(Imp) 0.57A 

Open Circuit Voltage (Voc) 11.34V 

Short Circuit Current (Isc) 0.65A 

 

Table 4.2: Shading pattern of test cases 

SP Irradiance level (W/m
2)

 

Module 

M1 

Module 

M2 

Module 

M3 

Module 

M4 

SP-1 1000 1000 1000 1000 

SP-2 800 1000 1000 1000 

SP-3 800 1000 600 1000 
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4.2. MPPT Techniques 

4.2.1. Particle Swarm Optimization Technique 

PSO is regarded as the most efficient method of tracking MPP when compared with 

other MPPT approaches due to its fast computational speed & high accuracy. PSO's 

fundamental idea is inspired by schooling fish or crowded avian behavior [ Jouda 

et al., 2017 ]. This optimization approach suggests certain particles creating a 

swarm and moving like wasps throughout the search area for obtaining the best 

solution. Every particle seeks to alter its travelling velocity as a result of their 

erudite flying experiences. The speculative foundation of this algorithm is built on 

defining a certain area known as the solution space, and all of them build up a 

prospective to solve the quandary. In the initial stage, it is presumed that a number 

of arbitrarily dispersed particles in the search region will be saved in the primary 

best location. All of the vacant positions will be stored as the global one. 

Afterwards, step size of these particles is altered and each particle cost function is 

predicted which is compared with earlier results. The preceding stages are then 

repeated until identical results are obtained. Flowchart of PSO is shown in fig.4.4. 

GMPP is extracted by this technique from SPV array by altering the DC converter 

duty cycle, with yield power being its objective function. ‘D’ is updated by it as  

 

        1 1k k k

i i iD D                                                      (4.4) 

 

     
1

1 1 2 2( ) ( )k k k k

i i best i best iw k a P k a G      
                      (4.5) 

 

 Initially the duty cycle is initialized which corresponds to the population. 

Values of current & voltage are measured corresponding to the initialized duty 

cycle & power is evaluated. On the basis of Eq. (4.4) - (4.5) duty cycle is updated 

& corresponding power is extracted [Chaieb and Sakly, 2018]. This process is 

carried out whenever power changes & repeated until GMPP is attained. 
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Fig. 4.4.PSO based MPPT Technique operation [Ram et al., 2017]. 

 

4.2.2. Teaching Learning Based Optimization technique 

 TLBO technique doesn’t need any precise parameters set for its working. This 

algorithm is motivated by the teacher-student classroom teaching-learning process 

or amongst students. On the basis of a teacher's performance in a student's results, 

this algorithm was built. The student's pursuit is aided not just by the subject 
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trained by the educator, but also by gathering private information gained from 

teaching practice. Student’s number in a class constitutes to the population. 

 Controlled variables are the various subjects, and the learner's outcome 

represents the fitness function. This algorithm is composed of a teacher and a 

learner phase. The teacher attempts to enhance the level of the learner's 

knowledge during these two phases. The teachers' phase mostly focuses on how to 

increase the average class result in a particular subject on the basis of teacher’s 

knowledge & ability. This is accomplished by increasing    to     . As seen 

below, the learners' rate is increased in contrast to current & desired mean. 

Increment in learners phase is given as [Rezk H and Fathy, 2017]   

               ( )mean i i new F iDiff r L T L                            (4.6) 

   ranges in  0<    < 1 & TF  is a set of two fixed teaching capabilities (1 or 2) 

evaluated as 

              FT = round{1+rand(0,1)(2 -1)}                              (4.7) 

 The reformed value of present learner’s reformed value            is calculated 

by the number of possible means between the current and desired solution, as 

shown below. 

                     , ,  new i old i mean iL L Diff                                  (4.8) 

 In learner stage, student’s knowledge is improved either by interaction 

amongst students in the classroom or by the teacher. When a student in the class 

has additional knowledge than other learners, the updating procedure is 

examined.The learners' modification is stated at random by selecting two learners 

& comparing [Rezk et al., 2019] them as  

If ( ) ( )i jf L f L then 

     
, , ( )new i old i i i jL L r L L                                      (4.9) 

Else                        
, , ( )new i old i i j iL L r L L                                            (4.10) 

 If        achieves higher performance than the previous one, its value is 

accepted. Fig.4.5 shows its simplified flowchart. 
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Fig.4.5. TLBO based MPPT technique operation [Rezk et al., 2019]. 
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4.2.3. Umbrella Optimization Technique 

 This approach is made to quickly identify GMPP under PSCs from multiple 

LMPP. When compared with above mentioned optimization techniques, UOT is 

less computationally complex because it takes less time to track GMPP & less 

memory space while tracking it. Initially UOT creates a raindrop pattern out of all 

potential GMPPs by computing all at once in real-time. This procedure produces 

less data as a result of which less ROM space in the PIC Microcontroller is 

needed. This approach checks in each cycle if the operating point is GMPP or 

LMPP at specific time intervals. In every cycle, UOT moves its operating point in 

the direction of GMPP when it is within the computed range. It stabilizes its 

operation at the most recently attained GMPP if no new GMPP is found. UOT 

forms a raindrop pattern of power by multiplying SPV module output current & 

voltage at certain span of time. Maximum value of these quantities goes to 
OCV  & 

SCI .This process will evaluate all possible GMPP at once which is spread on a 

single plane. ‘
CP ’at all GMPP can be evaluated by  

         c c cP V I               (4.11) 

 Algorithm next evaluates      by multiplying      &      at the same time 

intervals taken by it while evaluating     as 

         r r rP V I              (4.12) 

 Afterwards, it starts tracking the places where the difference ‘ c rP P ’comes to 

be least for the utmost value of ‘ cP ’. However, even if multiple peaks are found, 

the algorithm is able to discriminate amongst them and separate the global from 

the local peaks. Because there is only one highest peak for the utmost value of      

‘ cP ’, the primary goal of this technique is to identify GMPP. The algorithm 

repeats this process at predetermined span of time & modifies the DC converters 

duty cycle for achieving GMPP. Flowchart of UOT is shown in fig.4.6 for 

searching GMPP amongst various LMPPs.  
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Fig. 4.6.UOT based MPPT Technique Operation 

 

4.2.4. P&O MPPT Technique 

 The MPPT algorithm is most widely used due to its simplicity and ease of 

implementation. The P&O approach undergoes a modest modification to adjust 

PV module's power. Output power of PV array is checked periodically and 
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compared with its previous value Traditional P&O MPPT technique to track 

GMPP is already discussed in previous chapters in detail.  

 

4.3. Experimental setup 

 All four MPPT approaches are validated on a small prototype experimental 

setup as shown in fig.4.7. A prototype standalone SPV system is designed using 4 

PV modules B07XQ8KTF5 connected in 2x2 configurations.  
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Fig.4.7. (a) Block diagram & Experimental setup with (b) Inverse SEPIC DC 

converter (c) LUO DC converter 

 Two different DC-DC converters are used to asses the performances of each 

metaheuristic MPPT technique. Inverse SEPIC & LUO DC converters are taken 

for this study. Duty cycles of these converters are controlled by PIC 16F series 
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microcontroller integrated on their board. A resistive load is connected to SPV 

system for evaluating the MPPT technique performances under PSCs. For testing 

the algorithms in varying load conditions, a POT is used as a varying load on SPV 

system. Current is measured by DC crompton potentiometer method by 

connecting 1Ω resistance in series with load and measuring voltage drop across it. 

PSCs are created on SPV array as listed in table 4.1 using transparent plastic 

films. All the transient responses are captured through DSO. 

 

4.4. Power electronics interface 

 The entire load connected to SPV system functions well when they receive a 

constant input required by them. Thus, it is essential to control their input 

according to their demand. Since output of a SPV system is in DC form, therefore 

DC–DC converters are usually incorporated between load & SPV array to 

maintain the input of load at desired level. These converters can buck, boost or 

perform both buck-boost operations according to the demand of the load. Though 

simple buck-boost converters are cheaper, they suffer with the problem of ripples 

in its electrical quantities. To resolve this problem, heavy LC filters are 

incorporated in them which raise their cost. They also suffer with problem of 

inverted output. All these issues are resolved by developing new topologies of 

buck-boost converter. Inverse SEPIC converter is one amongst them. Another 

topology of DC converter for boosting the DC voltage is LUO DC converter. This 

experimental study incorporates these two converters to assess the performance of 

UOT, PSO & TLBO in SPV system. 

 

4.4.1. Inverse SEPIC DC converter  

 This converter is also known as zeta converter & is capable of raising or 

lowering its input voltage to the required regulated voltage. These converters can 

be designed with minimum numbers of components which reduces their 

implementation & working cost. Topology of inverse SEPIC DC converter is 

shown in fig.4.8 (a). Primary & secondary switches ‘S1 & S2’ functions in phase 
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opposite to each other. In its ON period, ‘S1’ will conduct & ‘S2’ will be off. In 

this case, two paths are available for current to flow, first is from input to S1, 

energy transfer capacitor C1, output inductor L2, load & finally back to input. 

Second is from input to S1, ground reference inductor L1 & back to the input. 

During its off period S1 is off & S2 will start conducting. In this mode input will 

get disconnected. Now the current again continue to flow in two paths. One is 

from output inductor L2, load & back to L2 through S2 & follows the second path 

which is from L1, S2, C1 & back to L1. One can find the equilibrium DC 

conversion ratio as  

 

                                                 
1

out

in

V D

V D



                                                         (4.13) 

 If D > 0.5, converter operates in boost mode else operates in buck mode. ‘C1’ 

also provides DC isolation between input & output apart from holding steady state 

voltage across it. Designing of inverse SEPIC DC converter [ Gupta et al., 2021; 

Rosu-Hamzescu and Oprea, 2012] is shown in fig.4.9(a) with its component 

specifications listed in table 4.3. 

 

4.4.2. LUO DC Converter 

 These converters are basically used for step up operation using voltage lift 

technique. Through this technique, the properties of circuits can be enhanced. 

Simple structure, high efficiency & higher output voltage with few ripples makes 

these converters best suitable in SPV system applications. Fig.4.8(b) depicts the 

basic topology of positive output super lift LUO converter. It basically consists of 

two freewheeling diodes ‘D1 & D2’, one inductor ‘L’ , two capacitors ‘C1 & C2’ 

& one power switch ‘S’ (i.e MOSFET). Operation of LUO converter is based on 

ON-OFF cycle of power switch ‘S’. When ‘S’ is on, C1 charged to Vin and 

current in ‘L’ start increasing with Vin. During off period of ‘S’ current in ‘L’ it 

starts decreasing with voltage              . Switching of power switch ‘S’ is 

controlled by PIC microcontroller, which generates the pulse width modulated 
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signals for its operation. Designing of LUO converter is shown in fig.4.9(b) with 

its components specifications in table 4.3. 
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Fig.4.8.Topology of (a) inverse SEPIC DC converter (b) LUO DC converter 
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Fig.4.9.Designing of (a) inverse SEPIC DC converter (b) LUO DC converter. 

 

Table 4.3: Specifications of DC-DC converters 

Inverse SEPIC DC converter 

Parameters Rating 

Input Voltage Min- 8V, Max-18V 

Output Voltage 14.4V 

Output Current Min- 0.6A, Max- 1.13A 

Output Power Min- 8.64W, Max-16.3W 

Inductors (L) 47mH & 82mH 
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Scaling Factor 2 

LUO DC converter 

Component Rating 

Input Voltage Min-8V, Max- 19V 

Output Voltage 14.4V 

Output Current Min-0.4A, Max-1.13A 

Output Power Min-5.76W, Max-16.3W 

Inductor (L) 70Mh 

Scaling Factor 2 

 

4.5. Results & Discussion 

 Performance evaluation of four MPPT approaches (via UOT, PSO, TLBO and 

P&O) are conducted on SPV system incorporating 2x2 SPV array as shown in fig. 

4.7 along with inverse SEPIC & LUO DC converters respectively. Each technique 

is tested in three changing SPs as discussed in table 4.2. In SP-1, all modules of 

SPV array is illuminated at the same irradiance level i.e. at 1000W/m
2
. In SP-2, 

module M1 is shaded with irradiance on it at 800 W/m
2
 while irradiance at other 

three modules of SPV array is maintained at 1000 W/m
2
. Further, PSCs is 

achieved in SP-3 where module M3 is also partially shaded along with module 

M1. In SP-3 irradiance at module M1, M2 & M4 is maintained at 800 W/m
2
, 1000 

W/m
2
 & 1000 W/m

2
 respectively while module M3 is shaded having an irradiance 

level of 600 W/m^2 on it. Transient response analysis of each metaheuristic and 

conventional approach is analyzed through DSO. Performances are analyzed by 

tracing SPV system output current, voltage & power curves under above 

mentioned conditions with mentioned DC converters separately. Channel-1 of 

DSO displays the SPV system output voltage curve represented by blue line while 

its channel-2 displays the output current curve of SPV system shown by violet 

line. Output power graph of the system is assessed through a multiplication math 

function and observed as green line in the transient responses. 

4.5.1. Performance evaluation with Inverse SEPIC DC Converter 
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 Performance of UOT is analyzed by recording the SPV system output voltage, 

current & power transient responses under changing SPs & is depicted in fig.4.10 

(a-c). Fig.4.10 (a) depicts the transient responses of all above mentioned 

quantities of SPV system when its array is exposed from SP-1 to SP-2. Under this 

PSCs UOT finds its GMPP from16.11W to 14.47W in 54.4ms. While maintaining 

the constant output voltage of DC converter at 14.4V, its associated output current 

changes from 1.119A to 1.005A. SP further changes from SP-2 to SP-3 and UOT 

performance is traced in fig.4.10 (b). Now the algorithm finds its GMPP from 

14.47W to 12.85W in 55.2ms. It also maintains the output current of DC 

converter at 0.8930A from 1.005A. SPV array is further exposed to SP-1 from 

SP-3 and associated transient response of output voltage, current & power is 

recorded in fig.4.10 (c). Under these conditions, algorithm again tracks its GMPP 

back to 16.11W from 12.85W in 52.2ms. Output current of DC converter is now 

again raised and restores from 0.8930A to 1.119A. 

 Fig.4.11 (a-c) represents the transient response of PSO under the same PSCs 

as applied for UOT. Transient response of fig.4.11 (a) is recorded when SPV 

array is exposed from SP-1 to SP-2. Under these circumstances, PSO finds its 

GMPP at 14.17W from 15.73W in 68.1ms. Output current of DC converter 

reduced from 1.093A to 0.9841A. In SP-2 to SP-3, PSO will achieve its GMPP 

from 14.17W to 12.66W in 66.2ms & maintain output current of SPV system at 

0.8793A from 0.9841A as shown in fig.4.11 (b). In third test condition when SP 

of SPV array changes from SP-3 to SP-1, PSO again finds its GMPP at 15.73W 

from 12.66W in 65.6ms restoring system’s output current again at 1.093A from 

0.8793A as shown in fig.4.11 (c). 

 TLBO based MPPT technique transient responses are depicted in the curves 

of fig. 4.12 (a-c). Curves of fig.4.12 (a) are traced when TLBO tracks GMPP in 

changing SP-1 to SP-2. It is clear from the curves that TLBO finds its GMPP 

from 15.52W to 13.96W in 55.2ms. It maintains the output voltage of DC 

converter at 14.4V with the reduction in output current from 1.078A to 0.9700A. 
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(a) 

 
(b) 

 
(c) 

Fig.4.10. Transient responses of UOT with Inverse SEPIC DC converter in (a) 

SP-1 to SP-2 (b) SP-2 to SP-3 (c) SP-3 to SP-1 
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(a) 

 
(b) 

 
(c) 

Fig.4.11. Transient responses of PSO with Inverse SEPIC DC converter in (a) SP-

1 to SP-2 (b) SP-2 to SP-3 (c) SP-3 to SP-1 



116 
 

 Fig.4.12 (b) is recorded when PSCs on SPV array changes from SP-2 to SP-3. 

In this condition, TLBO changes its GMPP from 13.96W to 12.37W in 71.2ms. 

Output current curve shows that system current further decreases from 0.9700A to 

0.8593A. In SP-3 to SP-1 changing scenario, TLBO restores its GMPP again at 

15.52W from 12.37W in 72.2ms & maintains the SPV system output current 

again at 1.078A from 0.8593A as shown in fig.4.12 (c). 

 P&O based MPPT technique transient responses are depicted in the curves of 

fig. 4.13(a-c). Curves of figure 4.13(a) are traced when TLBO tracks GMPP in 

changing SP-1 to SP-2. It is clear from the curves that P&O finds its GMPP from 

15.34W to 13.82W in 70ms. It maintains the output voltage of DC converter at 

14.4V with the reduction in output current from 1.0653A to 0.9599A. Fig.4.13 (b) 

is recorded when PSCs on SPV array changes from SP-2 to SP-3. In this 

condition, P&O changes its GMPP from 13.82W to 12.28W in 74ms. Output 

current curve shows that system current further decreases from 0.9599A to 

0.8531A. In SP-3 to SP-1 changing scenario, P&O restores its GMPP again at 

15.34W from 12.28W in 73ms & maintains the SPV system output current again 

at 1.0653A from 0.8531A as shown in fig.4.13 (c). Comprehensive analysis of all 

the parameters is listed in table 4.4 and table 4.5. 

 After performing experimental study of all three MPPT metaheuristic 

approach, it is observed from tables and transient responses that UOT shows 

better performance in tracking GMPP under PSCs. It achieves true GMPP in less 

tracking time as compared to PSO, TLBO and P&O as shown in fig. 4.14(a). Also 

UOT maintains superior level of SPV system output current in contrast to PSO, 

TLBO and P&O as shown in fig. 4.14(b). Tracking efficiency of all three 

algorithms is compared in table 4.5 under different SPs. In SP-1 UOT shows 

98.75% tracking efficiency while PSO, TLBO and P&O shows 96.45%, 95.13% 

and 94.01%tracking efficiency to track GMPP respectively. When SPV array is 

exposed to SP-2, UOT, PSO, TLBO and P&O shows 98.54%, 96.49% , 95.11% 

& 94.12% tracking efficiencies respectively. Under SP-3, UOT again shows its 

high GMPP tracking performance with 98.51% as compared to PSO with 96.99%,  
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(a) 

 
(b) 

 
(c) 

Fig.4.12. Transient responses of TLBO with Inverse SEPIC DC converter in (a) 

SP-1 to SP-2 (b) SP-2 to SP-3 (c) SP-3 to SP-1 
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(a) 

 
(b) 

 
(c) 

Fig.4.13. Transient responses of P&O with Inverse SEPIC DC converter in (a) 

SP-1 to SP-2 (b) SP-2 to SP-3 (c) SP-3 to SP-1 
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TLBO with 94.79% and P&O with 94.10%. Fig.4.14(c-d) depicts the graphical 

analysis of UOT, PSO, TLBO and P&O in terms of tracking efficiency & output 

power. 

Table 4.4: Performance evaluation of UOT, PSO, TLBO and P&O with 

Inverse SEPIC DC converter in changing SPs 
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Table 4.5: Tracking efficiency comparison of UOT, PSO, TLBO and P&O 

based MPPT under PSCs with inverse SEPIC DC converter 
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UOT 16.1136 16.3172 98.75 14.4720 14.6855 98.54 12.8592 13.0537 98.51 

PSO 15.7392 16.3172 96.45  14.1710 14.6855 96.49 12.6619 13.0537 96.99 

TLBO 15.5232 16.3172 95.13 13.9680 14.6855 95.11 12.3739 13.0537 94.79 

P&O 15.3403 16.3172 94.01 13.8225 14.6855 94.12 12.2846 13.0537 94.10 
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(d) 

Fig.4.14. Comparative analysis of UOT, PSO, TLBO and P&O MPPT based on 

(a) tracking time (b) output current (c) tracking efficiency (d) output Power with 

Inverse SEPIC DC Converter 

 

4.5.2. Performance evaluation with LUO DC converter 

 All four mentioned MPPT techniques are now tested with LUO DC converter 

while tracking GMPP in above mentioned SPs. With LUO converter, transient 

responses of UOT are traced in fig.4.15 (a-c). Fig.4.15 (a) is recorded when PSCs 

changes from SP-1 to SP-2. It is observed that output current of LUO converter 

decrease from 1.111A to 1.004A. UOT is capable to achieve new GMPP from 

15.99W to 14.45W in 19ms. PSCs further changes from SP-2 to SP-3 and 

corresponding UOT responses are traced in fig.4.15 (b). With further fall in 

irradiance, output current of DC converter further reduces to 0.8894A from 

1.004A & algorithm tracks new GMPP at 12.80W from 14.45W in 14.9ms. In SP-

3 to SP-1 changing pattern, SPV system output responses are traced as shown in 

fig.4.15 (c). It is clear from the responses that under this sudden change in SP, 

UOT is able to track true GMPP from 12.80W to 15.99W in 13ms. SPV system 

output current is further raised by UOT at 1.111A from 0.8894A. 

 Next the setup is tested for PSO MPPT technique under same scenario & its 

all transient responses are recorded in the graphs of fig.4.16 (a-c). Curves of 

fig.4.16 (a) are recorded when PSCs changes from SP-1 to SP-2. 
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(a) 

 
(b) 

 
(c) 

Fig.4.15. Transient responses of UOT with LUO DC converter in  (a) SP-1 to SP-

2 (b) SP-2 to SP-3 (c) SP-3 to SP-1 
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(a) 

 
(b) 

 
(c) 

Fig.4.16.Transient responses of PSO with LUO DC converter in (a) SP-1 to SP-2 

(b) SP-2 to SP-3 (c) SP-3 to SP-1 
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 It is seen that LUO converter output current decreases from 1.078A to 

0.9708A. SPV system output power also reduced. Now PSO track new GMPP at 

13.97W in 25ms which is not a true GMPP. Fig.4.16 (b) shows the responses 

when SP changes from SP-2 to SP-3. Under these changes of irradiance, PSO 

now chase new GMPP at 12.33W from 13.97W in 23.1ms. Output current of 

converter is also reduced from 0.9708A to 0.8566A. Transient curves of PSO 

responses when SPV array met SP-3 to SP-1 condition is recorded and displayed 

in fig.4.16 (c). PSO is able to find its previous GMPP at 15.52W from 12.33W in 

20ms with again restoring the output current of LUO converter from 0.8566A to 

1.078A. 

 Experimental testing of TLBO MPPT technique is now conducted on the set 

up of LUO converter & transient responses are recorded as shown in fig. 4.17 (a-

c). Fig.4.17 (a) shows the curves of current, voltage & power for TLBO approach 

when shading on SPV array changes from SP-1 to SP-2. Due to fall in irradiance 

of SPV array, its GMPP will reduced from 15.35 W & TLBO achieves new 

GMPP at 13.77W in 45.1ms. Due to this SP DC converter output current 

decreases from 1.066A to 0.9565A. Shading on the SPV array is further increased 

from SP-2 to SP-3, resulting in a further GMPP fall from 13.77W, as shown in 

fig.4.17 (b). TLBO chases this condition & achieves new GMPP at 12.13W in 

19.9 ms. The SPV system output current level is now maintained at 0.8430A from 

0.9565A by TLBO. Fig.4.17(c) shows the transient responses of the TLBO 

algorithm when SP changes from SP-3 to SP-1. As the irradiance level increases 

on the SPV array, TLBO increases the system’s output current again at 1.066A 

from 0.8430A. TLBO also tracks its original GMPP at 15.35W in 21.1ms. 

 P&O MPPT technique is now tested on the set up of LUO converter with 

transient responses as shown in fig.4.18 (a-c). Fig.4.18 (a) shows current, voltage 

& power curves when shading on array changes from SP-1 to SP-2. As irradiance 

falls, GMPP will reduce from 15.25 W to 13.73W in 43 ms with decrease in 

converter output current from 1.0561A to 0.9536A. Further shading of array from 

SP-2 to SP-3 results in further fall of GMPP from 13.77W to 12.11W as shown in  
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(a) 

 
(b) 

 
(c) 

Fig.4.17. Transient responses of TLBO with LUO DC converter in  (a) SP-1 to 

SP-2 (b) SP-2 to SP-3 (c) SP-3 to SP-1 
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(a) 

 
(b) 

 
(c) 

Fig.4.18. Transient responses of P&O with LUO DC converter in  (a) SP-1 to SP-

2 (b) SP-2 to SP-3 (c) SP-3 to SP-1 
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in fig.4.18 (b). P&O chases this condition in 28 ms. Output current is now 

maintained at 0.8413A from 0.9536A by P&O. Fig. 4.18 (c) shows the transient 

responses of P&O algorithm when SP changes from SP-3 to SP-1. As the level of 

irradiance is increased on PV array, P&O increases the system’s output current 

again at 1.0561A from 0.8413A. P&O also tracks its original GMPP at 15.25W in 

25ms.  

 In all the above cases, it is seen that whenever SPs changes, UOT is again 

capable of finding true GMPP in less time as compared to PSO, TLBO and P&O 

while working with LUO DC converter. UOT is also capable of maintaining 

output current of SPV system at higher level which can drive the connected load 

without serving the undercurrent conditions. Table 4.6 summarizes all the above 

transient response findings of UOT, PSO, TLBO metaheuristic and traditional 

P&O MPPT approach respectively. Comparative analysis of tracking efficiencies 

of all three algorithms is given in table 4.7. In SP-1, UOT is able to track GMPP 

in lesser time with an efficiency of 98.04% as compared with PSO, TLBO and 

P&O with tracking efficiencies 95.13%, 94.07% & 89.45% respectively. When 

SPV array is exposed to SP-2, tracking efficiencies of UOT, PSO, TLBO and 

P&O are 98.44%, 95.19%, 93.79% & 93.50% respectively. Finally in SP-3 UOT 

again shows high efficacy of 98.11% as compared with PSO having 94.49%, 

TLBO with 92.99% and P&O with 92.80%. 

 Analysis of various important parameters of SPV array is shown graphically 

in fig.4.19 (a-d). Fig.4.19 (a) shows the tracking time comparison of all three 

MPPT metaheuristic approaches which reveals the capability of UOT to track 

GMPP in different SPs in lesser time as compared with PSO, TLBO and P&O. 

Maintaining the output current of LUO DC converter at a high level is also an 

important task monitored by any MPPT technique. From fig.4.19 (b) it is clear 

that UOT is also able to maintain high level of output current under any 

circumstances of PSCs in comparison with PSO, TLBO and P&O. Fig.4.19 (c) 

shows that tracking efficiency of UOT is much higher as compared with other two 

approaches under same circumstances. Achievement of GMPP is shown 
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graphically in fig.4.19 (d), which verifies UOT’s capability to achieve GMPP 

when compared with PSO, TLBO and P&O. 

Table 4.6: Performance evaluation of UOT, PSO, TLBO and P&O with LUO 

DC converter in changing SPs 
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Table 4.7: Tracking efficiency comparison of UOT , PSO, TLBO and P&O 

based MPPT under PSCs with LUO DC converter 

M
P

P
T

 

te
ch

n
iq

u
es

 SP-1 SP-2 SP-3 

Pout 

(W) 

Pin 

(W) 

η 

(%) 

Pout 

(W) 

Pin 

(W) 

η 

(%) 

Pout 

(W) 

Pin 

(W) 

η 

(%) 

UOT 15.9984 16.3172 98.04  14.4576 14.6855 98.44 12.8073 13.0537 98.11 

PSO 15.5232 16.3172 95.13 13.9795 14.6855 95.19 12.3350 13.0537 94.49 

TLBO 15.3504 16.3172 94.07 13.7736 14.6855 93.79 12.1392 13.0537 92.99 

P&O 15.2500 16.3172 93.45 13.7318 14.6855 93.50 12.1147 13.0537 92.80 
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(d) 

Fig.4.19. Comparative analysis of UOT, PSO, TLBO and P&O  MPPT with LUO 

converter based on (a) tracking time (b) output current (c) tracking efficiency (d) 

output Power 

 

4.6. MPPT techniques performances under varying load condition 

 Performance of UOT, PSO, TLBO and P&O MPPT technique is also 

evaluated under varying load conditions. A resistive POT is taken as varying load 

for the experiment which is varied, step by step in same time while evaluating the 

performances of all three MPPT approaches. Same experimental setup is used as 

shown in fig. 4.7(a) with inverse SEPIC DC converter. Irradiance on SPV array is 

kept at 1000 W/m
2
 level for all cases of load variation.  

 Fig.4.20 (a-b) shows the transient response of load current variations of SPV 

system incorporating UOT when its load changes in steps.Curve of fig.4.20 (a) is 

obtained when SPV system load changes from 12.86 Ω to 18 Ω, output current of 

inverse SEPIC converter falls from 1.119A & stabilizes at 0.800A in 25.1ms by 

UOT. When the load is further increased to 23 Ω from 18 Ω, UOT stabilizes the 

load current at 0.624A from 0.800A in time 27.1ms as depicted in the curve of 

fig.4.20 (b). 
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1.11A
0.8A

Δt = 25.1ms

 

(a) 

 

0.8A
0.624A

Δt = 27.1ms

 

(b) 

Fig.4.20. Load current variation with UOT when RL changes from (a) 12.86 Ω to 

18 Ω (b) 18 Ω to 23 Ω. 

 Next, the performance of PSO is evaluated under same load variation scenario 

as for UOT and traced on DSO screen as shown in fig.4.21 (a-b). Fig. 4.21 (a) is 

traced when SPV system with PSO load changes from 12.86 Ω to 18 Ω. PSO 

holds the SPV load current at 0.781A from 1.093A in 32.1ms. Load is further 

increased to 23 Ω & load current variations are obtained as shown in the curve of 

fig.4.21 (b). Now, SPV system incorporating PSO approach maintains its output 

current at 0.594A from 0.781A in 36ms. 

 Now, the SPV system is tested for TLBO MPPT technique & its respective 

curves are shown in fig.4.22 (a-b). Curve of fig.4.22 (a) is obtained when the  
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1.09A
0.781A

Δt = 32.1ms

 
(a) 

 

0.781A 0.594A

Δt = 36.0ms

 
(b) 

 

Fig.4.21. Load current variation with PSO when RL  changes from (a) 12.86 Ω to 

18 Ω (b) 18 Ω to 23 Ω. 

system load changes from 12.86 Ω to 18 Ω. Output current of system decreases 

from 1.078A & stabilizes at 0.761 by TBLO in 39.1ms. When SPV system load is 

further increased to 23 Ω, TLBO stabilizes its output current at 0.586A from 

0.761A in 41.1ms as shown in fig.4.22 (b).  

Fig.4.23 (a-b) shows the transient response of load current variations of SPV 

system incorporating P&O when its load changes in steps. Curve of fig. 4.23 (a) is 

obtained when SPV system load changes from 12.86 Ω to 18 Ω, output current of 

inverse SEPIC converter falls from 1.065A & stabilizes at 0.758A in 38.8 ms by 

P&O. When the load is further increased to 23 Ω from 18 Ω, P&O stabilizes the  
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Δt = 39.1ms
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0.761A
0.586A

Δt = 41.1ms

 
(b) 

Fig.4.22. Load current variation with TLBO when RL changes from (a) 12.86 Ω to 

18 Ω (b) 18 Ω to 23 Ω. 

1.06A
0.75A

Δt=38.8ms

 
(a) 
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0.75A
0.57A

Δt=42ms

 
(b) 

Fig.4.23. Load current variation with P&O when RL changes from (a) 12.86 Ω to 

18 Ω (b) 18 Ω to 23 Ω. 

load current at 0.579A from 0.758A in time 42 ms as depicted in the curve of 

fig.4.23 (b). Hence, it is seen that in both cases of SPV system load variations, 

UOT is able to maintain its output current at higher level in minimum time as 

compared with PSO, TLBO and P&O MPPT techniques respectively. Their 

comparative analysis is tabulated in table 4.8 with comparison graphs shown in 

fig.4.24 (a-b). UOT, PSO, TLBO and P&O are compared on various parameters 

in table 26 which reveals that UOT performs better in PSCs as compared with 

PSO, TLBO and P&O MPPT approaches.   

 

Table 4.8: Performance evaluation of UOT, PSO, TLBO and P&O under 

varying load 

S.No Vout(V) RL(Ω) 
UOT PSO TLBO P&O 

IL(A) tt(ms) IL(A) tt(ms) IL(A) tt(ms) IL(A) tt(ms) 

1 14.4 12.86 1.119 --- 1.093 --- 1.078 --- 1.065 --- 

2 14.4 18 0.800 25.1 0.781 32.1 0.761 39.1 0.758 38.8 

3 14.4 23 0.624 27.1 0.594 36 0.586 41.1 0.579 42 
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Table 4.9: UOT, PSO, TLBO and P&O comparative study 

Comparative 

Parameters 

MPPT Approaches 
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(b) 

Fig .4.24. Comparative analysis of UOT, PSO, TLBO and P&O driving SPV 

system under load variations (a) Output current (b) Time of stabilization. 

  

Fig.4.25 shows the radial diagrams of all four MPPT approaches based on various 

parameters considered in table 4.8 which clearly shows superiority of UOT over 

PSO, TLBO and P&O MPPT algorithms. Hence this chapter evaluates the 

performance of four different MPPT techniques (UOT, PSO, TLBO and P&O) 

with two different DC-DC converters. Standalone PV system with resistive load is 

developed to measure their effectiveness. Inverse SEPIC and LUO DC-DC 

converters incorporated in PV system for study. Performances of all four MPPT 

approaches are evaluated under PSCs. 
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(d) 

Fig.4.25. Radial diagram representing characteristics of (a) TLBO (b) PSO (c) 

P&O (d) UOT  
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 Three shading patterns are considered via SP-1, SP-2 and SP-3. Transient 

responses are captured with the help of DSO under changing SP as SP-1 to SP-2, 

SP-2 to SP-3 and SP-3 to SP-1. 

 With inverse SEPIC DC-DC converter UOT based MPPT controller is 

able to extort maximum power from SPV with an average efficiency of 

98.6% for the SP considered whereas PSO, TLBO and P&O average 

efficiencies are recorded as 96.64%, 95.01% and 94.07% respectively. 

UOT also boost the output power 4.67% - 5.04% more with 22.28% - 

28.41% faster tracking as compared to PSO, TLBO  and P&O based 

MPPT controller.  

 With LUO DC-DC converter UOT based MPPT controller again shows its 

supremacy in extracting GMPP from SPV with an average efficiency of 

98.19%. Whereas average efficiencies of PSO, TLBO and P&O are 

94.93%, 93.61% and 93.25% for the same test cases. UOT shows a power 

boost of 4.90% - 5.71% more with 48.00% - 57.87% faster tracking as 

compared with PSO, TLBO and P&O based MPPT controller. 

 Effectiveness of each considered MPPT is also evaluated under varying load 

condition with inverse SEPIC DC-DC converter. Under this test scenario UOT 

maintained 5.07% - 7.77% high output current of PV system by taking 35.47% - 

35.80% less time in comparison to PSO, TLBO and P&O techniques. 

Thus with experimental validation and comparison of UOT, PSO, TLBO and 

P&O in table 4.4 & 4.6 on various parameters along with radial diagrams proves 

that UOT outperforms over PSO, TLBO and P&O under PSCs with different DC-

DC converters and varying Load conditions.   
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CHAPTER 5 

CONCLUSION 

In renewable power generation system, PV systems are considered well 

proficient generation systems because of vast accessibility of sunlight on earth. 

But, working efficiencies of these systems are low on account of weather and 

shading factors. Therefore, MPPT techniques are incorporated in these systems to 

extract maximum power from them under any working circumstances. Till date, 

lot of MPPT techniques has been reported by many researchers but it has been 

always a difficult task to choose a suitable MPPT technique for a PV system 

working under unpredictable weather conditions. Uniqueness of different MPPT 

techniques is explored in literature survey. These MPPT techniques are broadly 

classified into two categories as conventional and AI based. Both categories have 

their own pros and cons. Conventional MPPT techniques suffers from drawback 

of slow response although these are computationally less complex and highly 

proficient in unshaded scenarios. MPPT based on AI are highly accurate with 

negligible steady state oscillations around GMPP under PSCs. But these 

techniques suffer from the drawback of high computational complexity. Though a 

variety of MPPTs are available these days, selecting one is again a difficult task 

for specific working scenario.  

 This research work presents a novel MPPT technique i.e. UOT which can 

work efficiently under PSCs and load variations. Uniqueness of UOT lies in the 

fact that it takes less space in PIC microcontroller ROM. Also, UOT executes its 

process in few numbers of iterations making it to track GMPP in less time. These 

features make UOT computationally less complex as compared with other MPPT 

techniques. UOT is tested experimentally in real time against P&O , PSO and   
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TLBO in two phases of research work. Standalone PV system with resistive load 

is implemented in real time environment. Inverse SEPIC and LUO DC-DC 

converters are implemented in this system. Transient responses of all MPPT 

approaches are captured through DSO.          

 In first phase of research work, 32W standalone PV system connected with 

resistive load incorporating inverse SEPIC DC-DC converter is designed in 

laboratory. On this system UOT and well known conventional P&O MPPT 

technique are tested and compared with each other on many important attributes 

of PV system such as tracking time, output power, tracking efficiency, output 

current etc. Key points of this experiment comparison are as:   

 Novel UOT is developed. 

 Three shading conditions are taken for the study and tests are conducted 

by changing these conditions. 

  UOT takes 60 – 80 ms to track GMPP under these PSCs as compared to 

P&O which takes 72 – 88 ms, resulting in 9.09% - 16.66% faster tracking 

by UOT in comparison with P&O MPPT technique. 

 UOT shows 3.39 % - 4.14 % higher power boost as compared with P&O 

under considered PSCs. 

 UOT shows higher average tracking efficiency of 98.15 % under all test 

scenarios.   

 Aim of second phase of this research study is to verify the effectiveness of 

developed UOT with different DC-DC converters and under PV system load 

variation conditions. Again, a standalone PV system with resistive load is 

designed with inverse SEPIC and LUO converter separately. UOT is compared 

with PSO, TLBO and P&O MPPT techniques. Key characteristics of this 

experimental phase are as:  

 Experiment is done in three different SP (i.e. SP-1, SP-2 and SP-3) and 

load variation conditions. 

 With inverse SEPIC DC-DC converter, UOT is capable of boosting 4.67% 

- 5.04% higher output power by taking 22.28% - 28.41% quicker time to 
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attain GMPP as compared with PSO, TLBO and P&O MPPT approaches. 

Average efficiencies of UOT, PSO, TLBO and P&O are recorded as 

98.6%, 96.64%, 95.01% and 94.07% respectively in all SPs considered. 

This clearly reveals that UOT is more effective in tracking GMPP with 

inverse SEPIC DC-DC converter as compared with other three MPPT 

approaches.   

 With LUO DC-DC converter, UOT again shows a power boost of 4.90% - 

5.71% with 48.00% - 57.87% quicker tracking time of GMPP as compared 

with PSO, TLBO and P&O techniques in all SPs considered. Average 

tracking efficiency of UOT is recorded as 98.19% whereas PSO, TLBO 

and P&O shows 94.93%, 93.61% and 93.25% average tracking 

efficiencies respectively for same test cases. 

 With both DC-DC converters UOT is able to maintain higher level of SPV 

system output current under PSCs. 

 All considered metaheuristic and conventional MPPT techniques are 

tested for load variation. Inverse SEPIC DC-DC converter is taken for 

measuring their effectiveness. UOT again shows its supremacy taking 

35.47% - 35.80% lesser time in maintaining 5.07% - 7.77% higher level of 

output current in comparison with PSO, TLBO and P&O MPPT 

techniques.  

 Table 3.6 and table 4.9 reveals further effectiveness of UOT in comparison 

with these and other MPPT metaheuristic techniques on other important attributes 

while working with PV system under considered test scenarios. Thus, developed 

UOT is capable in maintaining higher output current and power of PV system in 

PSCs and load variations. UOT also shows higher tracking efficiency, lower 

oscillations around GMPP and is computationally less complex in comparison 

with PSO, TLBO and P&O under the same test scenarios. This study will provide 

the baseline for new learners and researchers working in same field and definitely 

for the industries manufacturing MPPT controllers for their further work.  
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 As many MPPT techniques are reported till date, selecting particular for 

specific working condition is still a difficult task. These techniques can further be 

tested for array reconfiguration conditions with loop minimization. Conditions of 

hotspots formation and stress on DC-DC converters can also be considered under 

working in real time environment. Loops in this area can be considered for further 

experiments in real time environment to acquire more accuracy with less 

computational time.  
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Appendices 

Appendix- A: 

 

Appendix- B: 

Pseudo Code of  UOT based MPPT 

Input: Slope, power, voltage & current average samples.  

Output:  Output voltage & current of DC-DC Converter  

calculate MPPT Var .Power as MPPT Var.VinAverage x MPPT Var.IinAverage; 

calculate dp, dv,di. 

Set direction of Track as 0. 

Pseudo Code of P&O based MPPT 

Input: Voltage, Current & Power evaluation 

Output: Step size of MPTT. 

if ∆P is +ve or -ve then 

            Measure input current, voltage & evaluate Power. 

        if ∆P < P_TH_+VE then 

           Set MPPT Var.TrackUpDown=1.  

        end if 

end if        

      if MPPT Var.TrackUpDown == 1 then 

          MPPT chase in +ve defined step. 

      else  

               MPPT chase in -ve defined step. 

     end if 

End the program & check again. 
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if START == MPPT Var.ScanState then 

Set MPPT Var.VinReference and P_Maximum as   

MINIMUM_MPPT_VOLTAGE and MPPT Var.Power correspondingly. 

Set MPPT Var.MPPT ScanCount as 5 ms and MPPT Var.ScanState as 

PROGRESS. 

end if 

else if PROGRESS ==  MPPT Var.ScanState then         

        if CLEAR== MPPT Var.MPPT ScanCount then 

               Set MPPT Var.MPPT ScanCount = 5. 

               if MPPT Var.Power >MPPT Var.P_Maximum then                  

                       Set the maximum power to be equal to the current power 

                       Compute MPPT Var.VinReference by adding 0.5 volt scan step.     

                end if 

               if  MPPT Var.VinReference > MAXIMUM_ MPPT_VOLTAGE then 

                       Set MPPT Var.ScanState = CLEAR. 

                       Set MPPT Var.MPPT ScanCount = 60000.     

               end if 

        end if 

end 

Else 

      if CLEAR== MPPT Var. MPPT ScanCount then 

                Set the scan state to START.    

      end if      

      if Δv > V_TH_+VE or Δv < V_TH_-VE then 

           compute the slope of the power vs voltage(slope = delta_p / delta_v)             

           if slope > 0 then 

               Set direction of tracking as 1. 

          else if slope < 0 then 

               Set direction of tracking as 2. 

          end if    
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     else           

          if Δi > I_TH_+VE then 

               Set direction of tracking as 1. 

           else if Δi < I_TH_-VE then 

            Set direction of tracking as 2. 

          end if  

    end if 

         if TrackDirection > 0 then             

             Set MPPT Var.StepValue = MPPT_DEF_STEP. 

        end if 

        if MPPT Var.StepValue < MPPT_MINIMUM_STEP then 

            Set MPPT Var.StepValue =MPPT_MINIMUM_STEP. 

        end if 

        if MPPT Var.StepValue > MPPT_MAXIMUM_STEP then 

            Set MpptVariable.StepValue =MPPT_MAXIMUM_STEP. 

        end if 

       if TrackDirection == 1 & MPPT Var.VinReference < 

MAXIMUM_MPPT_VOLTAGE then 

            Reference Input Voltage is increased. 

      end if 

       if TrackDirection == 2 & MPPT Var.VinReference > 

MINIMUM_MPPT_VOLTAGE then 

             Reference Input Voltage is decreased. 

      end if 

update current cycle measurements for next cycle assessment. 

End 
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