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ABSTRACT

Distillation utilizes vapor and liquid phases at essentially the same temperature and pressure for
the coexisting zones. Plates or trays are used to bring the two phases into intimate contact. Trays
are stacked one above the other and enclosed in a cylindrical shell to form a column. The overall
flow pattern in a distillation column provides countercurrent contacting of vapor and liquid
streams on all the trays through the column. These phases on a given tray approach thermal,
pressure, and composition equilibriums to an extent dependent upon the efficiency of the
contacting tray. Column process design specifies the separation, and sets column and utility
pressure, reflux, stages, and feed point. These in turn yield internal flows and reboiler and

condenser duties.

Designing of Depropanizer column deals in determining various parameters like number of
equilibrium stages, column internals, thermodynamic properties of fluid, etc. Initial data for
desighing column is taken form a refinery. Column is designed using Fenske Underwood
Gilliland theoretical method. Consecutively, calculation of column internals is also done. A
simulation for depropanizer column is done using Aspen Hysys as simulating software. Thus, a
correlating study is done between the theoretical and simulation method. A complete
understanding of software is done under the able guidance of mentor before using it. A layout
model of column is also prepared based upon the data obtained. This project provides the
designing of the depropanizer column and use of simulation software to validate the calculated

data.
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NOMENCLATURE

[xi/ x(] The ratio of the concentration of any component i to the concentration of a
reference component r

XLK Light key concentrations

XHK Heavy key concentrations

X£ HK Concentration of the heavy key in the feed

Xt LK Concentration of the light key in the feed

X4, HK Concentration of the heavy key in the top product

Xb, LK Concentration of the light key if in the bottom product

Nm Minimum number of stages at total reflux, including the reboiler

N; Number of stages above the feed, including any partial condenser

N; Number of stages below the feed, including the reboiler

Nmin Minimum number of stages

o Average relative volatility of the component / with respect to the reference
component

arK Average relative volatility of the light key with respect to the heavy key

q Thermal condition of the feed

Rm Minimum reflux

B Molar flow bottom product

D Molar flow top product

uy Maximum allowable vapor velocity, based on the gross (total) column cross —
sectional area, m/s

l¢ Plate spacing, m

D, Column diameter, m

Vw Maximum vapor rate, kg/s

Ac Total column cross-sectional area, m>

Aq Cross-sectional area of downcomer, m?

A, Net area available for vapor-liquid disengagement, m?

Aa Active or bubbling, area, m?

Ay Hole area, the total area of all the active holes, m>
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A Perforated area (including blanked areas), m?

Agp The clearance area under the downcomer apron, m?
ur Flooding vapor velocity, m/s

FLv Liquid-vapor flow factor

Ly Liquid mass flow-rate, kg/s

Lud Liquid flow rate in downcomer, kg/s

Vw Vapor mass flow-rate, kg/s

Up Minimum vapor velocity through the holes(based on the hole area), m/s
dp Hole diameter, mm

pv Density of vapor, Kg/m®

pL Density of liquid, Kg/m®

hy Height of the weir, mm

how Depth of the crest of liquid over the weir, mm

hg The dry plate drop, mm liquid

h, Residual head loss, mm liquid

h; Total plate pressure drop, mm liquid

hy Downcomer back-up, measured from plate surface, mm
hgc Head loss in the downcomer, mm

hap Height of the bottom edge of the apron above the plate, mm
hy. Clear liquid back-up, mm

t; Residence time, sec

Co Orifice coefficient

AP, Total plate pressure drop, Pa (N/mz)

lw Weir length, mm

Ip Hole pitch, mm

Tc Critical temperature, °C

Tr Residual temperature, °C

Pc Critical pressure, psi

H'C Ideal gas enthalpy calculated at temperature, T

SiG Ideal gas entropy calculated at temperature, T

Cp'® Ideal gas heat capacity calculated at temperature, T
®; Fugacity coefficient
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CHAPTER 1
INTRODUCTION
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1. INTRODUCTION
1.1 OVERVIEW OF DISTILLATION

Distillation is simply defined as a process in which a liquid or vapor mixture of two or more
substances is separated into its component fractions of desired purity, by the application and
removal of heat. The process is based on the fact that the vapor of a boiling mixture will be
richer in the components that have lower boiling points. Hence, when this vapor is cooled and
condensed, the condensate will contain more volatile components. At the same time, the original
mixture will contain more of the less volatile material. The primary equipment employed in the
process of distillation are distillation columns, which are designed to achieve this separation

efficiently.

The best way to reduce operating costs of existing units is to improve their efficiency and
operation via process optimization and control. To achievé this improvement, a thorough
understanding of distillation principles and how distillation systems are designed is essential. As
stated, distillation is the process of heating a liquid until some of its ingredients pass into the
vapor phase, and then cooling the vapor to recover it in liquid form by condensation. The main
purpose of distillation is to separate a mixture. If the difference in boiling points between two
substances is great, complete separation may be easily accomplished by a single-stage
distillation. If the boiling points differ only slightly, many redistillations may be required. In the
simplest mixture of two mutually soluble liquids with similar chemical structures, the readiness
to vaporize of each is undisturbed by the presence of the other. For example, would be halfway
between the boiling points of the pure substances, and the degree of separation achieved by a
single distillation would depend only on each substance’s readiness to vaporize at this -
temperature. This simple law was first stated by 19th- century by the French chemist Franggis

Marie Raoult (known as Raoult’s law).

The term “still” is applied only to the vessel in which liquids are boiled during distillation, but
the term is sometimes applied to the entire apparatus, including the fractionating column, the
condenser, and the receiver in which the distillate is collected. If a water and alcohol distillate is
returned from the condenser and made to drip down through a long column a series of plates,

and if the vapor, as it rises to the condenser, is made to bubble through this liquid at each plate,

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Page 9
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the vapor and liquid will interact so that some of the water in the vapor condenses and some of
the alcohol in the liquid vaporizes. The interaction at each plate is equivalent to a redistillation.

This process is referred to by several names in the industry; namely rectification, fractionation,

or fractional distillation.

If two insoluble liquids are heated, each is unaffected by the presence of the other and vaporizes
to an extent determined only by its own nature. Such a mixture always boils at a temperature
lower than is true for either substance alone. This effect may be applied to substances that would
be damaged by overheating if distilled in the usual fashion. Substances can also be distilled at
temperatures below their normal boiling points by partially evacuating the still. The greater the

vacuum, the lower is the distillation temperature.

1.2 BASIC COMPONENTS OF DISTILLATION COLUMN

There are a variety of configurations for distillation columns, each designed to perform specific
types of separations. The two major types are batch and continuous columns. In a batch
operation, the feed to the column is introduced batch-wise. That is, the column is charged with
‘batch’ and then the distillation process is conducted. When the desired separation is achieved, a
next batch of feed is introduced. In contrast, continuous columns process a continuous feed
stream. They are capable of handling high throughputs and are more common of the two types.
Continuous columns can be further classified according to:

o The nature of the feed that they are processing (binary column - feed contains only two
components, and multi-component column - feed contains more than two components);

e The number of product streams they have (multiproduct column - column has more than
two product streams);

o Where the extra feed exits when it is used to help with the separation (extractive distillation
— where the extra feed appears in the bottom product stream , and azeotropic distillation -
where the extra feed appears at the top product stream );

* The type of column internals (tray column - where trays of various designs are used to hold
up the liquid to prbvide better contact between vapor and liquid, and hence achieve better
separation, and the packed column - where instead of trays, packings are employed to effect

contact between vapor and liquid).

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES ' - Page 10
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There are several important components in a distillation column, each of which is used either to

transfer heat energy or enhance mass transfer. The major components in a typical distillation are:

e Vertical shell where the separation of liquid components is carried out,

e Column internals such as tray, plates and/or packings which are used to enhance
component separations,

¢ Reboiler to provide the necessary vaporization for the distillation process

e Condenser to cool and condense the vapor leaving the top of the column

e Reflux drum to hold the condensed vapor from the top of the column

e Liquid (reflux) is recycled back to the column.

The column internals are housed within a vertical shell, and together with the condenser and
reboiler, constitute a distillation column. The liquid mixture that is to be processed is called the
feed. The feed introduced usually somewhere near the middle of the column to a tray known as
the feed tray. The feed tray divides the column into a top (enriching or rectification) section and
a bottom (stripping) section. The feed flows down the column where it is collected at the bottom
in the reboiler. Heat is supplied to the reboiler to generate vapor. The source of heat input can be
any suitable fluid, although in most chemical plants this is normally steam. In refineries, the
heating source may be the output streams of other columns. The vapor raised in the reboiler is
re-introduced into the unit at the bottom of the column. The liquid removed from the reboiler is
known as the bottoms product or simply, the bottoms.. The vapor travels up the column, and as
it exits the top of the unit, it is cooled by a condenser. The condensed liquid is stored in a
holding vessel known as the reflux drum. Some of this liquid is recycled back to the top of the
column and this is called the reflux. The condensed liquid that is removed from the system is

known as the distillate or top product.

1.3 CONTINUOUS DISTILLATION: PROCESS DESCRIPTION

The separation of liquid mixtures by distillation depends on differences in volatility between the
components. The greater the relative volatilities, the easier are the separation. The basic
equipment required for continuous distillation is shown in Figure 1. Vapor flows up the column

and liquid counter-currently down the column. The vapor and liquid are brought into contact on

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES | Page 11
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plates, or packing. Part of the condensate from the condenser is returned to the top of the column
to provide liquid flow above the feed point (reflux), and part of the liquid from the base of the
column is vaporized in the reboiler and returned to provide the vapor flow. In the section below
the feed, the more volatile components are stripped from the liquid and this is known as the
stripping section. Above the feed, the concentration of the more volatile components is increased

and this is called the enrichment, or more commonly, the rectifying section.

Condenser
Top
proguct
L~ — - 4 Reflux T
C 2] A
----- +— - -
Feed [ ] Muitiple W Side
—>— 1] leeds P --71  streams
I —— 2
__________ -
_____ L ]
Rebodes >— | 0 ]
Y
Bottom v
praduct
(a) (b)
Figure | Distillation column {a) Basic column (b)Y Multiple feeds and side streams

Figure 1(a) shows a column producing two product streams, referred to as tops and bottoms,
from a single feed. Columns are occasionally used with more than one feed and with side

/

streams withdrawn at points up the column, Figure 1(b). This does not alter the basic operation, //
but complicates the analysis of the process, to some extent. If the process requirement is to strip-. |

a volatile component from a relatively non-volatile solvent, the rectifying section may be
omitted, and the column would then be called as stripping column. In some operations, where

the top product is required as a vapor, only sufficient liquid is condensed to provide the reflux

flow to the column, and the condenser is referred to as a partial condenser. When the liquid is
totally condensed, the liquid returned to the column will have the same composition as the top
product. In a partial condenser the reflux will be in equilibrium with the vapor leaving the
condenser. Virtually pure top and bottom products can be obtained in a single column from a
binary feed, but where the feed contains more than two components; only a single "pure"

product can be produced, either from the top or bottom of the column. Several columns will be

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES  Pagel2
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needed to separate a multicomponent feed into its constituent parts. Continuous distillation is of

many types but here we are considering only multi component distillation.

1.4 MULTICOMPONENT DISTILLATION

A tower comprised of rectifying (above the feed) and stripping (below the feed) sections is
capable of making a more or less sharp separation between two products or pure components of
the mixture, that is, between the light and heavy key components. Key components are the two
components in the feed mixture whose separation is specified. The more volatile of these
components is the light key (Propane), and the less volatile is the heavy key (Butane). Other
components are termed nonkeys. The key components appear to a significant extent in both
overhead and bottom products. Light nonkeys end up almost exclusively in the overhead
product, and heavy nonkeys end up almost exclusively in the bottom product in many
separations, components are present whose relative volatilities are intermediate between the
light key and the heavy key. These components are termed intermediate keys or distributed keys.
Intermediate keys are split between the top and bottom products. We are considering a

depropanizer column over here.

1.5 DEPROPANIZER COLUMN

The bottoms from the de-ethanizer serves as the principal feed to the depropanizer. A second
feed stream to this column consists of the bottoms liquid from the condensate stripper for the
fourth and fifth compression stages. The primary function of this column is propylene and
propane recovery from these two feeds. The column operating pressure typically will be 240 to
340 psia, which is sufficient to condense the overhead vapor with cooling water or ambient air.
The overhead from this column contains all of the propane present in the feed, as well as some
butane that are stripped to provide complete recovery of propane. Ethane content in the distillate

is negligible due to the over stripping commonly carried out in the preceding de-ethanizer.

A depropanizer normally contains 35 to 55 actual trays and has a uniform diameter. In these
systems, the surface tension of the liquid phase is below 6 dyne/cm, the liquid density is near 30

I/, and the vapor density is about 8% of the liquid density. Under such conditions, the

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Page 13
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downcomer residence time required can be a significant factor in the specification of the tower

diameter for a tray column. The downcomer normally is designed so that the froth height is no

more than 70% of the tray spacing; therefore, downcomer area must be large to avoid the need

for excessively tall columns.

1.6 ADVANTAGES OF TRAY COLUMN

1.6.1 Factors Favoring Tray Columns

The following factors generally favor trays compared to either random or structured packings:

Solids:

Trays can handle solids a lot easier than packed columns. Both gas and liquid velocities are
often an order of magnitude higher on a tray than through packings. These high liquid and
gas velocities provide a sweeping action that keeps tray openings and perforations clear.
Solids tend to accumulate in the void of packed column. There are fewer locations where
solids can be deposited in a tray column.

Further, packed towers need liquid distributors and plugging in these has been a common
trouble spot. Cleaning trays is easier than cleaning random packings, while cleaning

structured packings is practically impossible.

High Liquid rates:
Multipass trays effectively lower the liquid load "seen" by each part of the tray. The

capacity of packings, especially structured, tends to rapidly fall off at high liquid rates. It is

often more economical to handle high liquid rates in tray columns.

Large diameter:
Packings are prone to maldistribution problems in large diameter columns. These problems

are far less in plate columns.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Page 14
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e Complex columns:

Inter-reboilers, inter-condensers, cooling coils, and side drawoffs are more easily
incorporated in tray than in packed columns. In packed columns, every complexity requires

additional distribution and/or liquid collection equipment.

e Feed composition variation:

One way of allowing for design uncertainties and feedstock variation is by installing
alternate feed points. In packed columns, every alternate feed point requires expensive

distribution equipment.

e Performance prediction:

There is greater uncertainty in predicting packed column performance. Greater overdesign

is often required.

o Chemical reaction/absorption:

By using high weirs, trays are capable of providing greater residence time for absorption or

chemical reaction than packing.

e Weight:
Tray columns usually weigh less than packed columns. This saves on the cost of

foundations, supports, and column shell.

o Intermittent operation: N

—

When temperature is either lower or higher than atmospheric, intermittent operation
repeatedly expands and contracts the shell. This may crush the packings or damage the shell

in a packed column, but is easy to accommodate for in tray columns.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Page 15
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CHAPTER 2
LITERATURE REVIEW
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2. LITERATURE REVIEW

2.1 MULTICOMPONENT DISTILLATION METHOD

Some approximate calculation methods for the solution of multicomponent, multistage
separation problems continue to serve useful purposes even though computers are available to
provide more rigorous solutions. The available phase equilibrium and enthalpy data may not be
accurate enough to justify the longer rigorous methods. In design and optimization studies, a
large number of cases can be worked quickly and cheaply by an approximate method to define
roughly the optimum specifications, which can then be investigated more exactly with a rigorous

method.

Two approximate multicomponent shortcut methods for simple distillation are the Smith-
Brinkley (SB) method, which is based on an analytical solution of the finite-difference equations
that can be written for staged separation processes when stages and interstage flow rates are
known or assumed and the Fenske-Underwood-Gilliland (FUG) method, which combines
Fenske’s total-reflux equation and Underwood’s minimum-reflux equation with a graphical
correlation by Gilliland that relates actual column performance to total- and minimum- reflux
conditions for a specified separation between two key components. Both methods work best

when mixtures are nearly ideal.

2.1.1 Fenske-Underwood-Gilliland (FUG) Method

The first step in the design of distillation equipment is specification of light and heavy key
components. Then the specific operating conditions and equipment size are established,
ultimately on the basis of an economic balance or simply by exercise of judgment derived from
experience. The design parameters that need to be determined include intermediate ones such as
limiting reflux and trays that are needed for establishing a working design. These design
parameters are the following:

¢ Minimum number of theoretical trays

¢ Distribution of nonkeys between the overhead and bottoms products

e Minimum reflux

e Operating reflux

= e s 1 Y ot T ST b T R R T

UDIES Page 17
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e Number of theoretical trays
e Location of the feed tray

o Tray efficiencies

These shortcut methods assume constant molar overflow in the rectifying and stripping zones
and constant relative volatilities, which may be taken at the conditions of the feed tray or as a
geometric mean of the values at the top and bottom of the column. Since the top conditions are
not known completely in advance, evaluation of a mean relative volatility is an iterative process

that can be started with the value at the feed tray or at the feed condition. Particular modes of

variation of 0L sometimes are assumed.

2.1.1.1 Minimum Number of Stages

The Fenske equation (Fenske, 1932) can be used to estimate the minimum stages required at

total reflux. The equation applies equally to multicomponent systems and can be written as:

Xrlda Xrlp

Where,
[xi/ X;] = the ratio of the concentration of any component i to the concentration of a reference
component r, and the suffixes d and b denote the distillate (d) and the bottoms (b),

Nn = minimum number of stages at total reflux, including the reboiler

Q; = average relative volatility of the component / with respect to the reference component.

Normally the separation required will be specified in terms of the key components, and the

above equation can be rearranged to give an estimate of the number of stages:

log [&!&] [ﬁ!}i]
N, = — LXHKId LXLK |}

log e x

e
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Where, 0,k is the average relative volatility of the light key with respect to the heavy key, and
XLk and xpk are the light and heavy key concentrations. The relative volatility is taken as the
geometric mean of the values at the column top and bottom temperatures. To calculate these
temperatures initial estimates of the compositions must be made, so the calculation of the
minimum number of stages by the Fenske equation is a trialand — error procedure. If there is a
wide difference between the relative volatilities at the top and bottom of the column the use of
the average value in the Fenske equation will underestimate the number of stages. In these
circumstances, a better estimate can be made by calculating the number of stages in the
| rectifying and stripping sections separately; taking the concentration as the base concentration

for the rectifying section and as the top concentration for the stripping section, and estimating

the average relative volatilities separately for each section. This procedure will also give an

estimate of the feed point location.
2.1.1.2 Minimum Reflux

The method of Underwood employs auxiliary parameters derived from the equation:

g C QiXfFi __ 1 _
=1 - 0 q

Where, q is the thermal condition of the feed and the summation extends over all the
components in the feed. The only roots required are those in numerical value between the
relative volatilities of the light and heavy keys. For instance, if there is one distributed

component, subscript dk, the required roots 6; & 6,

Oy > 01>ty
(s 478 >62 >af,,k.

Then the minimum reflux and the distribution of the intermediate component are found from the

two equations that result from substitution of the two values of 0 into Underwood’s second

equation:
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@,d;
&, — 6 ’

The number of values of 6=1 plus the number of components with relative volatilities between
those of the light and heavy keys. When there is no distributed component, the equation below
may be used in terms of mole fractions and only a single form is needed for finding the

minimum reflux,

T &l
Rm+1=2&:':%.

Occasionally the minimum reflux calculated by this method comes out a negative number. That,
of course, is a signal that some other method should be tried, or it may mean that the separation

between feed and overhead can be accomplished in less than one equilibrium stage.

2.1.1.3 Operating Reflux

The operating reflux is an amount in excess of the minimum that ultimately should be
established by an economic balance between operating and capital costs for the operation. In
many cases, however, the assumptions R = 1.5Rn, often is close to the optimum and is used

without further study unless the installation is quite a large one.

2.1.1.4 Actual Number of Theoretical Plates

An early observation by of the plate-reflux relation was:

R =R, )(N - N,,) = const,

- - . — " —— =, TR T ——.,
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But no general value for the constant was possible. Several correlations of calculated data
between these same variables have since been made. A graphical correlation made by Gilliland
has found wide acceptance because of its fair accuracy and simplicity of use. Of the several

representations of the plot by equations that of Molokanov et al. is accurate and easy to use:

N=Nuw _, [( 1 +54.4X )(X—l)]
Y:*‘—Iv—-‘;—l——'— — eXp “1_1":'_"117.2)( x0-5 ’

Where,

R=-R .
X= in
R+1 '

From which the number of theoretical trays is

N, +Y
N=-1
1—-Y
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Figure 2: The Gilliland Correlation
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The Gilliland correlation appears to be conservative for feeds with values of q (the thermal
condition of the feed), and can be in error when there is a large difference in tray requirements
above and below the feed. The principal value of the correlation appears to be for preliminary
exploration of design variables which can be refined by computer calculations. Although it is

often used for final design, that should be done with caution.

2.1.1.5 Feed Tray Location

An estimate can be made by using the Fenske equation to calculate the number of stages in the
rectifying and stripping sections separately, but this requires an estimate of the feed-point

temperature. An alternative approach is to use the empirical equation given by Kirkbride:

N B\ (xruk\ {*ik\>
l _" = 0. . = . '
%% [Ns] -20610g [(D) (Xf.l.x) (xd.m() }

Where,

Nr = number of stages above the feed, including any partial condenser,
Ns = number of stages below the feed, including the reboiler,

B = molar flow bottom product,

D  =molar flow top product,

X, Hk = concentration of the heavy key in the feed,
Xt Lk = concentration of the light key in the feed,
X4, vk = concentration of the heavy key in the top product,

Xb, Lk = concentration of the light key if in the bottom product.

2.2 DESIGNING PARAMETERS FOR DEPROPANIZER COLUMN

The following data needs to be calculated to design a depropanizer column:
e Distillates flow rate
e Bottoms flow rate
* Composition of the various components obtained from distillates and bottoms.

¢ Minimum number of stages
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e  Minimum reflux

e Number of Theoretical stages

e Actual Number of stages

e Stripping and Rectifying feed tray location
e Optimum Reflux

e Column Internals

e Reboiler and Condenser Loads

However, the following specifications are needed to be given in order to design a distillation

column:

Separation Specification:
F = B+D (A)

Fxg= Bxg +Dxp (B)

At a given feed flow rate and feed composition, there are two equations [Egs. (A) & (B)] and
four unknowns: B, D, xg and xp There fore, only two variables can be specified for the

separation. Further, at least one of the two specified variables must be a composition.

Composition specification

If one product flow is specified, the concentration of one component either in the distillate or in
the bottom (but not both) can be specified. If neither a recovery nor a product rate is specified,
the concentration of one component in the distillate and one component in the bottom can be

specified.

The above applies to both binary and multicomponent distillation. In multicomponent
distillation, once the above are specified, other components will distribute according to the
equilibrium relationship. Frequently, a product specification sets the maximum concentration of
impurities that can be tolerated in the product. The one impurity which is dependent on the
column separation and is most difficult to achieve sets the composition specification in the

column.
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Physical Property Specification

A product composition can often be specified in terms of a physical property that is a direct
function of composition. For instance, the vapor pressure of a bottom product is often a good
measure of the concentration of lights in the bottoms, and may be specified instead. Other
physical properties include the Reid vapor pressure (RVP), viscosity, refractive index, freezing
point, molecular weight & others. A physical property specification is often preferred either
when it is easy to monitor (e.g., refractive index), or when it provides a good functional

specification of product purity.

Heat Duty Specifications

A composition or product rate specification may be substituted by a heat duty or internal flow
(e.g., reflux) specification. This is done either to improve convergence in a computer simulation
(especially if compositions are in the part per million levels), or in a revamp when the column or
its exchangers are at a capacity limits. The mass, component, and energy balance equations

translate this specification into a composition or product rate specification.

Side product
For each side product, one additional specification is required. This specification is either a

product rate (e.g., the side product rate) or a product composition.

Heat addition or removal
For each point of heat addition or removal, an additional specification is required. This

specification is usually a heat duty or an internal product flow.
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2.3 IMPORTANT CONSIDERATIONS IN OPTIMIZATION OF_ DISTILLATION
COLUMN

2.3.1 Pressure Considerations

As the pressure of a column is raised:

¢ Separation becomes more difficult since the relative volatility decreases - more plates and
reflux are required to achieve the separation.

e The latent heat of vaporization decreases, reducing the duties of the reboiler and
condenser.

¢ The vapor density increases, resulting in a smaller column diameter.

* The reboiler temperature increases. This is usually limited by the decomposition
temperature of the material being vaporized.

¢ Condenser temperature increases.

As the pressure is lowered, these effects are reversed. A lower pressure limit is usually
encountered by a desire to avoid vacuum operation and / or refrigeration in the condenser. For
an initial design, it is adequate to set the distillation pressure above ambient and less as allowed
by cooling water or air cooling in the condenser. An initial starting value might be selected so
that the bubble point of the overhead product is 10°C above the summer cooling water

temperature or to atmospheric pressure if vacuum operation is suggested.
2.3.2 Reflux Ratio Considerations

We have several trade-offs in the selection of a reflux ratio. As the reflux ratio is increased:
e The purity of the product is increased.
e The capital costs decrease since the number of trays is decreased.

 The energy costs increase as more reboiling and condensing are required.

If the optimal reflux ratio is less than 1.1 times the minimum reflux, select 1.1 times the
minimum reflux since a small error in design data or operating conditions might lead to a

column that does not work.
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2.3.3 Feed Considerations

The feed consideration is more of an afterthought rather than a critical design parameter. The
question is whether the feed is at the bubble point, sub cooled, partial vapor, or all vapor. In
general, a sub cooled feed:
* Decreases the number of tray in the rectifying section but increases the trays in the stripping
section.
¢ Increases the size of the reboiler but decreases the size of the condenser.

Partially vaporized feed reverses this.

2.4 PROCESS DESIGN AND ADOPTED PROCEDURE

Process design proceeds in the following steps:

1. Specify separation. If product composition or product flow requirements are not defined,
determine them by material and energy balance optimization.

2. Set column pressure.

3. Determine the minimum reflux and minimum number of stages.

4. Find the optimum feed stage.

5. Select three ratios of actual to minimum reflux. For each, calculate the number of stages and
size the column and auxiliaries. Determine which is the most economical. This optimization
procedure can be bypassed by selecting a single ratio of reflux to minimum reflux.

6. The calculations so far can be shortcut or rigorous.

7. Re examine steps 3 and 4, refining earlier estimates as necessary. If the refinements are large,
steps 5 and 6 may need repeating.

8. Analyze the design graphically to ensure optimum design and absence of pinched regions.

2.4.1 Approximate Column Sizing

An approximate estimate of the overall column size can be made once the number of real stages
required for the separation is known. This is often needed to make a rough estimate of the

capital cost for project evaluation.
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2.4.1.1 Plate Spacing

The overall height of the column will depend on the plate spacing. Plate spacing’s from 0.15 m
(6 in.) to 1 m (36 in.) are normally used. The spacing chosen will depend on the column
diameter and operating conditions. Close spacing is used with small-diameter columns, and
where head room is restricted; as it will be when a column is installed in a building. For columns
above 1 m diameter, plate spacing’s of 0.3 to 0.6 m will normally be used. and 0.5 m (18 in.) can
be taken as an initial estimate. This would be revised, as necessary, when the detailed plate
design is made. A larger spacing will be needed between certain plates to accommodate feed and

side streams arrangements, and for manways.

2.4.1.2 Column Diameter

The principal factor that determines the column diameter is the vapor flow-rate. The vapor
velocity must be below that which would cause excessive liquid entrainment or a high-pressure
drop. The equation given below, which is based on the well-known Souders and Brown
equation, Lowenstein (1961), can be used to estimate the maximum allowable superficial vapor

velocity, and hence the column area and diameter:

i, = (=0.1711% + 0.271, — 0.047) [

(pL - pv)j, /2
Pz

Where,

U, = maximum allowable vapor velocity, based on the gross (total) column cross-
sectional area, m/s,

l; = plate spacing, m, (range 0.5-1.5).

The column diameter, D, can then be calculated:

Where, V, is the maximum vapor rate, kg/s.
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This approximate estimate of the diameter would be revised when the detailed plate design is

undertaken.

2.4.2 Tray Design

Once the process design is completed, the equipment design begins. This phase of the design
translates the process requirements (i.e., the vapor and liquid loads in each section of the
column) into actual hardware. The hardware design proceeds in two phases: primary (basic) and
secondary (detailed layout). The primary phase sets column diameter, type of tray, and split of

tray area into bubbling and downcomer areas.

This phase also provides a preliminary (and usually close) estimate of tray spacing, number. of
passes, and other features of tray and downcomer layout such as weir height, fractional hole
area, hole diameter, and clearance under the downcomer. These estimates are later firmed up in
the secondary phase. Functionally, the primary phase sets the major equipment requirements,
while the secondary phase engineers the finer details. The primary phase has a major impact on
column costs, but a relatively small influence on achieving trouble-free operation. These roles
are reversed in the secondary phase: it has a relatively small impact on column costs, but a major

impact on achieving trouble-free operation.

2.4.2.1 Common Types of Tray

e Bubble cap tray
e Sieve tray
e Dual flow tray

e Valve tray

Bubble Cap Tray:
The bubble cap tray was the workhorse of distillation before the 1960s. Presently, bubble-cap

trays are specified only for special applications, while sieve and valve trays are the most popular
types. The bubble-cap tray is a flat perforated plate with risers (chimney like pipes) around the
holes, and caps in the form of inverted cups over the risers. The caps are usually (but not

always) equipped with slots or holes through which the vapor comes out. Liquid and froth are
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trapped on the tray to a depth at least equal to the weir height or riser height, giving the bubble-

cap tray a unique ability to operate at low vapor and liquid rates.

They offer the distinct advantage of being able to handle very wide ranges of liquid and gas flow
rates satisfactorily. They have now been abandoned for new installations because of their cost,

which is roughly, double that for sieve, counter flow, and valve tray.

Sieve Tray:
The sieve tray is a flat perforated plate. Vapor issues from the holes to give a multi-orifice

effect. The gas dispersed by the perforations, expands the liquid into a turbulent froth,
characterized by a very large interfacial surface for mass transfer. The vapor velocity keeps the
liquid from flowing down through the holes (weeping). At low velocities, liquid weeps through
the holes, bypassing some of the tray and reducing efficiency, giving sieve trays relatively poor

turndown. Sieve trays are simple and easy to fabricate, and are therefore relatively inexpensive.

Dual Flow Tray:
A dual-flow tray is a sieve tray with no downcomers. This tray operates with liquid continuously

weeping through the holes, hence its low efficiency. Tray froth height diminishes rapidly when

vapor velocity is reduced, causing further efficiency deterioration upon turndown. -

Turndown of a dual-flow tray is even poorer than that of a sieve tray with downcomers. Large-
diameter (>8 ft) dual flow trays are known to sometimes experience instability. Dual flow trays
are prone to channeling, and are therefore sensitive to out of levelness and to liquid distribution.

Due to the absence of downcomers, dual flow trays give more tray area, and therefore have a
greater capacity than any of the common tray types. The absence of downcomers, and the larger
open areas, renders dual flow trays the most suitable to handle highly fouling services, slurries,
and corrosive services. Dual-flow trays are also the least expensive to make, and easiest to

install and maintain.

Valve Tray:
These are the sieve trays with large (roughly 35 to 40 mm diameter) variable openings for gas

flow. The perforations are covered with movable caps which rise as the flow rate of gas

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Page 29



oy

DESIGNING OF DEPROPANIZER TRAY COLUMN USING ASPEN HYSYS AS A SIMULATOR

increases. Valves can be round or rectangular, with or without caging. The upper limit of
opening is controlled by a caging structure or by restrictive legs at the bottom of the valve unit.
As vapor rate falls, the disk openings are reduced, or they may settle intermittently over the

holes, this stops the liquid from weeping and gives the valve tray its main advantage-good operation at

. low flow rates, and therefore, a high turndown.
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Figure 3. Flow Through Tray Vapor Passages (a) Bubble Cap (b) Sieve (¢) Valve

2.4.2.2 Comparison of Common Types of Trays

The principal factors to consider when comparing the performance of bubble-cap, sieve and

valve plates are: cost, capacity, operating range, efficiency and pressure drop.

Cost:

Bubble-cap plates are appreciably more expensive than sieve or valve plates. The relative cost

. will depend on the material of construction used; for mild steel the ratios, bubble-cap: valve:

sieve, are approximately 3.0: 1.5: 1.0.
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Capacity:
There is little difference in the capacity rating of the three types (the diameter of the column

required for a given flow-rate); the ranking is sieve, valve and bubble-cap.

Operating range:
This is the most significant factor. By operating range is meant the range of vapor and liquid

rates over which the plate will operate satisfactorily (the stable operating range). Some
flexibility will always be required in an operating plant to allow for changes in production rate,
and to cover start-up and shut-down conditions. The ratio of the highest to the lowest flow rates
is often referred to as the "turn-down" ratio. Bubble-cap plates have a positive liquid seal and
can therefore operate efficiently at very low vapor rates. Sieve plates rely on the flow of vapor
through the holes to hold the liquid on the plate, and cannot operate at very low vapor rates. But,
with good design, sieve plates can be designed to give a satisfactory operating range; typically,
from 50 per cent to 120 per cent of design capacity. Valve plates are intended to give greater

flexibility than sieve plates at a lower cost than bubble-caps.

Efficiency:
The Murphree efficiency of the three types of plate will be virtually the same when operating

over their design flow range and no real distinction can be made between them

Pressure drop:
The pressure drop over the plates can be an important design consideration, particularly for

vacuum columns. The plate pressure drop will depend on the detailed design of the plate but, in
general, sieve plates give the lowest pressure drop, followed by valves, with bubble-caps giving

the highest.

Summary:
Sieve plates are the cheapest and are satisfactory for most applications. Valve plates should be

considered if the specified turn-down ratio cannot be met with sieve plates. Bubble-caps should
only be used where very low vapor (gas) rates have to be handled and a positive liquid seal is

essential at all flow-rates.
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Table 1. Comparison of Common Type of Trays

Type Sieve Tray Valve Tray Bubble Cap Tray | Dual Flow Trays
Maintenance Low Low to moderate | Relatively high Low
Fouling Low Low to moderate | High, tends to | Extremely low.
tendency collect solids Suitable where
fouling is
extensive and for
slurry handling.
Effect of | Low Low to moderate | High Very low
corrosion
Availability of | Well known Proprietary ~ but | Well known Some information
design information available
information readily available
Capacity High High to very high | Moderately high Very high
Efficiency High High Moderately high Lower than other
types
Turndown About 2:1, not | About 4-5:1, some | Excellent, better | Low, even lower
suitable for | special ~ designs | than valve trays. | than sieve trays.
operation achieve 10:1 or | Good at extremely | Unsuitable for
under variable | more low liquid rates variable load
loads. operations
Entrainment Moderate Moderate High, about 3 | Low to moderate
times higher tan
sieve trays
Pressure drop | Moderate Moderate, early | High Low to moderate
designs some what
higher, recent
designs same as
sieve trays
Cost Low About 20% higher | High, about 2 to 3 | Low

than sieve trays

times the cost of

sieve trays
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Main Most columns | Most columns, | Extremely low | Capacity revamps
applications when services where | flow  conditions, | where
turndown  is | turndown is | where  leakages | efficiency and
not critical important must be minimized | turndown can
be sacrificed,
Highly fouling and
corrosive services
Share of | 25% 70% 5% No information
market

2.4.3 Plate Hydraulic Design

The basic requirements of a plate contacting stage are that it should:
¢ Provide good vapor-liquid contact.
* Provide sufficient liquid hold-up for good mass transfer (high efficiency).

* Have sufficient area and spacing to keep the entrainment and pressure drop within

acceptable limits.

* Have sufficient downcomer area for the liquid to flow freely from plate to plate.

The plate design methods use semi-empirical correlations derived from fundamental research
work combined with practical experience obtained from the operation of commercial columns.
Proven layouts are used, and the plate dimensions are kept within the range of values known to

give satisfactory performance.

2.4.3.1 Operating Range

Satisfactory operation will only be achieved over a limited range of vapor and liquid flow rates.

A typical performance diagram for a sieve plate is shown in Figure given below:
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Figure 4. Sieve Tray Performance Diagram

The upper limit to vapor flow is set by the condition of flooding. At flooding there is a sharp
drop in plate efficiency and increase in pressure drop. Flooding is caused by either the excessive
carryover of liquid to the next plate by entrainment, or by liquid backing-up in the downcomers.
The lower limit of the vapor flow is set by the condition of weeping. Weeping occurs when the
vapor flow is insufficient to maintain a level of liquid on the plate. "Coning" occurs at low liquid
rates, and is the term given to the condition where the vapor pushes the liquid back from the
holes and jets upward, with poor liquid contact. In the following sections gas can be taken as
synonymous with vapor when applying the method to the design of plates for absorption

columns.

2.4.3.2 Plate-Design Procedure

A trial-and-error approach is necessary in plate design: starting with a rough plate layout,
checking key performance factors and revising the design, as necessary, until a satisfactory
design is achieved, a typical design procedure is set out below and discussed in the following
sections. The normal range of each design variable is given in the discussion, together with

recommended values which can be used to start the design.
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1. Calculate the maximum and minimum vapor and liquid flow-rates. for the turn down ratio
required.

2. Collect, or estimate, the system physical properties.

3. Select trial plate spacing.

4. Estimate the column diameter, based on flooding considerations.

5. Decide the liquid flow arrangement.

6. Make a trial plate layout: downcomer area, active area, hole area, hole size, weir height.

7. Check the weeping rate, if unsatisfactory return to step 6.

8. Check the plate pressure drop, if too high return to step 6.

9. Check downcomer back-up, if too high return to step 6 or 3.

10. Decide plate layout details: calming zones, unperforated areas. Check hole pitch, if

unsatisfactory return to step 6.

11. Recalculate the percentage flooding based on chosen column diameter.

12. Check entrainment, if too high return to step 4.

13. Optimize design: repeat steps 3 to 12 to find smallest diameter and plate spacing acceptable

(lowest cost).

14. Finalize design: draw up the plate specification and sketch the layout.

2.4.3.3 Plate Areas

The following areas terms are used in the plate design procedure:

A = total column cross-sectional area,

Ag4 = cross-sectional area of downcomer,

A, = net area available for vapor-liquid disengagement, normally equal to A -Aq
for a single pass plate,

A, = active, or bubbling, area, equal to Ac — 2A for single-pass plates,

Aj, = hole area, the total area of all the active holes,

A, = perforated area (including blanked areas),

Agp = the clearance area under the downcomer apron.
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2.4.3.4 Diameter

The flooding condition fixes the upper limit of vapor velocity. A high vapor velocity is needed
for high plate efficiencies, and the velocity will normally be between 70 to 90 per cent of that

which would cause flooding. For design, a value of 80 to 85 per cent of the flooding velocity
should be used.

The flooding velocity can be estimated from the correlation given by Fair (1961):

uf:Klu

Pv

Where,

ur = flooding vapor velocity, m/s, based on the net column cross-sectional area An

K= a constant obtained from Figure given below:
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Figure 5: Flooding Velocity for Sieve Trays
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The liquid-vapor flow factor Fy in Figure 5 is given by:

Ly |py
Fy = =2 |22
ad Vw | PL

Where,

L,, = liquid mass flow-rate, kg/s,

V, = vapor mass flow-rate, kg/s.

The following restrictions apply to the use of Figure 5:

1. Hole size less than 6.5 mm. Entrainment may be greater with larger hole sizes.
2. Weir height less than 15 per cent of the plate spacing.

3. Non-foaming systems.

4. Hole: active area ratio greater than 0.10; for other ratios apply the following corrections:

hole: active area multiply K; by
0.10 1.0
0.08 0.9
0.06 0.8

5. Liquid surface tension 0.02 N/m, for other surface tensions p multiply the value of K1 by

[p/0.02]°2,

To calculate the column diameter an estimate of the net area A, is required. As a first trial take
the downcomer area as 12 per cent of the total, and assume that the hole-active area is 10 per
cent. Where the vapor and liquid flow-rates, or physical properties, vary significantly throughout
the column a plate design should be made for several points up the column. For distillation it
will usually be sufficient to design for the conditions above and below the feed points, Changes
in the vapor flow-rate will normally be accommodated by adjusting the hole area; often by
blanking off some rows of holes. Different column diameters would only be used where there is
a considerable change in flow-rate. Changes in liquid rate can be allowed for by adjusting the

liquid downcomer areas.
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2.4.3.5 Liquid-Flow Arrangement

The choice of plate type (reverse, single pass or multiple pass) will depend on the liquid flow-
rate and column diameter. An initial selection can be made using Figure-6, which has been
adapted from a similar figure given by Huang and Hodson (1958). The selection of plate can be

done by using the figure five.

2.4.3.6 Entrainment

Entrainment can be estimated from the correlation given by Fair (1961), Figure 7, which gives
the fractional entrainment y (kg/kg gross liquid flow) as a function of the liquid-vapor factor Fy

with the percentage approach to flooding as a parameter. The percentage flooding is given by:

u, actual velocity (based on net area)
iy (from equation 11.81)

percentage flooding =

As a rough guide the upper limit of y can be taken as 0.1; below this figure the effect on

efficiency will be small. The optimum design value may be above this figure.

-
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Figure 6. Selection of Liquid Flow Arrangement
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2.4.3.7 Weep Point

The lower limit of the operating range occurs when liquid leakage through the plate holes
becomes excessive. This is known as the weep point. The vapor velocity at the weep point is the
minimum value for stable operation. The hole area must be chosen so that at the lowest
operating rate the vapor flow velocity is still well above the weep point. Several correlations
have been proposed for predicting the vapor velocity at the weep point; see Chase (1967). That
given by Eduljee (1959) is one of the simplest to use, and has been shown to be reliable. The

minimum design vapor velocity is given by:

. [K>—0.90(25.4 — dj)]
T

Where,
Uy, = minimum vapor velocity through the holes(based on the hole area), m/s,
d;, = hole diameter, mm,

K> = a constant, dependent on the depth of clear liquid on the plate, obtained from Figure 8.
The clear liquid depth is equal to the height of the weir h, plus the depth of the crest of liquid

over the weir h,,,.
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Figure 7. Entrainment Correlation for Sieve Tray

2.4.3.8 Weir Liquid Crest

The height of the liquid crest over the weir can be estimated using the Francis weir formula. For

a segmental downcomer this can be written as:

L. 1%
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Where,

lw =weir length, m,

how = weir crest, mm liquid,

Ly = liquid flow-rate, kg/s.

32
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Figure 8. Weep Point Correlation

With segmental downcomers the column wall constricts the liquid flow, and the weir crest will
be higher than that predicted by the Francis formula for flow over an open weir. To ensure an
even flow of liquid along the weir, the crest should be at least 10 mm at the lowest liquid rate.

Serrated weirs are sometimes used for very low liquid rates.

2.4.3.9 Weir Dimensions

Weir Height

The height of the weir determines the volume of liquid on the plate and is an important factor in

determining the plate efficiency. A high weir will increase the plate efficiency but at the expense
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of a higher plate pressure drop. For columns operating above atmospheric pressure the weir
heights will normally be between 40 mm to 90 mm (1.5 to 3.5 in.); 40 to 50 mm is
recommended. For vacuum operation lower weir heights are used to reduce the pressure drop; 6

to 12 mm (0.25 to 0.5 in.) is recommended.
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Figure 9. Relation between Downcomer Area & Weir Height

Inlet Weirs

Inlet weirs, or recessed pans, are sometimes used to improve the distribution of liquid across the

plate; but are seldom needed with segmental downcomers.

Weir Length
With segmental downcomers the length of the weir fixes the area of the downcomer. The chord
length will normally be between 0.6 to 0.85 of the column diameter. A good initial value to use

is 0.77, equivalent to a downcomer area of 12 per cent. The relationship between weir length and

2oy
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downcomer area is given in Figure 8. For double-pass plates the width of the central downcomer

is normally 200-250 mm (8-10 in.).

2.4.3.10 Perforated Area

The area available for perforation will be reduced by the obstruction caused by structural
members (the support rings and beams), and by the use of calming zones. Calming zones are
unperforated strips of plate at the inlet and outlet sides of the plate. The width of each zone is
usually made the same; recommended values are: below 1.5 m diameter, 75 mm; above, 100
mm. The width of the support ring for sectional plates will normally be 50 to 75 mm: the support
ring should not extend into the downcomer area. A strip of unperforated plate will be left round

the edge of cartridge-type trays to stiffen the plate.

130
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Figure 10. Relation between Angle Subtended by Chord, Chord Height and Chord Length
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The unperforated area can be calculated from the plate geometry. The relationship between the

weir chord length, chord height and the angle subtended by the chord is given in Figure 10.

2.4.3.11 Hole Size

The hole sizes used vary from 2.5 to 12 mm; 5 mm is the preferred size. Larger holes are
occasionally used for fouling systems. The holes are drilled or punched. Punching is cheaper,
but the minimum size of hole that can be punched will depend on the plate thickness, For carbon
steel, hole sizes approximately equal to the plate thickness can be punched, but for stainless steel
the minimum hole size that can be punched is about twice the plate thickness. Typical plate
thicknesses used are: 5 mm (3/16 in.) for carbon steel, and 3 mm (12 gauges) for stainless steel.
When punched plates are used they should be installed with the direction of punching upward.

Punching forms a slight nozzle, and reversing the plate will increase the pressure drop.

2.4.3.12 Hole Pitch

The hole pitch (distance between the hole centers) 1, should not be less than 2.0 hole diameters,

and the normal range will be 2.5 to 4.0 diameters. Within this range the pitch can be selected to
give the number of active holes required for the total hole area specified. Square and equilateral

triangular patterns are used; triangular is preferred. The total hole area as a fraction of the

perforated area Ay, is given by the following expression, for an equilateral triangular pitch:

s
-~

A 09 [i’i}
A, I,

This equation is plotted in Figure 11.
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Figure 11. Relation between Hole Area & Pitch

2.4..3.13 Hydraulic Gradient

The hydraulic gradient is the difference in liquid level needed to drive the liquid flow across the
plate. On sieve plates, unlike bubble-cap plates, the resistance to liquid flow will be small, and
the hydraulic gradient is usually ignored in sieve-plate design. It can be significant in vacuum
operation, as with the low weir heights used the hydraulic gradient can be a significant fraction

of the total liquid depth. Methods for estimating the hydraulic gradient are givén by Fair (1963).

2.4.3.14 Liquid Throw

The liquid throw is the horizontal distance travelled by the liquid stream flowing over the
downcomer weir. It is only an important consideration in the design of multiple-pass plates.

Bolles (1963) gives a method for estimating the liquid throw.
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2.4.3.15 Rate Pressure Drop

The pressure drop over the plates is an important design consideration. There are two main
sources of pressure loss: that due to vapor flow through the holes (an orifice loss), and that due

to the static head of liquid on the plate.

A simple additive model is normally used to predict the total pressure drop. The total is taken as
the sum of the pressure drop calculated for the flow of vapor through the dry plate (the dry plate
drop hy); the head of clear liquid on the plate (hy + hgy) and a term to account for other, minor,
sources of pressure loss, the so-called residual loss h;. The residual loss is the difference between
the observed experimental pressure drop and the simple sum of the dry-plate drop and the clear-
liquid height. It accounts for the two effects: the energy to form the vapor bubbles and the fact
that on an operating plate the liquid head will not be clear liquid but a head of "aerated" liquid
froth, and the froth density and height will be different from that of the clear liquid. It is

convenient to express the pressure drops in terms of millimeters of liquid. In pressure units:

AP, =9.81 x 107k, p;.

Where,
AP, = total plate pressure drop, Pa (N/m?),

h; = total plate pressure drop, mm liquid.

2.4.3.16 Dry Plate Drop

The pressure drop through the dry plate can be estimated using expressions derived for flow

through orifices.
2
u .
Col AL

Where the orifice coefficient C, is a function of the plate thickness, hole diameter, and the hole

to perforated area ratio. C, can be obtained from Figure 12; which has been adapted from a

similar figure by Liebson et al. (1957). Uy, is the velocity through the holes, m/s.
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2.4.3.17 Residual Head

Methods have been proposed for estimating the residual head as a function of liquid surface
tension, froth density and froth height. However, as this correction term is small the use of an
elaborate method for its estimation is not justified, and the simple equation proposed by Hunt et

al. (1955) can be used:

_ 12.5 x 108
AL

hy

Above equation is equivalent to taking the residual drop as a fixed value of 12.5 mm of water

(0.5 in.).

2.4.3.18 Total Drop

The total plate drop is given by:
h! = hd + (hw + how) + hr

If the hydraulic gradient is significant, half its value is added to the clear liquid height.
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Figure 12. Discharge Coefficient, Sieve Plate
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2.4.3.19 Downcomer Design [Back-U

The downcomer area and plate spacing must be such that the level of the liquid and froth in the
downcomer is well below the top of the outlet weir on the plate above. If the level rises above
the outlet weir the column will flood. The back-up of liquid in the downcomer is caused by the
pressure drop over the plate (the downcomer in effect forms one leg of a U-tube) and the
resistance to flow in the downcomer itself; see Figure 13. In terms of clear liquid the downcomer

back-up is given by:

hb = (hw + how) + h! + hdc
Where,
hy, = downcomer back-up, measured from plate surface, mm,

hg4c = head loss in the downcomer, mm.

~——

Pow

£ N

W B T‘;” h"‘T E{‘\ —

Figure 13. Downcomer Backup

The main resistance to flow will be caused by the constriction at the downcomer outlet, and the

head loss in the downcomer can be estimated using the equation given by Cicalese etal. (1947):
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5 Lwd }2
hae = 166 [
g pLAm

~

Where,
Lq = liquid flow rate in downcomer, kg/s,
A,, = either the downcomer area Ad or the clearance area under the downcomer Asp

whichever is the smaller, m>.

The clearance area under the downcomer is given by:

Aap = haplw

Where, h,,, is height of the bottom edge of the apron above the plate. This height is normally set
at 5 to 10 mm (0.25 to 0.5 in.) below the outlet weir height:

2.4.3.20 Froth Height

To predict the height of "aerated" liquid on the plate, and the height of froth in the downcomer,
some means of estimating the froth density is required. The density of the "aerated" liquid will
normally be between 0.4 to 0.7 times that of the clear liquid. A number of correlatidns have been
proposed for estimating froth density as a function of the vapor flow-rate and the liquid physical
properties; however, none is particularly reliable, and for design purposes it is us,ua’ﬂ?"m
satisfactory to assume an average value of 0.5 of the liquid density. This value is also taken as
the mean density of the fluid in the downcomer; which means that for safe design the clear
liquid back-up should not exceed half the plate spacing I, to avoid flooding.

Allowing for the weir height:

ho # 5+ h)
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This criterion is, if anything, oversafe, and where close plate spacing is desired a better estimate
of the froth density in the downcomer should be made. The method proposed by Thomas and

Shah (1964) is recommended.
2.4.3.21 Downcomer Residence Time

Sufficient residence time must be allowed in the downcomer for the entrained vapour to
disengage from the liquid stream; to prevent heavily "aerated" liquid being carried under the
downcomer. A time of at least 3 seconds is recommended.

The downcomer residence time is given by:

_ AghpepL
Lya

r

Where,
t, =residence time, s,

hy = clear liquid back-up, m

2.5 USE OF ASPEN HYSYS FOR SIMULATING DEPROPANIZER COLUMN

2.5.1 Use of Process Simulators

Process simulation allows us to predict the behavior of a process by using basic engineering
relationships, such as mass and energy balances, and phase and chemical equilibrium. Given

reliable thermodynamic data, realistic operating conditions, and rigorous equipment models, we

/‘.J/

can simulate actual plant behavior. Process simulation enables you to run many cases, conduct
"what if" analyses, and perform sensitivity studies and optimization runs. With simulation, we
can design better plants and increase profitability in existing plants. Process simulation is useful
throughout the entire lifecycle of a process, from research and development through process

design to production.
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2.5.2 Aspen Hysys as a Process Simulator

A process consists of chemical components being mixed, separated, heated, cooled, and
converted by unit operations. These components are transferred from unit to unit through

process streams.

We can translate a process into an Aspen Tech process simulation model by performing the
following steps:
1. Define the process flow sheet:
e Define the unit operations in the process.
e Define the process streams that flow to and from the unit operations.
e Select models from the Aspen Tech Model Library to describe each unit operation and
place them on the process flow sheet.
e Place labeled streams on the process flow sheet and connect them to the unit operation
models.
2. Specify the chemical components in the process. We can take these components from the
Aspen Tech databanks, or we can define them.
3. Specify thermodynamic models to represent the physical properties of the components and
mixtures in the process. These models are built into Aspen Tech.
4, Specify the component flow rates and the thermodynamic conditions (for example,
teinperature and pressure) of feed streams.

5. Specify the operating conditions for the unit operation models.

With Aspen Tech we can interactively change specifications such as, flow sheet configuration;
operating conditions; and feed compositions, to run new cases and analyze process alternatives.
In addition to process simulation, Aspen Tech allows us to perform a wide range of other tasks
such as estimating and regressing physical properties, generating custom graphical and tabular
output results, fitting plant data to simulation models, optimizing our process, and interfacing

results to spreadsheets.

Aspen Hysys version 3.1.3 is used‘here for simulation purpose. A complete understanding of

software is done under the able guidance of mentor before using it. We have used Peng
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Robinson fluid package to estimate the various fluid properties. This fluid package is termed as

“basis-1” in our hysys file.

2.5.3 Peng-Robinson Equation of State

The Peng Robinson (1976) equation of state (EOS) is a modification of the RK equation to
better represent VLE calculations. The densities for the liquid phase in the SRK did not
accurately represent the experimental values due to a high universal critical compressibility
factor of 0.3333. The PR is a modification of the RK equation of state which corresponds to a
lower critical compressibility of about 0.307 thus representing the VLE of natural gas systems

accurately. The PR equation is represented by:

Property Class Name Applicable Phase

RT a

T Vb WV+b)-b(V-b) (4.8)
where:
a=a.o
)
. RT,
(1( = 0.45724 I3 (_lg)

b 0077480RT¢
= 0. >

c

The functional dependency of the “a” term is shown in the following
relation.

1= _ 05
Jo = 1=x(1-T.") (4.10)

K = 037464+ 1.54220 — 0.26992m°
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Where: The functional dependency of the “a” term is shown in the following relation.

e

The accuracy of the PR and SRK equations of state are approximately the same. However, the

PR EOS represents the density of the liquid phase more accurately due to the lower critical

compressibility factor. These equations were originally developed for pure components. To

apply the PR EOS to mixtures, mixing rules are required for the “a” and “b” terms in Equation

(4.2).

Property Methods

A quick reference of calculation methods is shown in the table below for the PR EOS.

Calculation Method | Applicable Phase | Property Class Name

Z Factor Vapour and Liquid COTHPRZFactor Class
Molar Yolume Vapour and Liquid COTHPRVolume Class
Enthalpy Vapour and Liquid COTHPREnthalpy Class
Entropy Vapour and Liquid COTHPREntropy Class
|sobaric heat Vapour and Liquid COTHPRCp Class

capacity

Fugacity coefficient | Vapour and Liquid COTHPRLnFugacityCoeff Class
calculation

Fugacity calculation | Vapour and Liquid COTHPRLnFugacity Class
|sochoric heat Vapour and Liquid COTHPRCyv Class

capacity

Mixing Rule 1

Vapour and Liquid

COTHPRah_1 Class

Mixing Rule 2 Vapour and Liqui COTHPRah_2 Class
Mixing Rule 3 Vapour and Liquid COTHPRab_3 Class
Mixing Rule 4 Vapour and Liquid COTHPRah_4 Class
Mixing Rule 5 Vapour and Liquid COTHPRah_5 Class
Mixing Rule 6 Vapour and Liquid COTHPRab_6 Class
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PR 7 Faclor

The compressibility factor, Z, is calculated as the root for the following

equation:
2 (1-B)Z +Z(4A-3B —2B)—~(4AB-B -B’) = 0 1D
4= ":P7 (4.12)
R T
g =bf (4.12)
RT

There are three roots for the above equation. It is considered that the
smallest root is for the liquid phase and the largest root is for the vapour
phase. The third root has no physical meaning.

PR Molar Volume

The following relation calculates the molar volume for a specific phase.

y = 224 (.14

Property Class Name and Applicable Phases

Property Class Name Applicable Phase

COTHPRVolume Class Vapour and Liguid

Notes

The compressibility factor, Z, is calculated using PR Z Factor. For
consistency, the PR molar volume always calls the PR Z Factor for the
calculation of Z.
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PR Enthalpu

The following relation calculates the enthalpy.

1 / o o \ 7 7 4 ,"—7 -
H-HC=Pr-rI-al T L L EHlT o) 415
NdT a2 v-Db(1-42)

where: HIC is the ideal gas enthalpy calculated ar temperature, T

Properfy Class Name and Applicable Phases

Property Class Name | Applicable Phase

COTHPRERthalpy Class Vapour and Liquid

Hofes

The volume, V, is calculated using PR Molar Volume. For consistency,
the PR Enthalpy always calls the PR Volume for the calculation of V.

PR Entropy

The following relation calculates the entropy.

: = (V+b(1=20a
5—5'G=R1111/V b,‘-— L _hl';I ol "ﬁ):({,—ﬂ
\RT/ pf2 ‘v+b(1-2YdT

(410

where: S0 is the ideal gas entropy calculated at temperature, T

Property Class Name and Applicable Phases

Property Class Name
COTHPREnNtropy Class

IApplicable Phase

Vapour and Liquid
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Nofes

The volume, V, is calculated using PR Molar Volume. For consistency,
the PR Entropy always calls the PR Volume for the calculation of V.

PR Cp [Heat Capacity]

The following relation calculates the isobaric heat capacity.

.o, T' AN
[ G A OTP ) O p . —_
Co-Cy =-T||—5, dV+R+——= (4171
} :‘ a / v ,'/ F_I/.I,
o )T
G

where: Cp'™is the ideal gas heat capacity calculared at temperatige, T

Property Class Name and Applicable Phases

Property Class Name Applicable Phase
COTHPRCp Class Vapour and Liquid
Nofes

The volume, V, is calculated using PR Molar Voelume. For consistency,
the PR Entropy always calls the PR Volume for the calculation of V.

PR Fugacity Coefficient
The following relation calculates the fugacity coetficient.

. y c BN 5 By
b (L2 2 Y (4.18)

Ing, = =ln{Vr=16) +

\

V=5 243k Sebil=i2y

e ————————————————— |
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Page 56



DESIGNING OF DEPROPANIZER TRAY COLUMN USING ASPEN HYSYS AS A SIMULATOR

o= mj a 4.19)
on

p = Qnb (4.20)
CH

Properfy Class Name and Applicable Phases

Property Class Name |Applicable Phase i
COTHPRLnFugacityCoeff Class

Vapour and Liquid

Nofes

The volume, V, is calculated using PR Molar Volume. For consistency,
the PR Fugacity Coefficient always calls the PR Volume for the
calculation of V. The parameters @ and b are calculated from the Mixing
Rules.

PR Fugaciry

The following relation calculates the fugacity for a specific phase.

fi = 6,P (4.21]

Properfy Class Name and Applicable Phases

Property Class Name | Applicable Phase

COTHPRLnFugacity Class Vapour and Liquid

W
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PR Cv [isochoric]

The following relation calculates the isochoric heat capacity.

S = N¢ e ¢
cC. . =C +—" (.

Properfy Class Name and Applicable Phases

Property Class Name ' | Applicable Pﬁase

COTHPRCv Class “apour and Liguid

2.5.4 Steps for Simulating Depropanizer Column on Aspen Hysys

1. In file menu, go to new case (ctrl+ N) to enter into the simulation basis manager. Under the
component list, highlight the “master component” list and add the component used in unit
operation. Click on the “fluid packages” tab and select the appropriate property package to
all required properties. Here, we have used Peng Robinson property package. Now., enter the

simulation environment. The window shown below or figure 14 will be seen:

e e e T e e e e T ey
[ e |
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Wainng : Boling Forit Curves-1 - Unable to calculate BP Curves. Ensure there are atleast 3 sgnficant Comporients (H20 and solds ° &
Figure 14

2. In the object palette, click on “shortcut distillation column™. In PFD window, a short cut
column in the name of T-100-2 will come. On double clicking T — 100-2, a pop up will
appear as shown in figure 15. Under “design” tab, in “connections” bar, give the stream
name, and fluid package of inlet, condenser duty, distillate, reboiler duty and bottoms. Now }

in “parameters” bar, put the values of the mole fraction of light key in bottoms and heavy

ratio to any value. This will automatically calculate the minimum reflux ratio and hence, the

key in distillate. Put the value of the condenser and reboiler pressure. Set external reflux
value of external reflux should be made 1.2 — 1.5 times of minimum reflux. |
\

o e T e e e T ]
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Figure 15
3. Double click on stream 1-2 and the temperature, pressure and molar flow (conditions) of the
stream. Enter the compositions of each component in mole fraction. Click on the green
button of “solver active” and this will aromatically calculate the following design
parameters:
7 e Conditions and compositions of distillate and bottoms.
e Minimum number of trays, actual number of trays and feed tray location
.. e Temperature & duty of condenser and reboiler

The shortcut column calculates the parameters at 100% efficiency. The efficiency of distillation

column is ideally 70%, so we have to make the corrections accordingly.

me
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Figure 16

4. In the object palette, click on the distillation column. In PFD window, a distillation column
in the name of T-100 will come. On double clicking T — 100, a pop up will appear as shown
in figure 17. Under “design” tab, in “connections” bar, give the stream names of inlet

~ stream, condenser energy stream, distillate liquid outlet, reboiler energy stream and bottom
liquid outlet. Set the value of Delta P of condenser and reboiler and put the value of pressure

of condenser & reboiler with the pressure difference of 80 KPa. Now. enter the value of

number of stages.

_E_——-————— e S ey
e e
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Figure 17

5. In the monitor tab, cick on “add spec” and add column component fraction with stage as
“condenser” , flow basis as “mole fraction”, phase as “liquid” and key component obtained
in the distillate with its mole fraction. Similarly, add another column component fraction for

reboiler. Check the degree of freedom which should be zero as in figure 18.

_——--——— e e e
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Figure 18

6. Again, click on the green button of “solver active”. In this way. column T-100 can be
converged. Thus, we obtain the pressure, temperature, net liquid flow & net vapour flow on
the individual trays. Now, in tools menu, click on “utilities” (ctrl+U), add a utility of tray
sizing and view tray sizing -1 utility. Click on “select TS in setup bar under “design” tab &
highlight “T-100”. To obtain the values of tray internals, click on “results™ bar under the

“performance” tab.

s e T S S S e S e
e —————=
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Figure 19

In this way, we can simulate a depropanizer column.

M
e
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CHAPTER 3

DESIGNING OF DEPROPANIZER TRAY COLUMN

e mree e
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DESIGNING OF DEPROPANIZER TRAY COLUMN USING ASPEN HYSYS AS A SIMULATOR

3. DESIGNING OF DEPROPANIZER TRAY COLUMN
3.1CALCULATION OF BASIC PARAMETERS

The client has given us the following data.

Feed Flow rate 279.3 Kgmole / hr

Temperature 65.60 °C
Pressure 20.40 bar
Vapor Feed 1
Flooding 85%
Turndown 50%
Efficiency 70%
COMPOSION OF FEED
Mole % Mole Fraction
Ethane Light non-key (C2) 00.85 0.0085
Propane Light key (C3) 69.17 0.6917
i- Butane Heavy Key (C4) 12.51 0.1251
n- Butane Heavy non-Key (C4) 17.39 0.1739
i- Pentane  Heavy non-Key (C5) 00.06 0.0006 e
n- Pentane  Heavy non-Key (C5) 00.02 0.0002

PURITY THAT SHOULD BE OBTAINED FROM THE DISTILLATES

Propane Light key (C3) 98.3 0.9830




DESIGNING OF DEPROPANIZER TRAY COLUMN USING ASPEN HYSYS AS A SIMULATOR

PURITY THAT SHOULD BE OBTAINED FROM THE BOTTOMS

i- Butane Heavy Key (C4) 40.49 0.4049
n- Butane = Heavy non-Key (C4) 57.58 0.5758
Writing,

Flow rate of Feed with F

Mole fraction of Feed with X¢
Flow Rate of Distillates with D
Mole fraction of Distillates with Xp
Flow Rate of Bottoms with B

Mole fractioﬁ of Bottoms with Xg
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>

Distillates (D)

— ™ Xo
Rectifying
Section
Feed (F) Distillation
Xe 7 Column
Stripping
Section
\ J

Bottoms (B)
» Xg

APPLYING MASS/ MATERIAL BALANCE

To obtain the flow rate of Distillates and Bottoms and the mole fraction of non key components

in Distillates and Bottoms

D+B=F

D+B=279.3 o
APPLYING BUTANE BALANCE

F*Xf;=D*Xp+B*Xp

279.3 * (0.1251 + 0.1739) =D * (0.4049 + 0.5758) + B * (1 —0.983 - X5 .)

279.3 * (0.1251 + 0.1739) = D * (0.4049 + 0.5758) + (279.3 - D) * (1 - 0.983 - Xp,¢) (1)

- a T T—— R ™= R —
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APPLYING ETHANE BALANCE
F*X;=D*Xp+B*Xp

279.3 * 0.0085=D * Xp ¢ (2)

Solving equations (1) and (2), simultaneously, we get;
D =195.1071 Kgmole / hr

B =84.1928 Kgmole / hr

Xp, ¢ = 0.0122

Similarly applying material balances for various components we get the composition of heavy

and light key and non- key components.

Distillate Bottoms
Ethane Light non-key (C2) 0.0122 0.0000
Propane Light key (C3) 0.9831 0.0166
i- Butane Heavy Key (C4) 0.0044 0.4049
n- Butane  Heavy non-Key (C4) 0.0003 0.5758
i- Pentane  Heavy non-Key (C5) 0.0000 0.0020
n- Pentane  Heavy non-Key (C5) 0.0000 0.0007
Total 1.0000 1.0000

- —— — - o . . o P e N T K e T =2 = = —
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From the values of Temperature and Pressure we can determine the values of K for different
components using the K-value graph below.

o. = Volatility = (K-value of it component) / (K-value of Heavy Key)

z = compressibility factor = Mole fraction of feed

Volatility of i*! term x Compressibility of i*? term

. latility =
Relative volatility Volatility of ith term — 6 determined by trial method

=
g -
‘i’ ..__-:3,,. P p
%

T
=
&

T
Tempetature, *°F

Figure 20. K-value Correlation Graph
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DETERMINING K - VALUES FROM GRAPH

K o z Relative Volatilities (a*Xd)/ (0-0)

Ethane 3.00 4.8387 0.0085 0.01 0.02
Propane 1.26 2.0323 0.6917 1.78 2.53
i- Butane 0.62 1.0000 0.1251 -0.52 -0.02
n- Butane 0.47 0.7581 0.1739 -0.27 0.00
i- Pentane 0.22 0.3548 0.0006 0.00 0.00
n- Pentane 0.19 0.3065 0.0002 0.00 0.00
Total 1.00 2.53

Top Middle Bottom
K (Propane Light Key) 0.95 1.26 2.24
K (Butane Heavy Key) 0.4633 0.62 1.276
o =Kk / Kuk 2.0505 2.0322 1.7554

Bisuk * (Kiop HK) ” Ok = Kiop LK

Bk * (Kbottom HK) ” 8Lk = Kpotom LK

BLivuk * (0.4633) * Ok = 0.95

BLiwnk * (1.276) " 6Lk =2.24
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Taking logarithm on both sides
LOGio (BLk/Hk) + 0Lk LOG (Kiop HK) = LOG 0 (Kiop LK)

LOG 0 (BLkmk) + Ok LOG10 (Kbottom HK) = LOG10 (Kbottom LK)

LOGo (Bui/uk) + 0k LOGyg (0.4633) = LOGy (0.95) (3)

LOGo (Bukmk) + 6k LOGyg (1.276) = LOGy0 (2.24) @

Solving (3) and (4) simultaneously, we get;
Ok 0.8466
BLr/nk 1.8223

0 is determined such that the sum of the relative volatilities from the above table is as close to

vapor feed which is 1.

0 (by trial method)  1.2425

A’ and B’ are any Gilliand Constants

B’ = 0.48 from Gilliand Curve i.e. figure 2.

. Reflux ratio — Minimum reflux
- Reflux ratio + 1 s

A’ =0.2320

N/ N; = ((zi * (X, 1) > * D)/ (zuk * (Xo, k) * *B)) **%

N/ Ns; =1.0268
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. (Xp,Lk) Xpuk)OLk
(XB,Lk) Xp.uk)OLk

In Bﬁ
HK

1

Minimum number of stages =

=13.1886

Minimum number of stages = 13

Minimum Reflux =3 (a*Xd) / (a-6) — 1
=253-1

Minimum reflux = 1.53

B’ + Minimurﬁ number of stages
(1-B)

Number of theoretical stages =

=26.2859

Number of theoretical stages = 26

Actual Number of Stages = Number of Theoretical Stages / Efficiency

= Number of Theoretical Stages / 0.7

=37.5513 T

Actual number of stages = 38

Stripping Feed Tray Location = Actual Number of stages / (N/ N + 1)
= 18.5266

Stripping feed tray location = 19
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Rectifying Feed Tray Location = Actual Number of Stages — Stripping Feed Tray Location
=19.0246

Rectifying feed tray location = 19

Reflux Ratio = Minimum Reflux *1.5

Optimum reflux or Reflux ratio = 2.2935

3.2 CALCULATION OF COLUMN INTERNALS
Plate spacing (I)) = 24 inches Within the standard values
From Hysys,

First stage p., = 459.7 Kg/m’

First stage py = 34.18 Kg/m3

Last stage pp, = 462.6 Kg/m’

Last stage py = 40.99 Kg/m®

Top Section Liquid flow rate (L) = 13865 Kg/hr
Top Section Vapor flow rate (V) = 22445 Kg/hr
Bottom Section L = 30558 Kg/hr

Bottom Section V = 25677 Kg/hr

Surface Tension First stage = 4.685x 1073 N/m
Surface Tension Last stage = 3.881x 1073 N/m

Top Molecular Weight = 44,15

Bottom Molecular Weight = 57.75

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Page 74



ug*

DESIGNING OF DEPROPANIZER TRAY COLUMN USING ASPEN HYSYS AS A SIMULATOR

3.2.1 Calculation of Column Diameter

L lpy
Fiv=¢ oL

_ Ltopsection [Pvtop
FLV top —

Viop section | PL top

13865 [34.18
F = — |—=0.
LVtop ™ 2244544597 0.19

Lbottom section

PV bottom

FLv bottom =

Vbottom section | PL bottom

30558 ,40.99
FLv bottom = 25677 462.6 0.38

By using figure 5,
0.2
K; top after correction = 8.1 X 1072 x (%35) =0.0606
0.2
K1 pottom after correction = 5.5x 1072 x (%3) =0.0397
PL — Pv
u = Ky |[—
f 1 oy

PLtop — Pvtop

Usrop = Kitop DV top

Ut op = 0.0606 /%1—8 = 0.0606x 3.5284 = 0.2138 m/sec
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PL bottom — PV bottom

Ufpottom = K1 bottom
Pv bottom

Upottom = 0.0396 |22 = 0.0396x3.2071 = 0.1274 m/sec

{1 op = 85% of Ufiop = 0.1817 m/sec

4 bottom — 85% of Ufpottom — 0.1083 m/sec

Maximum Volumetric Flow Rate,

Viop section iN Kg/hr

Top =
P= o top in Kg/m3 x 3600
_ 22445 _ 3
Top = 32163600 0.1824 m-/sec
Bottom = vbotto‘m section in Kg/hr
PV bottom iN Kg/m3 X 3600
_ 25677 _ 3
Bottom = 7099%3600 0.1739 m*®/sec
Net Area (Ap),
T Maximum Volumetric Flow Rate of Top
op = =
P Ugop
__ 0.1824 2
Top = 51817 1.004 m
Maximum Volumetric Flow Rate of Bottom
Bottom = —~
Upottom
_ 01739 _ 2
Bottom = 053 1.6057 m

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Page 76



DESIGNING OF DEPROPANIZER TRAY COLUMN USING ASPEN HYSYS AS A SIMULATOR

Aq=0.12 Ac
Ap=Ac- A4

An=AC - 0.12 AC

Ant
Acer = g

1.004
Actop = ogg = 1141 m?

_ An bottom

AC bottom — 0 88

1.6057

Acbottom = —oo= = 1.824 m’

,AC X 4
DC = T
Actop X 4
i

D¢ top —
1.141x4
D _ AC bottom X 4
C bottom —

L1

’1.824—X4—
DC bottom — = =1.524m

Diameter of column = 1.524 m
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3.2.2 Calculation of Liquid Flow Arrangement

Lbottom section iN Kg/hr
PLbottom X 3600

Maximum Volumetric Liquid Rate =

30558

—= 3

Maximum Volumetric Liquid Rate =

From figure 6, at Dc = 1.524 m and Liquid Rate = 0.0183 m3/sec.

We obtain Cross Flow (Single Pass) Liquid flow arrangement.

3.2.3 Calculation of Provisional Plate Design

Column Diameter (Dc) = 1.524 m
Column Area (Ac) = 1.824 m?
Downcomer Area (Ag) =0.2189 m? (12% of Column Area)

Note: As per Hysys Downcomer Area = 0.3153 m’ (17.3% of Column Area). We will be
using this value for further calculation as Hysys is a simulator so as to obtain the desired

result.

An=Ac—Aq=1.824-0.3153

Net Area (A,) = 1.5087 m’
Aa=Ac—2Aq=1.824-0.6306

Active Area (A,) = 1.194 m?

Hole Area (Ar) = 0.1194 m? (10% of Active Area)

Note: As per Hysys Hole Area = 0.1678m’ (14.05% of Active Area in Hysys)

From the figure 9, Weir Length (Iw) = 50.44 inches
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Weir height (hw) = 2 inches Within the standard values
Hole size (d;,) = 0.1969 inches Within the standard values
Hole pitch (I,) = 0.5 inches Within the standard values
Plate thickness= 0.1969 inches Within the standard values

The Material Used For Plates is Stainless Steel.

3.2.4 Calculation to Check Weeping

Lbottom section iN Kg/hr
3600

Maximum Liquid Rate =

30558
3600

Maximum Liquid Rate = = 8.4883 Kg/sec

Minimum Liquid Rate = Turndown X Maximum Liquid Rate

Minimum Liquid Rate = 0.50 x 8.4883 =4.2441 Kg/sec

2/3

b =750 [ Liquid Rate ]
ow PL bottom X lW

2/3

) 'Maximum Liquid Rate
Maximum h,,, = 750 ]

PLbottom X lw

2/3
8.4883 ] = 44 mm liquid

Maximum h,, = 750 26 % 12012

) 2/3
Minimum hoy = 750 [—2Z*2_]"" = 28 mm liquid

1462.6 X 1.2812

Minimum hy + hgy =51 +28 =79 mm liquid

From figure 8, K, =30.6
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[K, — 0.90(25.4 — dp)]

Uhmin) =
(min) (pV bottom) 1/2
< [30.6— 0.90(25.4~ 5)]
tih(piny = (20.99)1/2 =1.9118 m/sec

Turndown X Maximum Volumetric flow rate
Ap

Actual Minimum Vapor Velocity =

0.50 x0.1739

1e8 0.5181 m/sec

Actual Minimum Vapor Velocity =

So minimum operating rate will be well above Weep Point

3.2.5 Calculation for Plate Pressure Drop

Maximum Volumetric flow rate in m3/sec
Ap

Maximum Vapor Velocity =

0.1739

51678 1.036 m/sec

Maximum Vapor Velocity =

From figure 12, using the values of
Plate Thickness / Hole Diameter = 1
An/ Ap=An/ Ay =14.05

We obtain Co = 0.87

Dry Plate Drop (hg) = 51 [C ] Pv bottom
o

Lbottom
1.03612 40.99
0.871 462.6
hd =6 mm
12.5 x 103
Residual Head (h,) = ———-12-

L bottom

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES



DESIGNING OF DEPROPANIZER TRAY COLUMN USING ASPEN HYSYS AS A SIMULATOR e

_ 125X 103
T 4626
h, =27 mm

Total Drop (hy) = hq + (hy, + how) +hyr

he = 6+ (51 +44) +27

h, =128 mm

Total Plate Pressure Drop (AP,) = 9.81 X 107h¢p; | o rvom
AP, = 9.81 X 1073 x 128 X 462.6

AP, = 580.8776 Pa

3.2.6 Calculation for Downcomer

Downcomér Clearance (hgp) = hy — 5=50.8-35

h,, = 45.8 mm

Ag=03153 m’

Downcomer Clearance Area (A;p) = ly X hgp = 1.281 % 0.0458
Agp = 0.0587 m’

Agp is less than Ag hence we will use this in the formula to calculate head loss in the downcomer

Maximum liquid rate in Kg/sec 2

Downcomer head loss (hg) = 166 [
PLbottom

2
8.4883 ] =16 mm

hgc = 166 [462.6)(0.0587

s
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Downcomer Backup (hy) = h + (hyy + hgy) + hgc
hy, = 128 + (514 44) + 16

hp, =239 mm

1
hy < o (plate spacing + weir height)

239 < (609.6 + 50.8) =239<330.2

Hence tray spacing is acceptable

Adhb pL bottom

Downcomer Residence Time (t;) = 3
wd

oo 0.3153 x 0.239 x 462.6
r— 8.4883

t,. =4.1068 sec (Which is greater than 3 sec)

3.2.7 Calculation of Entrainment

For FLy = 0.38 from figure 7,

¥ =().005 which is well below 0.1
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3.2.8 Calculation for Number of Holes

Area of One Hole = E X dp? =1.9637 X 1075 m?

Number Of Holes = Hole Area
umboer oles = Area of One Hole
0.1678
Number Of Holes = 19637 x 105

Number Of Holes = 8545
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3.3 DATASHEETS OBTAINED FROM ASPEN HYSYS
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3.4 LAYOUT OF THE DESIGNED COLUMN
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Note: All the dimensions are in mm.
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DETAIL "B*
COLUMN BOTTOM

1150

L]

NOTE HLL

| 950

415

LLk

—BTM. TAN LINE VORTEX
BREAKER

@

Table 2: Nozzles and Connections Details
Mark No. Size (in) / Rating Service

M1 1 24 /#300 Manhole

M2 I 2474300 Manhole !

N1 1 4 /#300 Feed

N2 1 8 /#300 Overhead

N3 1 10 /#300 To reboiler
N4A/N4B/N4C 3 2/#300 DP guage

N5 1 12 /#300 Reboiler outlet

N6A/N6B 2 3/#300 Level Transmitter

—————
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RESULTS

Important Results are summed up as under:

Table 3: Important Results of Column Design

P ARANETHRS THEORETICAL VALUE FROM ASPEN
VALUE HYSYS

COLUMN PARAMETERS

1. Minimum Number of Stages 13 15

2. Minimum Reflux 1.53 1.53

3. Number of Theoretical Stages | 26 27

4. Actual Number of Stages 38 38

5. Stripping Feed Tray Location 19 19 ]

6. Rectifying Feed Tray Location | 19 19

7. Reflux Ratio 2.2935 2.293

8. Condenser Duty - 8.562 * 10° KJ/ hr

9. Condenser Temperature - 42.53 °C

10. Reboiler Duty - 8.359 * 10° KJ / hr

11. Reboiler Temperature - 94.32 °C

PARAMETERS NOTE: The Theoretical Values are almost
COLUMN INTERNALS same as the Values taken from Aspen Hysys
12. Type of Tray Sieve Tray

13. Column Diameter 1.524 m

14. Number of Flow Paths 1

15. Tray Spacing 609.6 mm b

16. Flow Arrangement

Single Pass Cross Flow

17. Column Area 1.824 m’

18. Downcomer Area 0.3153 m”

19. Net Area 1.5087 m” - TR TR
20. Active Area 1.194 m*

21. Hole Area 0.1678 m”
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22. Weir Type STRAIGHT
23. Weir Height 50.8 mm
24. Weir Length 1281 mm
25. Hole Diameter 5 mm

26. Maximum Weir Loading $0.42m’ /h—m
27. Hole Pitch 12.7 mm
28. Plate Thickness 5 mm

29. Total Plate Pressure Drop 580.8776 Pa
30. Downcomer Type Vertical

31. Downcomer Clearance 45.8 mm
32. Downcomer Clearance Area 0.0587 m”
33. Downcomer Backup 239 mm

34. Downcomer Residence Time 4.1068 sec
35. Number Of Holes 8545

GRAPHS

Temperature vs. Tray Position from Top
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Pressure vs. Tray Position from Top
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Composition vs. Tray Position from Top
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CONCLUSION

Designing of distillation column plays an important role in terms of the degree of separation to
be achieved and cost of the operation. While calculating the basic parameters. Fenske
Underwood Gilliland correlations are generally used. Column internals of the column can be
determined by using various equations as described in this report. However. computer simulator
provides us an effective way to calculate all the parameters related to designing. Use of a
simulator not only saves the time but also gives us a glimpse of the column run. Process
simulation enables us to run many cases, conduct “what if” analysis, and perform sensitivity
studies and optimization runs. Given reliable thermodynamic data, realistic operating conditions,
and rigorous equipment models, we can simulate actual plant behavior. Aspen Hysys is a
computer simulator which we have used to simulate our column. The results obtained from the
theoretical calculations and those obtained from hysys are compared. During comparison, it has
been observed that there is around 5 to 10 % error in theoretical calculations while keeping the
hysys results as reference. Thus, designing of depropanizer column is done and simulation

results are compared.

W
w
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