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ABSTRACT

The problem of adversarial multi-path guard dependent patrol has gained interest in recent years,
mainly due to its immediate relevance to various security applications. In this problem, patrol
guards are required to repeatedly visit a target area in a way that maximizes their chances of
detecting an adversary trying to penetrate through the patrol path. When facing a strong
adversary that knows the patrol strategy of the guards, if the guards use a deterministic patrol
algorithm, then in many cases it is easy for the adversary to penetrate undetected (in fact, in
some of those cases the adversary can guarantee penetration). Therefore, this project presents a
non-deterministic patrol framework for the guards. Assuming that the strong adversary will take
advantage of its knowledge and try to penetrate through the patrol’s weakest spot, hence an
optimal algorithm is one that maximizes the chances of detection in that point. We therefore
present a polynomial-time algorithm for determining an optimal patrol under the Markovian
strategy assumption for the guards, such that the probability of detecting the adversary in the
patrol’s weakest spot is maximized. We build upon this framework and describe an optimal
patrol strategy for several patrol guards based on their movement abilities (directed or
undirected) and sensing abilities (perfect or imperfect), and in different environment models -
either patrol around a perimeter (closed polygon) or an open fence (open polyline).

In this work, we use game theory and graph theory to model and design a patrolling guard path
web. We construct a graph using the patrol chaukis as vertices and the possible paths between
these vertices as edges. A cost matrix is constructed to indicate the cost incurred by the patrol
guard for passage between the habitat patches in the landscape, by modelling a Hawk and Dove
game. A minimum spanning tree or a Hamiltonian path, depending on the start and end point is
then obtained by employing Kruskal’s algorithm or Travelling Salesman problem, which would

suggest a feasible adversary detection path for the patrol guards within the landscape complex.
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1.INTRODUCTION

Wildlife monitoring is essential for keeping track of animal movement patterns, habitat
utilization, population demographics, snaring and poaching incidents and breakouts. This
valuable information, which Wildlife ACT and forest patrol guards gather on wildlife projects,
has numerous management applications, including the planning of successful introduction and
removal strategies of wildlife. There are many reasons why natural resource managers need to

monitor wildlife populations. A large array of methods has been developed and used to that

purpose.

There are many diverse reasons why we need to monitor wildlife populations (Caughley 1977).
For example, the population may be a valued game species (e.g. deer, bear, grouse) that is being
managed on a sustained-yield basis. The population may be an actual or potential pest species
(e.g. rodents, flocking birds, invasive/non-native species) capable of causing agricultural,
property, or natural resource damage or of posing a human or livestock disease or safety hazard.
We may need to assess the status of an endangered or threatened species or the progress of a
recovery program for that species. We may need to determine the status of a purposeful
introduction or reintroduction of a wildlife species to an area. We may be trying to define the
biological diversity or 'ecological health' of an area and to monitor changes over time. We may
desire to know the effects of our management actions or land-use practices or alternative

activities on one or more "featured or indicator" species.

A large number of methods have been used to monitor terrestrial vertebrates (e.g. Caughley
1977; Davis 1982), although many methods have not been compared or validated with a more
rigorous method of density estimation or a known population size (but see exceptions: Quyet al.
1993; Dodd and Murphy 1995). The methods include, for example, direct observation (day or
night) of individuals, mark-recapture/resight, removal, and transects and variable plot surveys
(see examples presented in Thompson et al. 1998). A large number of 'indirect’ methods, often
referred to as population or abundance indices (Thompson and Fleming 1994; Engeman and
Alien 2000) or activity indices (Quyet al. 1993), have also been used. These methods do not rely
on directly seeing or hearing the animals, but merely noting some form of 'sign’ that tells us that

the animals have been in the area: track stations, fecal counts, food removal, open or closed



burrow-opening counts, burrow counts, runway counts, knockdown cards, snow tracks, or
responses to audio calls (Engeman and Witmer 2000). These indices are based on the concept
that a fixed amount of searching effort will locate a fixed proportion of the population.
Furthermore, it is assumed that the index is proportional to the density and that the rate of
proportionality is (relatively) constant (Caughley 1977). If the index doubles, we assume that the
population has doubled. Some people might be more comfortable in calling this approach an
'activity index,' because we usually do not know the exact relationship of the index to the
population density or how that relationship may change over time and space. For example, if
three sets of tracks are found at a track station, we do not know if those were made by one, two,
or three individual énimals, but that there was three times as much 'activity' than at a track
station, which had only one set of tracks (Alien et al. 1996). On the other hand, we typically find
more sets of tracks (or, for example, more food removed from a bait station) where there is a
larger population (Witmer, unpublished data on voles). Hence this approach provides a useful
'relative’ index of the abundance of the animals using the area of interest. Technological
developments have provided additional methods for monitoring populations such as the use of
remote cameras (Bull et at. 1992; Glen and Dickman 2003), infrared thermal imaging
(Boonstraet al. 1994), DNA analysis (Foranet al. 1997), and radio-isotope detection (Elbert efal.
1999).

The Monitoring system for Forest guards — Intensive Protection and Ecological Status
(MSTTIPES) system consists of two components a) field based protocols for patrolling, law
enforcement, recording wildlife crimes and ecological monitoring, and b) a customized software
for storage, retrieval, analysis and reporting. Currently law enforcement and ecological
monitoring are being done, but the information generated is ad hoc and rarely available in a
format for informed decision making. The “MSTrIPES” addresses this void and is a tool for
adaptive management. The system uses a holistic approach by integrating ecological insights
obtained through the standardized forest guard, prey, and habitat assessment protocols (Phase I)
to guide protection and management. It enables managers to assess intensity and spatial
coverage of patrols in a GIS based tool. The system performs statistical computations of
occupancy, precision, sample size, and assesses trends over desired time and spatial scales for

forest guards, other carnivores, prey populations, human impacts, illegal activities, and law



enforcement investments. MSTrIPES produces easily interpretable reports and maps that are
useful for management and policy decisions. If implemented as designed, the system reduces the
response time to detrimental events like poaching or habitat degradation and becomes a

comprehensive tool to keep the pulse of a forest guard reserve.

During the last century the variety of species has decreased dramatically and numerous species
are today classified as endangered or threatened. The main determining factor is human related
activities such as forestry, farming, intensive hunting and fishing. Since the middle of the last
century, a number of legal instruments concerning the use and conservation of natural resources
have been applied, such as protection of individual species and their nests and restrictions on
hunting and fishing, without hindering the eradication of species. One proposition for the
failures of traditional legal instruments is the lack of a holistic approach in regarding ecosystem
characteristics such as inter-species and habitats relations and biodiversity. It has been found that
the legal instruments mainly are concerned with the rational use or protection of a certain
species rather than dealing with inter-relations and the sustainability of ecosystems. E.g. the
motive for legal protection is based on a definition of a sustainable population which is
determined with respect to the conservation status of the targeted species rather than with aim of
achieving sufficient diversity of species in the ecosystems and legal limits related to the use of
wildlife populations fail to integrate ecological concepts such as biodiversity for determining
such limits. Another proposition is that since ecosystems are dynamic and complex itis

important that the legal system has the capacity to respond to ecological changes.

Patrolling is a basic activity of forest guards and squads. The purpose of a typical patrol is to
gather information or to conduct appropriate operations. In the Contemporary Operating
Environment (COE). The information gathered during patrols can be crucial to the success of the

larger mission.

Patrolling can accomplish several specific objectives:
e Gathering information on the animal trails, on the terrain, or on the populace
e Reassuring or gaining the trust of a local population

e Preventing public disorder



e Deterring and disrupting insurgent or criminal activity
e Providing unit security

e Protecting key infrastructure or bases.

A patrol is organized to perform specific tasks. The patrol unit must be prepared to secure itself,
navigate accurately, identify and cross danger areas, and reconnoiter the patrol objective. With
the present techniques of wildlife monitoring, the wildlife conservation authorities use the
patrols organized by the forest guards as an important source of data collection and prevention
of poaching in the wildlife reserves but there are no defined protocols for undertaking a defined
path for patrol movement in wildlife reserves which keeps many important points of protection

and data acquisition out of touch of Patrol parties and thus the conservation authorities.

The problem of multi-guard patrol has gained interest in recent years (e.g., Ahmadi & Stone,
2006; Chevaleyre, 2004; Elmaliach, Agmon, &Kaminka, 2007; Paruchuri, Tambe, Ordonez, &
Kraus, 2007; Amigoni, Gatti, &Ippedico, 2008), mainly due to its immediate relevance to
various security applications. In the multi-guard patrol problem, guards are required to
repeatedly visit a target area in order to monitor it. Many researchers have focused on a
frequency-based approach, guaranteeing that some point-visit frequency criteria are met by the
patrol algorithm, for example maximizing the minimal frequency or guaranteeing uniform
frequency (e.g., refer to Elmaliach et al., 2007; Chevaleyre, 2004; Almeida, Ramalho, Santana,
Tedesco, Menezes, Corruble, &Chevaleyr, 2004). In contrast, we advocate an approach in which
the forest guards patrol in adversarial settings, where their goal is to patrol in a way that
maximizes their chances of detecting an adversary trying to penetrate through the patrol path.
Thus the decisions of the adversary must be taken into account. Our objective is, therefore, to
develop patrol paths for the guards, such that following these paths the patrolling guards will
maximize the chance of adversarial detection. The problem of adversarial planning and
specifically adversarial patrolling is a wide problem, where generally no computational tractable
results exist. This report presents the problem in a restrictive environment of perimeter patrol by
a set of homogenous patrol guards, providing a computational tractable optimal result. As
opposed to frequency-driven approaches, in adversarial settings the point-visit frequency criteria

become less relevant. Consider the following scenario. We are given a cyclic fence of a length of



100 meters and 4 guards must patrol around the fence while moving at a velocity of 1m/sec.
Clearly, the optimal possible frequency at each point around the fence, in terms of maximizing
the minimal frequency, is 1/25, i.e., each location is visited once every 25 seconds. This optimal
frequency is achieved if the guards are placed uniformly along the fence (facing the same
direction) and move forward without turning around. Assume that it takes an adversary 20
seconds to penetrate the area through the fence. As the guards move in a deterministic path, an
adversary knowing the patrol algorithm can guarantee penetration if they simply enter through a
position that was recently visited by a patrolling guard. On the other hand, if the guards move
non-deterministically, i.e., they turn around from time to time with some probability greater than
0, then the choice of penetration position becomes less trivial. Moreover, if we assume that an
adversary may penetrate at any time, it motivates the use of nondeterministic patrol behavior
indefinitely. We first consider the problem of patrolling around a closed polygon, i.e., a
perimeter. We introduce a non-deterministic framework for patrol under a first order Markovian
assumption for the patrol guards strategy, in which the guards choose their next move at random
with some probability p. This probability value p characterizes the patrol algorithm. We model
the system as a Markov chain (e.g., Stewart, 1994), and using this model we calculate in
polynomial time the probability of penetration detection at each point along the perimeter as a
function of p, i.e., it depends on the choice of patrol algorithm. Based on the functions defining
the probability of penetration detection, we find an optimal patrol algorithm for the guards in the
presence of a strong adversary, i.e., an adversary having full knowledge on the patrolling
guards—their algorithm and current placement. In this case, the adversary uses this knowledge
in order to maximize its chances of penetrating without being detected. It is therefore assumed
that the adversary will penetrate through the weakest spot of the path, hence the goal of the
guards is to maximize the probability of penetration detection in that weakest spot. We provide a
polynomial time algorithm (polynomial in the input size, depending on the number of guards
and the characteristics of the environment) for finding an optimal patrol for the guards facing
this full knowledge adversary. We show that a non-deterministic patrol algorithm is
advantageous, and guarantees some lower bound criteria on the performance of the guards, i.e.,
on their ability to block the adversary. We then use the patrol framework to consider additional
environment and patrolling models. Specifically, we consider the case in which the guards are

required to patrol along an open polyline (fence). We show that although this case is inherently



different from patrolling along a perimeter, the basic framework can still be used (with some
changes) in order to find an optimal patrol algorithm for the guards. We investigate also different
movement models of patrol guards, namely the guards can have directionality associated with
their movement (and turning around could cost the system time), or they can be omnidirectional.
In addition, we model various types of sensing capabilities of the guards, specifically, their
sensing capabilities can be perfect or imperfect, local or long-range. In all these cases we show

how the basic framework can be extended to include the various models.

This work concentrated on defining a route for patrolling to be undertaken by the patrol party in
a wildlife reserve depending on various parameters which are essential to be considered by the

patrol party to fulfil the aims and objectives of their movement in a reserve.



2.RELATED WORK

Systems comprising multiple patrol guardss that cooperate to patrol in some designated area
have been studied in various contexts (e.g., Chevaleyre, 2004; Elmaliach, Agmon, &Kaminka,
2009). Theoretical (e.g., Chevaleyre, 2004; Elmaliach et al., 2009; Amigoni et al., 2008) and
empirical (e.g., see Sak, Wainer, &Goldenstein, 2008; Almeida et al., 2004) solutions have been
proposed in order to assure quality patrol. The definition of quality depends on the context. Most
studies concentrate on the frequency-based patrolling, which optimizes frequency of visits
throughout the designated area (e.g. refer to Elmaliach et al.,, 2009; Almeida et al., 2004;
Chevaleyre, 2004). Efficient patrol, in this case, is a patrol guaranteeing a high frequency of
visits in all parts of the area. In contrast, adversarial patrolling (addressed in this work) deals
with the detection of moving adversaries who are attempting to avoid detection. Here, an
efficient patrol is one that deals efficiently with intruders (e.g., see Sak et al., 2008; Basilico,
Gatti, &Amigoni, 2009b; Amigoni et al., 2008). The first theoretical analysis of the frequency-
based multi-patrol guards patrol problem that concentrated on frequency optimization was
presented by Chevaleyre (2004). He introduced the notion of idleness, which is the duration each
point in the patrolled area is not visited. In his work, he analyzed two types of multi-patrol .
guards patrol schemes on graphs with respect to the idleness criteria: partitioning the area into
subsections, where each section is visited continuously by one patfol guard; and the cyclic
scheme in which a patrol path is provided along the entire area and all patrol guards visit all
parts of the area, consecutively. He proved that in the latter approach, the frequency of visiting
points in the area is considerably higher. Almeida et al. (2004) offered an empirical comparison
between different approaches towards patrolling with regards to the idleness criteria, and shows
great advantage of the cycle based approach. Elmaliach et al. (2007, 2009) offered new
frequency optimization criteria for evaluating patrol algorithms. They provide an algorithm for
multi-patrol guards patrol in continuous areas that is proven to have maximal minimal frequency
as well as uniform frequency, i.e., each point in the area is visited with the same highest-possible
frequency. Their work is based oncreating one patrol cycle that visits all points in the area in
minimal time, and the patrol guards simply travel equidistantly along this patrol path. Sak et al.
(2008) considered the case of multi-agent adversarial patrol in general graphs (rather than
perimeters, as in our work). They concentrated on an empirical evaluation (using a simulation)

of several non-deterministic patrol algorithms that can be roughly divided into two: Those that



divide the graph between the patrolling agents, and those that allow all agents to visit all parts of
the graph. They considered three types of adversaries: random adversary, an adversary that
always chooses to penetrate through a recently-visited node and an adversary that uses statistical
methods to predict the chances that a node will be visited soon. They concluded that there is no
patrol method that outperformed the others in all the domains they have checked, but the
optimality depends on the graph structure. In contrast to this investigation, we provide
theoretical proofs of optimality for different settings. The work of adversarial multi-patrol
guards patrol was examined also by using game-theoretic approaches (e.g., see Basilico et al.,
2009b; Basilico, Gatti, &Amigoni, 2009a; Pita, Jain, Ordonez, Tambe, Kraus, &Magorii-Cohen,
2009; Paruchuri, Tambe et al., 2007). Note that the work described herein can be modeled as a
game theoretic problem: Given two players, the patrol guards and the adversary, with a possible
set of actions by each side, determine the optimal policy of the patrol guards that will maximize
their utility gained from adversarial detection. This is a zero-sum game. Since we assume a
strong (full knowledge) adversarial model, we adopt the minmax approach, namely, minimizing
the maximal utility of the opponent (or in this case: equivalent to maximizing the minimal
probability of detection of the patrol guards). However, in our work we do not use game
theoretic tools for finding the equilibrium strategy, but use tailored ad-hoc solution that finds the
optimal policy for the patrol guards in polynomial time, taking into account the patrol guard’s
possible sensing and movement capabilities. The most closely related work by Amigoni et al.
(2008) and Basilico et al. (2009b, 2009a) used a game-theoretic approach using leader-follower
games for determining the optimal strategy for a single patrolling agent. They considered an
environment in which a patrolling patrol guards can move between any two nodes in a graph, as
opposed to the perimeter model we use. Their solution is suitable for one patrol guards in
heterogeneous environments, i.e., the utility of the agent and the adversary changes along the
vertices of the graph. They formulate the problem as a mathematical programming problem
(either multilinear programming or mixed integer linear programming). Consequently, the
computation of the optimal strategy is exponential, yet using optimization tools they manage to
get good approximation to the optimal solution. Paruchuri, Tambe et al. (2007) considered the
problem of placing stationary security checkpoints in adversarial environments. Similar to our
assumptions, they assume that their agents work in an adversarial environment in which the

adversary can exploit any predictable behavior of the agents, and that the adversary has full




knowledge of the patrolling agents. They model their system using Stackelberg games, which
uses policy randomization in the agents’ behavior in order to maximize their rewards. The
problem is formulated as a linear program for a single agent, yielding an optimal solution for
that case. Using this single agent policy, they present a heuristic solution for multiple agents, in
which the optimal solution is intractable. Paruchuri, Pearce et al. (2007) further study this
problemin cases where the adversarial model is unknown to the agents, although the adversary
still has full knowledge of the patrol scheme. They again provide heuristic algorithms for
optimal strategy selection by the agents. Pita et al. (2009) continued this research to consider the
case in which the adversaries make their choices based on their bounded rationality or
uncertainty, rather than make the optimal game-theoretic choice. They considered three different
types of uncertainty over the adversary’s choices, and provided new mixed-integer linear
programs for Stackelberg games that deal with these types of uncertainties. As opposed to all
these works that are based on using game-theoretic approaches and provide approximate or
heuristic solutions to intractable optimal solutions, in our work we focus on specific
characteristics of the patrol guards and the environment, and provide optimal polynomial-time
algorithms for finding an optimal patrol strategy for the multi-patrol guards team using the
minmax approach. Theoretical work based on stochastic processes that is related to our work is
the cat and mouse problem (Coppersmith, Doyle, Raghavan, &Snir, 1993), also known as the
predatorprey (Haynes & Sen, 1995) or pursuit evasion problem (Vidal, Shakernia, Kim, Shim,
&Sastry, 2002). In this problem, a cat attempts to catch a mouse in a graph where both are
mobile. The cat has no knowledge about the mouse’s movement, therefore as far as the cat is
concerned, the mouse travels similarly to a simple random walk on the graph. We, on the other
hand, have worst case assumptions about the adversary. We consider a patrol guard model, in
which the movement of the cat is correlated with the movement of a patrol guards, with possible
directionality of movement, possible cost of changing directions and possible sensorial abilities.
Moreover, in our model the patrol guards travel around a perimeter or a fence, rather than in a
general graph. Thus in a sense, our research is concerned with pursuit-evasion on a polyline -
open or closed. Other theoretical work by Shieh and Calvert (1992), based on computational
geometry solutions, attempts to find optimal viewpoints for patrolling patrol guards. They try to
maximize the view of the patrol guards in the area, show that the problem is NP-Hard, and find

approximation algorithms for the problem.



3.PATROL GUARDS AND ENVIRONMENT MODEL

In the following section, we provide a description of the patrol guardsmodel, environment model
and the adversarial model. We describe the basic model of patrolling around a perimeter (closed

polygon). Further environments and patrol guard’s models are discussed later.

3.1 The Environment

We consider a patrol in a circular path around a closed polygon P. The path around P is divided
into N segments of a length of uniform time distance, i.e., each patrol guards travels through one
segment per cycle while sensing it (its velocity is 1 segment / 1-time cycle). This division into
segments makes it possible to consider patrols in heterogeneous paths. In such areas, the
difficulty of passing through terrains varies from one terrain to another, for example driving in
muddy tracks vs. driving on a road. Figure 1 demonstrates a transition from a given area to a
discrete cycle. The area, on the left, is given along with its velocity constraints. The path is then
divided into segments such that a patrol guards travels through one segment per time cyclewhile
monitoring it, i.e., the length of each segment is determined by both the velocity of the patrol
guards (corresponding to the time it takes it to travel through the specific segment) and the
sensorial capabilities of the patrol guards. After the path is divided into segments with uniform
travel time, it is equivalent to considering a simple cycle as appears in the right of Figure 1. Note
that the distance between the patrol guards is calculated with respect to the number of segments
between them, i.e., the distance is in travel time. For example, if we say that the distance
between R; and R, is 7, then there are 7 segments between them, and if R; had remained still,
then it would have taken R; 7 time cycles to reach R; (assuming R; is headed towards the right

direction).

-y

equivalent

Figure 3.1: An example for creating discrete segments from a circular path with the property that the patrol

guards travel through one segment per cycle. The different line structures along the perimeter on the left
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correlate to different velocity constraints, which are converted (in the middle figure) to N segments in which
the patrol guards travel during one-time cycle. This figure is equivalent to the figure in the right, which is a

simple cycle divided into Nunit-time segments.

3.2 Patrolling Patrol Guards Model

We consider a system of k > 1 homogenous mobile patrol guards R;..., Ry, that are required to
patrol around a closed polygon. The patrol guards operate in cycles, where each cycle consists of
two stages.
1. Compute: Execute the given algorithm, resulting in a goal point, denoted by pg, to which
the patrol guards should travel.
2. Move: Move towards point pg.
This model is synchronous, i.e. all patrol guards execute each cycle simultaneously. We
concentrate our attention to the Compute stage, i.e., how to compute the next goal point. We
assume the patrol guards’ movement model is directed such that if ps is behind the patrol
guards, it has to physically turn around. Turning around is a costly operation, and we model this
cost in time, i.e., if the patrol guards turns around it resides in its segment for t time units. The
case in which the movement model is not directed is discussed in later Section. Throughout the
work we assume for simplicity that © = 1, unless stated otherwise. A key result of this research is

that optimal patrolling necessitates patrol guards to be placed at a uniform distance

d = N/k )

from one another along the perimeter. Consequently, we require the patrol guards to be
coordinated in the sense that all patrol guards move in the same direction, and if decided to turn
around they do it simultaneously. This requirement guarantees that the uniform distance of d is
maintained throughout the execution of thepatrol algorithm. Note that this tightly-coordinated
behavior is achievable in centralized systems, or in systems where communication exists
between all team members. Other practical implementations may exist (for example uniformly
seeding a pseudorandom number generator for all the patrol guards), but they all require
coordination inside the team. Distributed systems that cannot assume reliable communication are

left for future work.
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3.3 Adversarial Mode!

Our basic assumption is that the system consists of an adversary that tries to penetrate once
through the patrolling patrol guards path without being detected. The adversary decides, at any
unknown time, through which segment to penetrate. Its penetration time is not instantaneous,
and lasts ¢ time units, during which it stays at the same segment.

Definition 1. Let s; be a discrete segment of a perimeter P which is patrolled by one patrol guard
or more. Then the Probability of Penetration Detection in s; ppd, is the probability that a
penetrator going through s; during ¢ time units will be detected by some patrol guards going
through s; during that period of time.

In other words, ppd; is the probability that a patrol path of some patrol guards will pass through
segment s; during the time that a penetration is attempted through that segment, hence it is
calculated for each segment with respect to the current location of the patrol guards at a given
time (since the patrol guards maintain uniform distance between them throughout the execution,
this relative location remains the same at all times). We use the general acronym ppd when
referring to the general term of probability of penetration detection (without reference to a
certain segment). Recall that the time distance between every two consecutive patrol guards
around the perimeter is d = N/k.Therefore, we consider ¢ values between the boundaries
(d+r)2<t<d. )]
The reason for this is that if it takes the patrol guards T time units to turn, then the patrol guard
adjacent to sp will have probability > 0 of arriving at every segment 5,0 < i < t,while the patrol
guard adjacent to s, has probability > 0 of arriving at segments s;, d—(t—1) < ileqd. Hence
segment s,+1 has probability > 0 of being visited only if

d—(t-1)<t+1 . (3)
=d+r+l)/ 2 <1,

otherwise there is at least one segment, s,+ 1, that has probability 0 of being visited during ¢ time
units. Therefore, an adversary having full knowledge on the patrol will always manage to
successfully penetrate regardless of the actions taken by the patrolling patrol guards. Note that t
appears in this equation since it influences the number of segments reachable by the patrol

guards located in segment s;+/ if turning around (s4 sd-j,...,Sz2+). On the other hand, if 1 > d
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then all segmentss; can have ppd; = 1 simply by using a deterministic algorithm. We define the
patrol scheme of the patrol guards as the

1. Number of patrol guards, the distance between them and their current position.

2. The movement model of the patrol guards and any characterization of their movement.

3. The patrol guard’s patrol algorithm.
The patrol scheme reflects the knowledge obtained by the adversary on the patrolling patrol
guards at any given time (hence is not necessarily time dependent).
We consider a strong adversarial model in which the adversary has full knowledge of the
patrolling patrol guards. Therefore, the full knowledge adversary knows the patrol scheme, and
will take advantage of this knowledge in order to choose its penetration spot as the weakest spot
of the patrol, i.e., the segment with minimal ppd. The solution concept adopted here (as stated) is
similar to the game-theoretic minimax strategy, yielding a strategy that is in equilibrium (none
of the players—patrol guards or adversary—has any initiative to diverge from their strategy).
The adversary can learn the patrol scheme by observing the behavior of the patrol guards for a
sufficient amount of time. Note that in security applications, such strong adversaries exist. In
other applications, the adversary models the behavior of the system in the “worst case scenario”
from the patrolling patrol guards point of view (similar to the classical Byzantine fault model in
distributed systems, see Lynch, 1996). In our environment, the patrol guards are responsible
only for detecting penetrations and not handling the penetration (which requires task-allocation
methods). Therefore, the case in which the adversary issues multiple penetrations is similar to
handling a single penetration, as the patrol guards detect, report and continue to monitor the rest

of the path, according to their algorithm.
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4.A FRAMEWORK FOR ADVERSARIAL PATROLLING OF
PERIMETERS

The environment we consider is a linear environment, in which at each step the patrol guards
can decide to either go straight or turn around. The framework we suggest is nondeterministic in
the sense that at each time step the decision is done independently, at random, with some

probability p. Formally,

D, Go straight
1-p, turnaround

Probability of next move =f(x) = {
Since the different patrol algorithms we consider vary in the probability p of the next step, we
assert that the probability p characterizes the patrol algorithm. Assume a patrol guard is
currently located in segment s;. Therefore, if the patrol guard is facing segment s;+, then with a
probability of p it will go straight to it and with a probability of /—p it will turn around and face
segment s;—;. Similarly, if it is facing segment s;-;, then with a probability of p it will reach
segment s;—; and with a probability of /—p it will face segment s;.,. Note that the probability of
penetration detection in each segment s;, / <i <d, is determined by probability p characterizing
the patrol algorithm, therefore ppdiis a function of p, i.e., ppdi(p). However, whenever possible
we will use the abbreviation ppd;. By the definition of ppd;, we need to find the probability that s;
will be visited during ¢ time units by some patrol guards. Assuming perfect detection capabilities
of the patrol guards, ppd; is determined only by the first visit of some patrol guards to s;, since
once the intruder is detected the detection mission is successful (specifically, once the segment is
visited, the “game” is over). Note that ppd; is calculated regardless of the actions of the
adversary. As stated previously, in order to guarantee optimality of the patrol algorithm, the
patrol guards should be uniformly distributed along the perimeter with a distance of d = N/k
between every two consecutive patrol guards, and that they are coordinated in the sense that if
they are supposed to turn around, they do so simultaneously. In the following theorem and
supporting lemmas we prove optimality of these assumptions in a full-knowledge adversarial
environment. Lemma 1 follows directly from the fact that the movement of the patrol guards is
continuous, thus a patrol guardR, cannot move from segment si to segment s;+;, j > 0, without

visiting segments s;+,,..., sj-sin between. Note that since £ > I it follows that the number of
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segments unvisited by R, is greater than 2¢ (otherwise a simple deterministic algorithm would
suffice to detect the adversary with probability 1). Therefore, during ¢ time units R, residing
initially in segment so cannot visit segment s; i< ¢, arriving from the other direction of the
perimeter without visiting the segments closer to its current location (so) first (this argument

holds for segments to the left and to the right of so).

Lemma 1. For a given p, the functionppd',-: N = [0,1] for constant ¢ and R; residing in segment
so is a monotonic decreasing function, i.e., as the distance between a patrol guard and a segment

increases, the probability of reaching it during ¢ time units decreases.

Lemma 2. As the distance between two consecutive patrol guards along a cyclic patrol path is

smaller, the ppd in each segment is higher and vice versa.

Proof. Consider a sequence S; of segments s;,...,Sw between two adjacent patrol guards, R, and
R;, where s; is adjacent to the current location of R; and s,, is adjacent to the current location of
R.. Let S; be a similar sequence, but with w —1 segments, i.e., the distance between R; and R,
decreases by one segment. Assume that other patrol guards are at a distance greater than or equal
to w —1 from R; and R;, and that w —1 < t. Since a patrol guards may influence the ppd in
segments that are up to a distance t from it (as it has a probability of 0 of arriving at any segment
at a greater distance within t time units), the probability of penetration detection, ppd, in these
sequences is influenced only by the possible visits of R; and R,. Denote the probability of
penetration detection in segment si€S; by ppdij), | <i<w, j € {1,2}, and the probability that the
penetrator will be detected by patrol guards Ry by ppdx; (), x €{l,r}. Therefore, for any segment
Si€S;,

PPdig= ppdiigytppdr ig—ppdigppdy ig) 4
(either R1 or Rr will detect the adversary, not both).

Note that either ppdiii), ppd: i) or both can be equal to 0. We need to show that

ppd(2) 2 ppd(1), for all 1<i < w, )
and for at least one segment s, ppdm(2) >ppdm(1). Specifically, it is sufficient to show that
Ppdi(2)+ppd; (2)—ppdu(2)ppd; (2)~{ppdi(1)+ppd: (1)-ppdi(2)ppd, (2)}= 0, (6)
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and for some i this inequality is strict. For every segment s;, ppdii(1) = ppdii(2) (there is no
change in its relative location), hence we need to prove that

ppdr i(2)—ppdr i(1) 2ppdli(2){ppdr i(2)—ppdr i(1)} )
Since 0 < ppd;i(2) < 1, in order for the inequality to hold, it is left to show that ppd; i(2)—ppd:i(1)
> 0. From Lemma 1 we know that ppd; i; is monotonically decreasing, therefore for each i, ppd:
i(2) = ppd: i(1), which completes the proof of this inequality. It is left to show that for some i =
m, ppdm(2)=ppdm(1) > ppdin(2){ppdrm(2)—ppdrm(1)} ®

i.e., for some m in which ppdin(2) # 1, ppdim(2) >ppdm(1). Patrol guard Rr may influence the
ppd on both of his sides - segments located to the left and to the right of its current position.
Denote the number of influenced segments to its right by y (y may be equal to 0). If y > 0, then
ppd: w—y+1(2) > ppd; w—y(1). In other words, Rr has a probability of 0 of reaching the segment
with a distance of t + 1 from it in Sy, but in S; it is y segments away from it, therefore R; has a
probability greater than 0 to reach it. If y = 0, then ppd,w(2) = 1 > ppd; w(1), as R, lies exactly in
segment s,,0f S;, and ppd; w(1) = 0.

Theorem 3. A team of k mobile patrol guards engaged in a patrol mission maximizes minimal
ppd if the following conditions are satisfied.

a) The time distance between every two consecutive patrol guards is equal.

b) The patrol guards move in the same direction and speed.
Note that condition b means that all patrol guards move together in the same direction, i.e., if
they change direction, then all k patrol guards change their direction simultaneously.
Proof. Following Lemma 2, it is sufficient to show that the combination of conditions a and b
yield the minimal distance between two consecutive patrol guards along the cyclic path. Since
we have N segments and k patrol guards, there are("C \)possibilities of initial placement of
patrol guards along the cycle (patrol guards are homogenous, so this is regardless of their order).
If the patrol guards are positioned uniformly along the cycle, then the time distance between
each pair of consecutive patrol guards is N/k. This is the minimal value that can be reached.
Therefore, clearly, condition a guarantees this minimality. If the patrol guards are not
coordinated, then it is possible that two consecutive patrol guards along the cycle, R; and Ri4j,
will move in opposite directions. Therefore, the distance between them will increase from N/k to

N/k + 2, and by Lemma 2 the ppd in the segments between them will be smaller. If R; and R4

16



move towards one another, then the distance between them will be N/k —2 and the ppd in the
segments between them will become higher. On the other hand, some pair R; and Rj+; exists such
that the distance between them increases, as the total sum of distances between consecutive
patrol guards remains N, hence the minimal ppd around the cycle will become smaller.
Therefore, the only way of achieving the minimal distance (maximal ppd) is by assuring that
condition a is satisfied, and maintaining it is achieved by satisfying condition b.

Since when facing a full-knowledge adversary, the goal of the patrol guards is to maximize the
minimal ppd along the perimeter, the following corollary follows.

Corollary 4. In the full-knowledge adversarial model, an optimal patrol algorithm must
guarantee that the patrol guards are positioned uniformly along the perimeter throughout the

execution of the patrol.

4.1 The Penetration Detection Problem

The general definition of the problem is as follows.
Penetration detection (PD) problem: Given a circular fence (perimeter) that is divided into N
segments, k patrol guards uniformly distributed around this perimeter with a distance of d = N/k
(in time) between every two consecutive patrol guards, assume that it takes t time units for the
adversary to penetrate, and the adversary is known to have full-knowledge of the patrol scheme.
Let p be the probability characterizing the patrol algorithm of the patrol guards, and let ppdi(p),
1 <i <d be a description of ppd; as a function of p. Find the optimal value p, pop, such that the
minimal ppd throughout the perimeter is maximized. Formally,
Popt = argmaxpsp<1{ min 5<ppdi(p)} &)
To summarize the model and the Theorems presented above, an optimal algorithm for multi-
patrol guards perimeter patrol under the Markovian strategy assumption for the patrol guards has
the following characteristics.

e The patrol guards are placed uniformly around the perimeter with d segments between

every two consecutive patrol guards.
e The patrol guards are coordinated in the sense that if they decide to turn around, then

they do it simultaneously.
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e At each time step, the patrol guards continue straight with a probability of p or turn
around with a probability of 1—p, and if they turn around they stay in the same segment
for t time units. .

Note that under the above framework (i.e. the framework for homogenous patrol guards), the
division of the perimeter into sections of d segments creates an equivalent symmetric
environment in the sense that in order to calculate the optimal patrol algorithm it is sufficient to
consider only one section of d segments, and not the entire perimeter of N segments. This is due
to the fact that each section is completely equivalent to the other, and remains so throughout the
execution. We divide the goal of solving the PD problem, i.e., finding an optimal patrol
algorithm into two stages.

1. Calculating the d ppd; functions for each 1 <i < d. This is determined according to the
patrol guard’s movement model (directed or undirected), environment model
(perimeter/fence) and sensorial model (perfect/imperfect, local/extended).

2. Given the d ppd; functions, find the solution to the PD problem, i.e., maximize the ppd in
the segment(s) with minimal ppd.

These two steps are independent in the sense that incorporating various different patrol guards
models will not change the process of determining the solution to the PD problem, as long as the
resulf of the procedure are d functions representing the ppd values in each segment. On the other
hand, if we would like to consider different goal functions other than maximizing the minimal
ppd (for example maximizing the expected ppd), it can be done without any change in the first
stage, i.e., determining the ppd functions. The important result is that this framework can be
applied to both different environment and patrol guard’s models (for example fence patrol), and
different goal functions (corresponding to different adversarial settings). The first stage for the
basic model (perimeter patrol, directed movement model of the patrol guards, patrol guards with
perfect local sensing) is described in next Section, and the second stage is described in later
Section. Extensions of the first stage to different patrol guards motion models and sensing

models are described later.
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4.2 Determining the Probability of Penetration Detection

In order to find an optimal patrol algorithm, it is necessary to first determine the probability of
penetration detection at each segment s; (ppd;), which is a function of p (the probability
characterizing the patrol algorithm, as discussed). In this section we present a polynomial time
algorithm that determines this probability. As stated previously, based on the symmetric nature
of the system, we need to consider only one section of d segments that lie between two
consecutive patrol guards, without loss of generality, R; and R,. We use a Markov chain in order
to model the possible states and transition between states in the system. In order to calculate the
probability of detection in each segment along t time cycles, we use the graphic model G
illustrated in Figure 2. For each segment s; in the original path, 1 <i < d, we create two states in
G: One for moving in a clockwise direction (scw ;), and the other for moving in a
counterclockwise direction (scc i). If R; or R; reach one of the s; segments within t time units,
then the adversary is discovered, i.e., it does not matter if the segment is visited more than once
during these t time units. Therefore, we would like to calculate only the probability of the first
arrival to each segment, and this is done by defining the state sy (corresponding to sp and s’ o) as
absorbing states, i.e., once a patrol guards passes through s; once, its additional visits to this
segment in this path will not be considered. The edges of G are as follows. One outgoing edge
from scw ; to scc jexists with a probability of 1—p for turning around, and one outgoing edge to
scw - exists with a probability of p for continuing straightforward. Similarly, one outgoing
edge from scc ; to scw ; exists with a probability 1—p for turning around, and one outgoing edge

to scc i+ exists with a probability of p for continuing straightforward.
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Figure 4.1: Conversion of the initial segments and guard locations into a graphical model, and the respective
stochastic matrix M. Each segment corresponds to two states: one going clockwise and one going

counterclockwise. ppd; are all paths starting from scw

In the following theorem, we prove that the probability of detecting the adversary by some patrol
guards in segment si (i.e., the probability of arriving at a segment during t time units) is
equivalent to finding all paths of size at most t to the absorbing state starting at state scc ;
.Therefore, it is possible to use the Markov chain representation for determining ppd;, as shown
in Algorithm FindFunc.

Theorem 5, Determining the probability of penetration detection at segment si, ppdi, is
equivalent to finding all paths of length at most t that start at scw ; and end in sq in the Markov
chain described above. Proof. For simplicity reasons, in this proof we distinguish between st
and sy, which are the absorbing state to the left and to the right of the Markov chain
(respectively), although practically they are represented by the same state sq;. Clearly, due to the
d and t values considered, ppd; is determined only by the visits of the two patrol guards
surrounding the section of d segments s;,...,S4, denoted by R and R;. Recall that the probability
of penetration detection in segment s; is defined as

Pppd; = ppdlistppdr; —ppdlppdr; (10
where ppdr; (ppdl;) is the probability that the adversary, penetrating through s;, is detected by R,
(R)). We claim that ppdl; is equivalent to computing the paths starting from scw; and ending at
the absorbing state srq (similarly ppdr; by state slg). Clearly, under this claim, since a path of
length at most t cannot reach both srg, and sl it follows that ppdlippdr; = 0, and the theorem will

follow. We prove the claim for ppdl;, where ppdr; follows directly. ppdl; is the probability that R,
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will reach s; at least once during t time units. Therefore, we must construct all paths starting
from the current location of R, that passes through s;, but take into account only the first visit to
the segment (everything beyond the first visit results anyway in probability of detection = 1). At
each step R, continues straight with probability p or turns around with probability 1—p. This is
equivalent to keeping R, in place, and moving the segments towards R, with probability p and
switch the segments’ direction with probability 1-p. Hence, every path starting at state scw;
(without loss of generality; computing paths starting at scc; is equivalent, but requires switching
the locations of Ry and R; in the representation) reaching srgis equivalent to a path started by R;
and passing through s;. Since srq is set to be an absorbing state, every path passing through it
will not be considered again, i.e., only the first visit of R, to s; is considered, as required.

Using the Markov chain, we can define the stochastic matrix M which describes the state
transitions of the system. Figure 2 illustrates the Markov chain and its corresponding stochastic
matrix M used for computing the ppd functions. The probability of arrival at segment s; during t
time units, hence the probability penetration detection in that segment, is the scCag+1 + SCWag+1
entry of the result of V; xM', where Vi is a vector of 0’s, except for a 1 on the 2;-,’th location.
The formal description of the algorithm is given by Algorithm 1. Note that the algorithm makes
a symbolic calculation, hence the result is a set of d functions of p. The time complexity of
Algorithm FindFunc depends on the calculation time of M', which is generally tx(2d)’.
However, since M is sparse, methods for multiplying such matrices efficiently exist (e.g., see
Gustavson, 1978), reducing the time complexity to t(2d)?, i.e. O(td?). Since t is bounded by d-1,
the time complexity is O(d3 ).

Algorithm 1 Algorithm FindFunc(d,t)

1: Create matrix M of size (2d + 1)(2d + 1), initialized with Os
2: Fill out all entries in M as follows:

3M[2d+12d+ 1] =1

4: for i<« 1to2ddo

5:M[imax{i+ 1,2d + 1}] =p

6: Mfimin{l,i-2}] = I-p

7: Compute MT = M'

8: Res = vector of size d initialized with Os
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9: for 1 Joc <d do

10: V = vector of size 2d + 1 initialized with 0s.
11: V [2loc] «— 1

12: Resfloc] =V xMT[2d + 1]

13: Return Res

4.2.1 Handling Higher Values of 1

Algorithm FindFunc and Figure 2 demonstrate the case in which t = 1, i.e., if the patrol guard
turns around (with probability /—p) it remains in its current position for one-time step. In the
general case, when the patrol guard turns around, the cost of turning—modeled in time— can be
higher. In such cases, the Markov chain is modified to represent the value of 1. Specifically, for
each segment s;, instead of having two corresponding states (scw; and sccw; ), we have 2(1)
states: scw; and sccw; , and one set of T —1 states for turning around to each direction (from cw
to ccw and vice versa). The probabilities assigned to each of the edges is /—p for the first
outgoing edge from scc; to the first intermediate state towards sccw; and 1 for each edge on that
direction, and similarly on the path from sccw; to scc; . See Figure 3 for an illustration. The
matrix M is filled out according to the new chain, and the time complexity of creating this matrix
grows in a factor of T—from (2d + 1)! to (2td + 1)'. However, as long as 7 is a constant, the total

time complexity does not change.

22



Figure 4.2: Illustration of the Markov chain when t > 1, and specifically, here t =3

4.3 An Optimal Adversarial Patrol Algorithm for Full-Knowledge
Adversaries

In cases in which the patrol guards face a full knowledge adversary, it is assumed that the
adversary will take advantage of this knowledge to find the weakest spot of the patrol, i.e., the
segment with minimal probability of penetration detection. Therefore, an optimal patrol
algorithm to handle such an adversary is the one that maximizes the minimal ppd throughout the
perimeter. Hence we need to find an optimal p, poy, such that the minimal ppd throughout the
perimeter is maximized. Also here, since our environment is symmetric, we do not need to
consider the entire patrol path, but only a section of d segments between two consecutive patrol
guards. The input in this procedure is the set of d ppdi,) functions that were calculated in the
previous section (Section 4.2). After establishing d equations representing the probability of
detection in each segment, we must find the p value that maximizes the minimal possible value
in each segment, where p is continuous in the range p € [0,1]. Denote these equations by ppdy,,
1 <i <d. The maximal minimal value that we are looking is the p value yielding the maximal
value inside the intersection of all integrals of ppd;y). The intersection of all integrals is also
known as the lower envelope of the functions (Sharir& Agarwal, 1996). Observing the problem
geometrically, consider a vertical sweep line that sweeps the section [0,1] and intersects with all

d curves. It seeks the point p in which the minimal intersection point between the sweep line and
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the curves, denoted by ppd+(p), is maximal. This p is the maximin point. Since the segment [0,1]
and the functions ppd;....,ppds are continuous, this sweep line solution cannot be implemented.
We prove in the following lemma that this point is either an intersection point of two curves, or
a local maximum of one curve (see Figure 4). See Algorithm 2 for the formal description of
Algorithm FindP.

podi(p)
podi

A ]
oo y

Figure 4.3: An illustration of two possible maximin points (marked by a full circle). The curves represent d
ppdi(p) functions in p € [0,1]. On the left, the maximin point is created by the intersection of two curves. On

in the right, the maximin point it is the local maxima of the lowest curve.

In the following, we prove that Algorithm FindP finds point p such that the maximin property is

satisfied.

Lemma 6. A point p yields a maximin value ppd+(p) if the following two properties are
satisfied.

a. ppdx{p) <ppd(p) VI <i<d

b. One of the two following conditions holds: ppd+(p) is an intersection of two curves (or

more), ppdi(p) and ppdi(p) or a local maxima of curve ppdi(p).

Proof. Property a. is derived from the definition of a maximin point. Therefore, we are looking
for the maximal point that satisfies property a. We must still show that this point, ppd*(p), is
obtained by either an intersection of two or more curves or is a local maximum. Clearly, a
maximal point of an integral is found on the border of the integral (the curve itself). The area
which is in the intersections of all curves lies beneath parts of curves, ppdii,....ppdim, such that

ppd;; is the minimal curve in the section between two points[f,r’] and U?-Fl[f,rj] = [0,1].
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By finding the maximal point in each section ppd'msx = max{f(x), x€/Z,”]}, and choosing the
maximal between them, i.e., max{ppdma,1 < j < m}, we obtain ppd*(p). In each section /Z,7]
the maximal point can be either inside the section or on the borders of the section. The former
case is precisely a local maximum of ppdjj. The latter is the intersection point of two curves
ppd;—1,ppd;; or ppd;jppdij+1.

Lemma 7. A point p exists yielding a maximin value ppd*({p) > 0.

Proof. In order to prove the lemma, we need to show that the intersection of all integrals
ppdi,....ppdq in the x section [0,1], and the y section (0,1] is not empty. It suffices to show that
for every ppdi, ppdi(x) > 0,0 < x < 1. Each function ppd;,1 < i < d represents the ppd in a
ségment si between two patrol guards. From our requirement that t > d/2 + 1 (for t = 1), it
follows that in all models we consider, for 0 < p < 1 the ppd # 0. Note that if p=0 or p = 1, then
ppd is either 0 or 1, but this does not contradict the fact that we have a point guaranteeing
ppd(p) > 0.

Algorithm FindP finds this point by scanning all possible points satisfying the conditions given
in Lemma 6, and reporting the x-value (corresponding to the p value) with a y-value dominated
by all ppd;. The input to the algorithm is a vector of functions ppd;, 1 <i < d and the value t.
Computing the intersections between every pair of functions costs d’2: d® for all pair
computation, t* for finding the root of the polynomial using, for example, the Lindsey-Fox
method presented by Sitton, Burrus, Fox, and Treitel (2003). Computing the dominance of the
resulting points with respect to all other curves is d’t as well. Therefore the time complexity of
Algorithm FindP is the complexity of Algorithm FindFunc, O((N/k )*), with additional cost of
O(*d?) = O((N/k)*) (the algorithm itself), i.e., jointly O((N/k)*).

Theorem 8.4l/gorithm FindP(F,t) finds point p yielding the maximin value of ppd.

Proof. Algorithm FindP checks all intersection points between the pair of curves, and the points
of local maxima of the curves. It then checks the dominance of these points, i.e., whether in the
location these points have a lower value compared to all other curves, and picks the maximal of
them. Therefore, if such a point is found, by Lemma 6, this point is precisely the maximin point.

Moreover, by Lemma 7 this point exists.
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4.4 Examples

We have fully implemented Algorithm FindP in order to find the optimal maximin p for pairs of
d’s and t’s. We use the following examples to illustrate how the relation between t and d is
reflected in the ppd values. Recall that when running a deterministic patrol algorithm in all
scenarios we handle, the minimal ppd is 0. We assume the patrol guards are initially heading to

the clockwise direction.

Algorithm 2 Algorithm FindP(d,t)

1: F « Algorithm FindFunc(d,t).

2: Set popi — 0.

4: Compute local maxima (Pmax, Fpivo(Pmax)) Of Fpivor in the range (0,1).
S:foreach F, 1 <i<ddo

6. Compute intersection point p; of F; and Fpi,, in the range (0,1).
7: if FpivolD) > Fpivor(Pmax) and Fpio(p) < Fi(py) Yk then

8: Popt < Pi.

9: if Fpivor(Pmax) > Fpivol(Dy) and Fpivol(py) < Fi(py) Vk then

10: popt < Pmax.

11: Return (Dmax, Fpivo(Pmax))-

First of all, we have seen that the minimal ppd achieved after running FindP was always more
than 0. As t/d — 1, i.e., t increases, then the value of the maximin ppd increases, and vice versa,
i.e., as t/d — 1/2, then the value of the maximin ppd decreases. This can be seen clearly in
Figure 5. In this case, we have fixed the value of t to 8 and checked the maximin ppd for 9 <d <
15. When t/d is close to 1 (d = 9,t = 8) the maximin ppd = 0.423, and the value decreases to 0.05
when t/d is close to 1/2 (d = 15,t = 8). Similar results are seen if we fix the value of d and check

for different values of't.
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Figure 4.4: On the left, results of maximin ppd for fixed t = 8 and different values of d: the possible maximin
ppd decreases as d increases. On the right, results of maximin ppd for fixed d = 16 and different values of t:

the possible maximin ppd increases as t increases.

In Figure 6, we present the values of the ppd in all 16 segments, for all different possible values
of t (9 <d < 15). It is seen clearly, that the value of ppd usually decreases as the distance from
the left patrol guard increases, until it reaches the segment with maximin ppd, then the value
rises again until reaching the current location of the patrol guard to the right. The reason lies in
the fact that the segments to the left of the segment with the maximin ppd are influenced mostly
by the patrol guards on the left, and the segments to the right of that point are mostly influenced
by the patrol guards to the right. Since the p’s yielding the maximin point in this example have
value of greater than 0.8 for all t’s, the segment having the maximin value is to the right of the

midpoint.
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Figure 4.5: ppd values in all 16 segments for all t values (9 to 15)
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5.ACCOUNTING FOR MOVEMENT CONSTRAINTS AND
SENSING UNCERTAINTY

In this section we describe various ways in which the basic framework of multi-patrol guard
patrol can be used to solve the problem of finding an optimal patrol algorithm in various other
settings. First, we describe the case in which the movement model of the patrol guards is not
necessarily directed. We then discuss various sensing capabilities of the patrol guards in
perimeter patrol: imperfect local sensing, perfect long-range sensing and imperfect long-range
sénsing. Finally, we describe the case in which the patrol guards should travel along an open

polyline (fence) rather than a perimeter.

5.1 Different Movement Models

A basic assumption of the patrol guard framework is that the patrol guard’s movement model is
directed in the sense that if a patrol guard has to go back to visit a point behind him, he has to
physically turn around. This directed movement model is suitable for various patrol guards type,
like foot patrolling, vehicle patrolling, etc. However, in some cases the patrol guard’s movement
is undirected, for example if the patrol guard travels along train tracks.We will demonstrate in
this section how the basic framework can be used also in the latter case, i.e., if the patrol guard’s
movement is undirected. We examine the difference in the Markov chain and the resulting ppd
in three different cases:

1. Bidirectional Movement model, denoted by BMP. Here, the patrol guard’s movement
pattern is similar to movement on tracks or a camera going back and forth along a fixed
course (omnidirectional patrol guards). In this model, the patrol guards have no
movement directionality in the sense that switching directions—right to left and vice
versa—does not require physically changing the direction of the patrol guards (turning
around).

2. Directional Costly-Turn model, denoted by DCP, the basic framework discussed so far
for T > 1. The patrol guard’s movement is directed, and turning around is a special
operation that has an attached cost in time. Specifically, we show the results here for © =
1.
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3. Directional Zero-Cost model, denoted by DNCP, which is a special case of the DCP
model with © = 0. The patrol guard’s movement is directed, yet turning around does not
take extra time. This is coherently different from BMP, as in each step the patrol guard
does not go either right or left, but straight or back (where each could be either to the
right or to the left, depending on the current heading of the patrol guards).

The basic framework can be used for handling all three models simply by adapting the Markov
chain to the current model. This changes only lines 5—6 in Algorithm FindFunc. A description of
the Markov chains is described in Figure 7. In the BMP model, it moves one step to the right
(segment i + 1) with a probability of p and one step to the left (segment i—1) with a probability
of 1-p. This model is similar to a random walk. The corresponding Markov chain is simple:
edges exist from s; to si+; with a probability of p and from s; to si-; with a probability of 1—p
(with no related direction). In both the DNCP and DCP models, we assume directionality of
movement, hence the patrol guard continues his movement in its current direction with a
probability of p, and turns around (rewinds) with a probability of 1—p. In DCP, if the patrol
guard turns around it will remain in segment i (as described in Figure 2). In the DNCP model,
the chain is similar to the one above, however edges will exist from scw; to scci+; and from scc;
to scw;—; with a probability of 1—p. See Figure 7 for an illustration of DNCP, DCP and BMP as a

Markov chain.

DCP

DNCP

S4 p. P, P Sa
BMP S>>0

R S e
Figure 5.1: Conversion of the initial segments and guard locations into a graphical model in all three

movement models
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We examined the difference between the resulting ppd values in the three models in a case
where d = 16,t = 12 (Figure 8). It is clearly noticeable that the DCP model yields less or equal
values of ppd compared to DNCP model throughout the segments. The reason is because when
turning around, in the DCP model, the operation costs an extra cycle, therefore the probability of
ariving at a segment decreases, compared to the case in which turning around is not costly.
Another interesting phenomena is that the ppd values of the BMP are considerably higher (and
close to 1) than the values obtained by other models for segments closer to the location of the
righthand side patrol guards. The value then decreases dramatically around the value of t and
then increases back again. Recall that here there is no directionality of movement, therefore the
probability of going right is 0.707 and going left is 1-0.707 = 0.293, which explains this
phenomenon. One might have expected to have p = 0.5 in the random walk model (BMP),
however by choosing an equal probability for going right and left, the patrol guards will
necessarily neglect the segments further away from them (the mid segments between two

consecutive patrol guards), resulting in a lower minimal ppd.
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Figure 5.2: Results of maximin ppd values for d = 16 and t = 12 for all three models: DNCP, DCP and BMP.

The maximin ppd values are circled
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5.2 Perimeter Patroi with Imperfect Penetration Detection

Uncertainty in the perception of the patrol guards should be taken into consideration in practical
multi-patrol guards problems. Therefore, we consider the realistic case in which the patrol
guards have imperfect sensorial capabilities. In other words, even if the adversary passes
through the sensorial range of the patrol guards, it still does not necessarily detect it.

We introduce the ImpDetect model, in which a patrol guard travels through one segment per
time cycle along the perimeter while monitoring it, and has imperfect sensing. Denote
theprobability that an adversary penetrating through a segment s; while it is monitored by some
patrol guard R and R will actually detect it by pg < 1. Note that if ps< 1, revisiting a segment by
a patrol guards could be worthwhile—it could increase the probability of detecting the
adversary. Therefore the probability of detection in a segment s; (ppd;) is not equivalent to the
probability of first arriving at s; (as illustrated in Section 4.2), but the probability of detecting the
adversary during some visit y to s;, 0 <y <t. Denote the probability of the y’th visit of some

patrol guards to segment s; by w¥; .Therefore,ppdi is defined as follows.

ppdi=w'pa+w'i (1-py) * (Wpa+w's (1-p) L. W's *pa}} (11)

In other words, the probability of detecting the penetration is the probability that it will be
detected in the first visit (w'; xpq) plus the probability that it will not be detected then, but during
later stages. This again is the probability that it will be detected during the second visit (Wi Xpa)
or at later stages, and so on. Note that after t time units, w'; = 0 for all currently unoccupied
segments s;, and if a patrol guards resides in s;, then w'; is precisely (1-pq)'. One of the building
blocks upon which the optimal patrol algorithms are based, is the assumption that the probability
of detection decreases or remains the same as the distance from a patrol guard increases, i.e., it is
a monotonic decreasing function. This fact was used in Section 4 in proving that in order to
maintain an optimal ppd, the patrol guards must be placed uniformly around the perimeter (with
a uniform time distance), and maintain this distance by being coordinated. In order to show this
here as well, we first prove that the probability of detection monotonically decreases with the

distance from the location of the patrol guards.
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Lemma 9. Let S = {5_14r,...,5-1,50,51,...,5} be a sequence of 2t segments, where patrol guards R,
resides in sg at time 0. Then Vi > 0, ppd; > ppd;+), and Vi <0, ppd; > ppd;-|.

Proof. First, assume that i> 0 (positive indexes). By previous Equation, we need to compare
between w'ps +w' (1-pdx{W’ps +W4 (1-pd*{..{wi xpa}}} and W'ups +W'n(l-
pd)><{w21+1pd + w2i+1(1—pd)><{...{wti+| xpa}}}. It is therefore sufficient to show that w™; > w™iy,
for all 1 <m <t. We prove this by induction on m. As the base case, consider m = 1, i.e., we
need to show that w'; > w'i1,. This is accurately proven in Lemma 1, based on the fact that the
movement of the patrol guards is continuous, therefore in order to get to a segment you must
visit the segments in between (the formal proof also uses the conditional probability law). We
now assume correctness for m’ < m, and prove that w™; > w™;;;. Denote the probability that a
patrol guard placed at segment s; will return to s; within r time units by xi(r). In our symmetric
environment, for every i and j, xi(r) = x;(r). Moreover, Vr,xi(r) > xi(r—1). Therefore,w™; can be
described as) r+uxt W™l (uxxi(r), and similarly W™, = Zm.stwm‘lm (u)xx;+1(r). By the
induction assumption, w™ L > w™ L, and since xi(r) = xin(r), it follows that W™ > W™,
proving the lemma for positive indexes. The negative indexes are a reflective image of the
positive indexes, but with t—t time units. Since the induction was proven for all t values, the
proof for the negative indexes directly follows. The following Theorem follows directly from
Lemma 9. The idea behind this is that since the probability of penetration detection decreases as
the distance from the patrol guardsgrow, both minimal ppd and average ppd are maximized if
the distance between the patrol guards is as small as possible. Since the patrol path is cyclic, this
is achieved only if the distance between every two consecutive patrol guards is uniform, and
remains uniform. Note that Theorem 10 below is a generalization of Theorem 3 for imperfect
sensing (based on the fact that that the general structure of the ppd function remains the same
even if the patrol guards might benefit from revisiting a segment, and by that increasing the ppd

in that segment).
Theorem 10. In the full knowledge adversarial model, a patrol algorithm in the ImpDetect

model is optimal only if it satisfies two conditions:

a. The patrol guards are placed uniformly around the perimeter.
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b. The patrol guards are coordinated in the sense that if they turn around, they do it
simultaneously. By assuring these two conditions, the patrol guards preserve a uniform distance
between themselves throughout the execution.

Algorithm for finding ppd; with imperfect sensorial detection: Find the probability of penetration
detection with pg < 1 results in a different Markov chain, hence a different stochastic matrix M.
Figure 9 demonstrates the new graphical model and the new resulting stochastic matrix M
(compared to Figure 2, in which pq = 1). The difference in the algorithm is in the division of so to
two states, scwg and scco, the addition of the absorbing state sg; that represents the detected state
and the transitions between these states. The ppd; is therefore obtained after t+1 steps (compared

to t steps) in the sq;’s location in the result vector. The time complexity of the algorithm remains
o(d%.
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Figure 5.3: Conversion of the initial segments and patrol guard’s locations into a graphical model, and the

respective stochastic matrix M for the imperfect sensing model

5.3 Improving Sensing Capabilities in Perimeter Patrol

In this section we present further enhancements by considering various sensing capabilities of
the patrol guards. Specifically, we first consider the case in which a patrol guard can sense

beyond its currently visited segment. We then offer a solution to the case in which the patrol
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guard can sense beyond its current position, yet its sensing capabilities are not perfect, and

change as a function of the distance from its current position.

5.3.1 Extending (Perfect) Sensing Range

In this section we consider the LRange model, in which the sensorial range of a patrol guards
exceeds the section which it currently resides in. Use L to denote the number of segments the
patrol guard senses beyond the segment it currently occupies. If L > 0, we refer to the L
segments as shaded segments. Note that the location of the shaded segments depends on the
direction of the patrol guard shading them, and they are always in the direction the patrol guard
is facing. A trivial solution to dealing with such a situation is to enlarge the size of the segment,
and thus enlarge the length of the time unit used as base for the system, such that it will force L
to be 0. However, in this case we lose accuracy of the analysis of the system, as the length of the
time cycle should be as small as possible to also suit the velocity of the patrol guards and the
value of t. In general, the values of t that can be handled by the system are bounded by its
relation to d (the distance between every two patrol guards along the path) - see Section 4. If L >
0, this changes. Specifically, if L = 0, then the possible values of t considered are (d+1)/2 <t <
d-1. However, if L > 0, then it is possible to handle even smaller values of t, i.e.,. even if the
penetration time of the adversary is short. Formally, the possible values of t are given in the
following equation.

(d+7/2-L<t<d-L-1 (12)

If t is smaller than (d+t)/2 — L, then an adversary with full knowledge will manage to penetrate
with a probability of 1, i.e., there is a segment (sp+1) Which is unreachable within t time units. On
the other hand, if t is greater than d—L—1, then a simple deterministic patrol algorithm will detect
all penetrations with a probability of 1. We assume that during the T time units the patrol guards
turns around, it can sense only its current segment. This change in the sensing model of the
patrol guard is reflected in the Markov chain, as seen in Figure 10. The change is that we add 2L
arrows to the absorbing state s4, from scwj ,...,scwy, and sccq ,...,ScC4-1+1. The stochastic matrix
M changes accordingly, and the probability of penetration detection in segment s; becomes the

result of the vector multiplication M™'V;, where V; is a vector of size 2d + 1 with all entries 0
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except for entry corresponding to the location of scw; , which holds a value of 1, similar to the

process described in Algorithm FindFunc (1).

5.3.2 Extending the Sensorial Range Aiong with imperfect Detection

In many cases, the actual sensorial capabilities of the patrol guard are composed of the two
characteristics described in the previous sections, i.e., the patrol guard can sense beyond his

current segment, however the sensing ability is imperfect. Therefore, in this section we introduce
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Figure 5.4: An illustration of L segments shaded by patrol guard R. In this case R is facing right, therefore
the shaded segments are to its right. The Markov chain changes accordingly, therefore also the stochastic

matrix M.

the ImpDetLRange sensorial model, which is a combination of the LRange and the ImpDetect
models. Here the patrol guards can sense L segments beyond its current segment, yet the pq in
each segment varies and is not necessarily 1. We therefore describe how to compute ppd; in this
case, which deals with the most realistic form of sensorial capabilities (Duarte & Hu, 2004):
imperfect, long range sensing. The information regarding the sensorial capabilities of the patrol
guards includes two parameters. The first describes the quantity of the sensing ability, i.e., the
number of segments that exceeds the current segment in which patrol guards resides, for which it
has some sensing abilities, denoted by L. The second parameter describes the quality of sensing

in all segments the patrol guards can sense. This is given in the form of a vector Vs =
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{Vo,V1,...,vL}, Where v; is the probability that the patrol guards residing in so will detect a
penetration that occurs in segment s;. We assume that the values in Vs decrease monotonically,
i.e., as i increases, v; decreases or remains the same. The Markov chain in this model, as
illustrated in Figure 11, changes in order to reflect the imperfect sensing along with the long
range sensing. The absorbing state sq; exist in addition to the states scwp and socc. The transition
probabilities are added from 2L segments: Vi,j 0 <i <L;d-L+1 <j <d, a transition from scw; to
so with probability v; and from scc; to so with probability v4—j+1. In addition, the transition from
scw; to sicc is with probability (1—p)(1-v;), from scc; to scw; with probability (1—p)(1-va~j+1),
hence the transition probability from scw; to scwi-; is p(1-v;) and from scc; to sccjy is
p(1-V4j+1). The probability of penetration detection in segment s; is the result of M*' multiplied
by V; in location sy of the result vector. Note that also here, similar to the solution described in
Section 5.2, since we added a new absorbing state (which takes an extra step to reach), ppd; is

the result in the product of the stochastic matrix and V; in location sy after t + 1 time steps (not

t).
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Figure 5.5: An illustration of L segments shaded by guard R, where the probability of detection is not
necessarily 1. In this case R is facing right, therefore the shaded segments are to its right. The Markov chain

and the stochastic matrix M changes accordingly.
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5.4 Multi-Patrol Guards Adversarial Patrolling Along Fences

In our general work, and specifically in previous sections, we assumed the patrol guards travel
around a closed, circular, area. In this section we discuss patrolling along an open polyline, also
known as fence patrol. First, we will discuss how this patrol is different from perimeter patrol.
We will then describe an algorithm for determining ppd; in fence patrol assuming the patrol
guardshave perfect sensing capabilities, and finally we will provide an algorithm for patrol

guards with imperfect sensing.

5.4.1 Patrolling Along a Closed Polyline vs. an Open Polyline

In the following, we describe why patrolling along an open polyline is more challenging than
patrolling in cyclic environments (closed polyline). The first reason lies in the fact that the patrol
guards are required to go back and forth along a part (or parts) of the open polyline. As a result,
the elapsed time between two visits of a patrol guard at each point along this line can be almost
twice as long as the elapsed time in a circular setting. In Figure 12, we are given two
environments: a closed polyline (circle) (a) and an open polyline (b). Note that open polylines b.
and c. are equivalent in the sense that each patrol guard travels through one segment per time
step, regardless of the shape of the section. Both lines a. and b. are of the same total length 1 and
with the same number of patrol guards (4). In the circular environment, if it takes an adversary
more than 1/4 time units to penetrate - it will never be able to penetrate even if the patrol guards
simply continuously travel with uniform distance between them. However, if the patrol guards
travel along an open polyline (b), the maximal time duration between two visits of the patrol
guard—even in the best case, is 21/4-2 (Elmaliach, Shiloni, &Kaminka, 2008). Therefore, a

weaker adversary that has a penetration time which is almost twice as long as in the circular
fence might still be able to penetrate.

SN
C

b. c.

Figure 5.6: Illustration of the difference between patrolling along a line and patrolling along a circle, for

different polylines
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Another reason for the added complication in analyzing the probability of penetration detection
in open polyline environments lies in the asymmetric nature of traveling in the segments along
time. In a circular environment, if the patrol guards are coordinated and switch directions in
unison, then the placement of the patrol guards is symmetric in each time unit. Therefore, all
segments in the same distance from some patrol guard (with respect to its direction) have the
same probability of penetration detection. Hence in order to calculate an optimal way of
movement (in our case the probability p of turning around), it is sufficient to consider only one
section of d segments, and the resulted p is equivalent throughout the execution. In an open
polyline environment this is not the case. The probability of penetration detection differs with
respect to the current location and direction of the patrol guard. Therefore, the algorithm that
finds the ppd for each segment, needs to calculate the ppd as a function of p for each segment s;
for each possible initial location of the patrol guard inside the section. Therefore, this results in a
matrix of size dxd of the ppd functions (as opposed to a vector of d functions in the circular

fence).

5.4.2 Determining ppd; in an Open Polyline (Fence)

Following the framework for multi-patrol guard patrol along an open line proposed by
Elmaliach et al. (2008), we assume each patrol guard is assigned to patrol back and forth along
one section of d segments. Given this framework, we would like to compute the optimal patrol
algorithm for the patrol guards along the section. Similar to the perimeter patrol case (Section
4.2), we describe the system as a Markov chain (see Figure 13), with its relative stochastic
matrix M. Since the patrol guards have directionality associated with their movement, we create
two states for each segment: the first for traveling in a segment in the clockwise direction, and
the second for traveling in the counterclockwise direction. The probability of turning around at
the end of each section is 1, otherwise the patrol guard will continue straight with probability of
p, and will turn around with probability of 1—p. Note that the main difference from the perimeter
patrol calculation of ppd; lies in the number of resulting ppd; functions. In perimeter patrol, due
to its symmetric nature, there is one ppd; function for each segment between the current location
of each patrol guards, representing the probability of a patrol guards arriving there during t time

units. Here, however, ppd; depends on the current location of the patrol guards, hence for each
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location of the patrol guards we have d functions of probability of penetration detection,
therefore a total of d* such functions (compared to d in perimeter patrol) Denote the probability
of penetration detection in segment s; given that the patrol guard is currently at segment s; by
ppd’i. In order to calculate the d ppd’; function for all 1 <i,j <d, we create d different matrices:
M,,....Mq4. Each matrix M; corresponds to calculating ppdji, i.e., the probability of penetration
detection in segment s;, and from that we calculate ppd’; from every current location sj of the
patrol guard (similar to what is done in perimeter patrol). Figure 13 demonstrates the matrix M,
with which ppd?; is calculated. The figure describes the general case of pg < 1, i.e., the patrol

guards might have imperfect sensing.
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Figure 5.7: Description of the system as a Markov chain, along with its stochastic matrix M for calculating

the ppd in segment s,.

5.4.3 Optimal Algorithm for Fence Patrol

In the case of fence patrolling, the ppd value depends on the current location of the patrol guard.
Consequently, the optimal p value characterizing the patrol of the patrol guards is different for
each segment s;, where 1 < i < d. Therefore, there could be different optimal p values with
respect to both location and orientation of the patrol guard (2d values). However, it is sufficient

to calculate the ppd values only d times (and not 2d times)—only for one direction, as the other
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direction is a reflective image of the first. In order to find the maximin point for the fence
patrolling case, we use algorithm MaximinFence, which finds the value p such that the minimal
ppd is maximized, using Algorithm FindP that computes this point by finding the maximal point
in the integral intersection of all curves (ppdi). The complete description of the algorithm is

shown in Algorithm 3.

Algorithm 3 Procedure MaximinFence(d,t)

1: M « FindFencePPD(d,t)

2: fori«— 1toddo

3: OpP[i] « FindP(d,t) with additional given input M[i] as a vector of ppd functions.
4: Return OpP
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6. EVOLUTIONARY GAME THEORY

Game theory, studies and models situations of competition and conflict — of cooperation and
defection — between several interacting agents, for shared resources (Webb 2007). We use game
theory in this work to model the interactions between possible adversaries within the landscape,
and the different vulnerability factors for the animals in a wildlife reserve which would facilitate
or restrict the adversaries for penetration.

Let G(©,%,11) be a normal form, strategic game where Vie I ={l,..,n} cR¥,n>2,
@) ® ={®,} is the set of interacting agents or players;
(i)  Z,#{} is the set of strategies for the player ®,.Z=3, x..xZ, is the space of
strategies, with 6 =(0,,...,G, ) € £ being a strategy profile of the game G;
(iii) II,:Z—>R is the payoff function, which assigns to each strategy profile o a real
number H,(c), the payoff earned by the player ©®, when ois played in G,

I1=1I, x...xII,, is the space of payoff functions in the game.

Let the game Gbe repeated in periods of discrete times € X . Assume that the players are

‘hardwired’ to play only pure strategies inG. Thus each strategy set Z, is a member of the

standard basis for the strategy space T where the i™ coordinate is 1 and the rest are zeroes, and

thus would  correspond to a corner point of the simplex

A= { p=(p,,pyprp,) €R:p,20,ieN ,zn: D= 1}, which is the simplex corresponding to Z.
i=l
In this section,we explore the notion of evolutionary game theory, which shows that the basic
ideas of game thedfy can be applied even to situations in which no individual is overtly
reasoning, or even making explicit decisions. Rather, game-theoretic analysis will be applied to
settings in which individuals can exhibit different forms of behavior (including those that may
not be the result of conscious choices), and we will consider which forms of behavior have the
ability to persist in the population, and which forms of behavior have a tendency to be driven out
by others. As its name suggests, this approach has been applied most widely in the area of
evolutionary biology, the domain in which the idea was first articulated by John Maynard Smith

and G. R. Price.
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The key insight of evolutionary game theory is that many behaviors involve the interaction of
multiple players in a population, and the success of any one of these players depends on how its
behavior interacts with that of others. So the fitness of an individual player can’t be measured in
isolation; rather it has to be evaluated in the context of the full population in which it lives. This
opens the door to a natural game-theoretic analogy:anplayer’s genetically-determined
characteristics and behaviors are like its strategy in a game, its fitness is like its payoff, and this
payoff depends on the strategies (characteristics) of the players with which it interacts. Written
this way, it is hard to tell in advance whether this will turn out to be a superficial analogy or a
deep one, but in fact the connections turn out to run very deeply: game-theoretic ideas like
equilibrium will prove to be a useful way to make predictions about the results of evolution on a

population.

6.1 Fitness as a Result of Interaction

To make this concrete, we now describe a first simple example of how game-theoretic ideas can
be applied in evolutionary settings. This example will be designed for ease of explanation rather
than perfect fidelity to the underlying biology; but after this we will discuss examples where the
phenomenon at the heart of the example has been empirically observed in a variety of natural
settings. For the example, let’s consider a particular species of beetle, and suppose that each
beetle’s fitness in a given environment is determined largely by the extent to which it can find
food and use the nutrients from the food effectively. Now, suppose a particular mutation is
introduced into the population, causing beetles with the mutation to grow a significantly larger
body size. Thus, we now have two distinct kinds of beetles in the population — small ones and
large ones. It is actually difficult for the large beetles to maintain the metabolic requirements of
their larger body size — it requires diverting more nutrients from the food they eat — and so this
has a negative effect on fitness. If this were the full story, we’d conclude that the large-body-size
mutation is fitness decreasing, and so it will likely be driven out of the population over time,
through multiple generations. But in fact, there’s more to the story, as we’ll now see.

Interaction Among Players. The beetles in this population compete with each other for food —
when they come upon a food source, there’s crowding among the beetles as they each try to get
as much of the food as they can. And, not surprisingly, the beetles with large body sizes are

more effective at claiming an above-average share of the food. Let’s assume for simplicity that
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food competition in this population involves two beetles interacting with each other at any given
point in time. (This will make the ideas easier to describe, but the principles we develop can also
be applied to interactions among many individuals simultaneously.) When two beetles compete
for some food, we have the following possible outcomes.
o When beetles of the same size compete, they get equal shares of the food.
e When a large beetle competes with a small beetle, the large beetle gets the majority of
the food.
o In all cases, large beetles experience less of a fitness benefit from a given quantity of
food, since some of it is diverted into maintaining their expensive metabolism.
Thus, the fitness that each beetle gets from a given food-related interaction can be thought of as
a numerical payoff in a two-player game between a first beetle and a second beetle, as follows.
The first beetle plays one of the two strategies Small or Large, depending on its body size, and
the second beetle plays one of these two strategies as well. Based on the two strategies used, the

payoffs to the beetles are described by Figure 14.

Beetle 2
Small  Large
Small [ 5,5 | L8
Large | 8,1 3,3

Beetle 1

Figure 6.1. The Body-Size Game
Notice how the numerical payoffs satisfy the principles just outlined: when two small beetles

meet, they share the fitness from the food source equally; large beetles do well at the expense of
small beetles; but large beetles cannot extract the full amount of fitness from the food source. (In
this payoff matrix, the reduced fitness when two large beetles meet is particularly pronounced,

since a large beetle has to expend extra energy in competing with another large beetle.)

6.2 Evolutionarily Stable Mixed Strategies

As a further step in developing an evolutionary theory of games, we now consider how to handle
cases in which no strategy is evolutionarily stable. In fact, it is not hard to see how this can
happen, even in two-player games that have pure-strategy Nash equilibria. Perhaps the most
natural example is the Hawk-Dove Game from, and we use this to introduce the basic ideas of

this section. Recall that in the Hawk-Dove Game, two animals compete for a piece of food; an
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animal that plays the strategy Hawk (H) behaves aggressively, while an animal that plays the
strategy Dove (D) behaves passively. If one animal is aggressive while the other is passive, then
the aggressive animal benefits by getting most of the food; but if both animals are aggressive,
then they risk destroying the food and injuring each other. This leads to a payoff matrix as
shown in Figure 15. Now let’s consider the same game in a setting where each animal is

genetically hard-wired to play a particular strategy.

Animal 2

D H
. LD 13,3115
Animal 1 H 51700

Figure 6.2. Hawk-Dove Game

Neither D nor H is a best response to itself, and so using the general principles from the last two
sections, we see that neither is evolutionarily stable. Intuitively, a hawk will do very well in a
population consisting of doves — but in a population of all hawks, a dove will actually do better
by staying out of the way while the hawks fight with each other. As a two-player game in which
players are actually choosing strategies, the Hawk-Dove Game has two pure Nash equilibria: (D,
H) and (H, D). But this doesn’t directly help us identify an evolutionarily stable strategy, since
thus far our definition of evolutionary stability has been restricted to populations in which
(almost) all members play the same pure strategy. To reason about what will happen in the
Hawk-Dove Game under evolutionary forces, we need to generalize the notion of evolutionary
stability by allowing some notion of “mixing” between strategies.

Defining Mixed Strategies in Evolutionary Game Theory. There are at least two natural ways to
introduce the idea of mixing into the evolutionary framework. First, it could be that each
individual is hard-wired to play a pure strategy, but some portion of the population plays one
strategy while the rest of the population plays another. If the fitness of individuals in each part of
the population is the same, and if invaders eventually lose off, then this could be considered to
exhibit a kind of evolutionary stability. Second, it could be that each individual is hard-wired to
play a particular mixed strategy — that is, they are genetically configured to choose randomly
from among certain options with certain probabilities. If invaders using any other mixed strategy
eventually die off, then this too could be considered a kind of evolutionary stability. We will see

that for our purposes here, these two concepts are actually equivalent to each other, and we will
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focus initially on the second idea, in which individuals use mixed strategies. Essentially, we will
find that in situations like the Hawk-Dove game, the individuals or the population as a whole
must display a mixture of the two behaviors in order to have any chance of being stable against
invasion by other forms of behavior. The definition of an evolutionarily stable mixed strategy is
in fact completely parallel to the definition of evolutionary stability we have seen thus far — it is
simply that we now greatly enlarge the set of possible strategies, so that each strategy
corresponds to a particular randomized choice over pure strategies. Specifically, let’s consider

the General Symmetric Game from Figurel6.

Player 2
S T
S} a c
Player
yer ] v p

Figure 6.3. A sample game matrix

A mixed strategy here corresponds to a probability p between 0 and 1, indicating that the player
plays S with probability p and plays T with probability 1-p. As in our discussion of mixed
strategies, this includes the possibility of playing the pure strategies S or T by simply setting

p =1 or p=0. When Player 1 uses the mixed strategy p and Player 2 uses the mixed strategy q,
the expected payoff to Player 1 can be computed as follows. There is a probability pq of an (X,
X) pairing, yielding a for the first player; there is a probability p(1—q) of an (X, Y) pairing,
yielding b for the first player; there is a probability (1-p) q of a (Y, X) pairing, yielding c for the
first player; and there is a probability (1-p) (1-q) of a (Y, Y) pairing, yielding d for the first
player. So the expected payoff for this first player is

V(p, 9 =pqa+p(1-q) b+ (I-p) qc+ (1I-p) (I-¢q) d. (13)

As before, the fitness of a player is its expected payoff in an interaction with a random member
of the population. We can now give the precise definition of an evolutionarily stable mixed

strategy.
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In the General Symmetric Game, p is an evolutionarily stable mixed strategy if there is a (small)
positive number y such that when any other mixed strategy q invades p at any level x <y, the
fitness of a player playing p is strictly greater than the fitness of an player playing q.

This is just like our previous definition of evolutionarily stable (pilre) strategies, except that we
allow the strategy to be mixed, and we allow the invaders to use a mixed strategy. An
evolutionarily stable mixed strategy with p = 1 or p = 0 is evolutionarily stable under our
original definition for pure strategies as well. However, note the subtle point that even if S were
an evolutionarily stable strategy under our previous definition, it is not necessarily an
evolutionarily stable mixed strategy under this new definition with p = 1. The problem is that it
is possible to construct games in which no pure strategy can successfully invade a population
playing S, but a mixed strategy can. As a result, it will be important to be clear in any discussion
of evolutionary stability on what kinds of behavior an invader can employ. Directly from the
definition, we can write the condition for p to be an evolutionarily stable mixed strategy as

follows: for some y and any x<y, the following inequality holds for all mixed strategies q # p:

(1I-x) V(p,p) +xV (p, @) > (1-x) V (g, p) + XV (4,9)- (14)

This inequality also makes it clear that there is a relationship between mixed Nash equilibria and
evolutionarily stable mixed strategies, and this relationship parallels the one we saw earlier for
pure strategies. In particular, if p is an evolutionarily stable mixed strategy then we must have
V(p, p) > V(q, p), and so p .is a best response to p. As a result, the pair of strategies (p, p) is a
mixed Nash equilibrium. However, because of the strict inequality, it is possible for (p, p) to be
a mixed Nash equilibrium without p being evolutionarily stable. So again, evolutionary stability

serves as a refinement of the concept of mixed Nash equilibrium.

6.3 Evolutionarily Stable Mixed Strategies in the Hawk-Dove Game

Now let’s see how to apply these ideas to the Hawk-Dove Game. First, since any evolutionarily
stable mixed strategy must correspond to a mixed Nash equilibrium of the game, this gives us a
way to search for possible evolutionarily stable strategies: we first work out the mixed Nash
equilibria for the Hawk-Dove, and then we check if they are evolutionarily stable. As we saw in

order for (p, p) to be a mixed Nash equilibrium, it must make the two players indifferent
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between their two pure strategies. When the other player is using the strategy p, the expected
payoff from playing D is
3p+(1-p) = 1+2p, 15)

while the expected payoff from playing H is 5p. Setting these two quantities equal (to capture
the indifference between the two strategies), we get p =1 /3. So (1/3,1/3) is a mixed Nash
equilibrium. In this case, both pure strategies, as well as any mixture between them, produce an
expected payoff of 5/3 when played against the strategy p =1 /3. Now, to see whether p =1 /3 is
evolutionarily stable, we must check Inequality when some other mixed strategy q invades at a
small level x. Here is a first observation that makes evaluating this inequality a bit easier. Since
(p,p) is a mixed Nash eqﬁilibrium that uses both pure strategies, we have just argued that all
mixed strategies q have the same payoff when played against p. As a result, we have V (p,p)=V
(q,p) for all q. Subtracting these terms from the left and right of Inequality, and then dividing by
X, we get the following inequality to check: V (p,q) >V(q,q). The point is that since (p,p) is a
mixed equilibrium, the strategy p can’t be a strict best response to itself — all other mixed
strategies are just as good against it. Therefore, in order for p to be evolutionarily stable, it must
be a strictly better response to every other mixed strategy q than q is to itself. That is what will
cause it to have higher fitness when q invades. In fact, it is true that V (p, q) >V(q, q) for all

mixed strategies q # p, and we can check this as follows. Using the fact that p =1 /3, we have

Vp, g =(1/3) q-3+(1/3) (I-q) -1+(2/3) -q-5=4q + 1/3 (16)
while

V@ a=q3+q(l-q) -1 +(I-q) -q'5=64-3¢". 17
Now we have

Vg - V(g q =34 —2q+1/3=1/309¢ -6q + 1) = 1/3(3q—1)° (18)

This last way of writing V (p,q)—V (q,q) shows that it is a perfect square, and so it is positive
whenever q # 1 /3. This is just what we want for showing that V (p,q)>V(q,q) whenever q # p,

and so it follows that p is indeed an evolutionarily stable mixed strategy.
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7 MINIMUM SPANNING TREE AND HAMILTONIAN CIRCUIT

Landscapes are dynamic and characteristically possess structural (pattern) and functional
(process) attributes. Patrolling paths, being integral components of landscapes law enforcement,
are characterized by two distinct categories of components, namely, pattern and process
components (Chetkiewicz et al. 2006). The structural patrolling path between the source and
sink points of patrolling by the forest guards is given by the physical existence of the landscape
between the patches. The functional patrolling path is a product of both — adversaries and
vulnerability factors. Patrolling paths thus, may be considered as emergent phenomena, caused
by the interaction between pattern and process attributes of the vulnerability factors in a wildlife
reserve. The essential function and utility of patrolling paths is thus to connect at least one pair
of source and sink of significance, and thus ensure gene flow between spatially separate
populations of species, fragmented due to landscape modifications, by supporting the
movements of processes (Baum et al. 2004; Beier and Loe 1992; Beier and Noss 1998; Briers
2002; Chetkiewicz et al. 2006; Dutta et al. 2013; Henein and Merriam 1990; Johnsingh et al.
1990; Lindenmeyer et al. 2008; Pulliam 1988; Sharma et al. 2013).

7.1 8 = Neighborhood traversing

Neighbourhood of a pixel p at position x,y is aset N(p) of pixels defined relative to p.

Figure 7.1. A sample neighborhood Example N(p) = {(x,y): |x-xp|=1, |y-yp| = 1}
Usually neighbourhoods are used which are close to discs, since properties of the Euclidian

metric are often useful. The most prominent neighbourhoods are the 4-Neighborhood and the 8-
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Neighborhood. We apply the logics of Minimum Spanning Tree and Hamiltonian Circuit on the
8-Neighborhood complex of each grid. The next critical grid comes to the central position in the
succeeding steps and its 8-Neighborhood is checked for further identification of the critical grid
and thus defining the path for the patrol guards.

Figure 7.2. A sample 8-Neighborhood Example.

7.2 Minimum spanning tree

A graph T (V (F )E (F),\ur) (henceforth T')is an ordered triple comprising a set V/ (F )of vertices,
a set E(T")of edges, such that V'~ E = ¢, and an incidence function . : £ — [V'] where [T is
the set of unordered pair of (not necessarily distinct) vertices of I, >
e \yr(e)={vi,vj ,v,,v, €V, Vee . The vertices v,and v,are incident with the edgee, and
vice versa. In the aforesaid, the edge e joins the verticesv,,v ; » which, in turn, are the end
vertices ofe. Also,v,,v, connected via the incidence function ., are adjacent to each other.T",
as defined thus, is an undirected graph. I"is finite if both V' and E are finite sets. Then, ]V | the

order and |E| the size, define the two parameters of T'respectively. The degree of a vertex

v, €I’ is the number of edges for which v, is an end vertex. A path in I' is a sequence of
vertices v,,v,,...,v, and a sequence of distinct edges ¢,,e,,...,e, , such that each successive pair

of vertices v,,v,,, are adjacent and are the end vertices of e, . A path that begins and ends at the

same vertex is a cycle. I'is acyclic if it contains no cycle and is connected if there exists a path
from any vertex to any other vertex inI". For the present work, we shall consider I'to be
undirected and finite graph.

A tree T 1s a connected acyclic graph, and a vertex of the tree that has degree exactly one is a

leaf of the tree. If there exists a vertex v, € 7" such that there exists a unique path from v, to

every other vertex in 7 but no path from v, tov,, then v,is the root of the tree 7. A tree 7 is a
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spanning tree of the connected graph T if it is a spanning subgraph of I with vertex set V(F). We
omit the proofs of the following propositions and theorems that we mention for the sake of
providing the basis for our arguments and deductions in the paper.

Proposition 11. In a tree, any two vertices are connected by exactly one path.

Proposition 12. Every nontrivial tree has at least two leaves.
Theorem 13. If T(V(T), E(T)) is a tree, then|E(T) = |V (T} -1.
Let Tbe a tree in the graphT . If[(T) =|V'|, then T is a spanning tree ofT .

Theorem 14. A graph is connected if and only if it has a spanning tree.

7.3 Hamiltonian circuit

A Hamiltonian path is a path that visits each vertex exactly once. A graph that contains a
Hamiltonian path is called a traceable graph.

A Hamiltonian circuit is a cycle that visits each vertex exactly once (except for the vertex that is
both the start and end, which is visited twice). A graph that contains a Hamiltonian circuit is
called a Hamiltonian Graph. The first algorithm for finding a Hamiltonian cycle on a directed
graph was the enumerative algorithm of Martello. There aren! different sequences of vertices
that might be Hamiltonian paths in a given n-vertex graph (and are, in a complete graph), so a
brute force search algorithm that tests all possible sequences would be very slow. There are
several faster approaches. A search procedure by Frank Rubin divides the edges of the graph
into three classes: those that must be in the path, those that cannot be in the path, and undecided.
As the search proceeds, a set of decision rules classifies the undecided edges, and determines
whether to halt or continue the search. The algorithm divides the graph into components that can
be solved separately. Also, a dynamic programming algorithm of Bellman, Held, and Karp can
be used to solve the problem in time O (#* 2). In this method, one determines, for each set S of
vertices and each vertex v in S, whether there is a path that covers exactly the vertices in S and
ends at v. For each choice of S and v, a path exists for (S, v) if and only if v has a neighbor w
such that a path exists for (S — v,w), which can be looked up from already-computed information
in the dynamic program (Bellman, R.and Held, M.; Karp, R. M., 1962).

Andreas Bjérklund provided an alternative approach using the inclusion—exclusion principle to

reduce the problem of counting the number of Hamiltonian cycles to a simpler counting
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problem, of counting cycle covers, which can be solved by computing certain matrix
determinants. Using this method, he showed how to solve the Hamiltonian cycle problem in
arbitrary n-vertex graphs by a Monte Carlo algorithm in time O(1.657"); for bipartite graphs this
algorithm can be further improved to time o(1.415") (Bjorklund, Andreas, 2010).

For graphs of maximum degree three, a careful backtracking search can find a Hamiltonian
cycle (if one exists) in time O(1.251") (Iwama, Kazuo; Nakashima, Takuya, 2007).

The problem of finding a Hamiltonian cycle or path is in FNP; the analogous decision problem
is to test whether a Hamiltonian cycle or path exists. The directed and undirected Hamiltonian
cycle problems were two of Karp's 21 NP-complete problems. They remain NP-complete even
for undirected planar graphs of maximum degree three, for directed planar graphs with indegree
and outdegree at most two, for bridgeless undirected planar 3-regularbipartite graphs, and for 3-
connected 3-regular bipartite graphs. However, putting all of these conditions together, it
remains open whether 3-connected 3-regular bipartite planar graphs must always contain a
Hamiltonian cycle, in which case the problem restricted to those graphs could not be NP-

complete; see Barnette's conjecture.

In graphs in which all vertices have odd degree, an argument related to the handshaking lemma
shows that the number of Hamiltonian cycles through any fixed edge is always even, so if one
Hamiltonian cycle is given, then a second one must also exist. However, finding this second
cycle does not seem to be an easy computational task. Papadimitriou defined the complexity

classPPA to encapsulate problems such as this one.
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8 MODELLING

For the purpose of the present work, we assume that the patrol chaukis in the wildlife reserve

constitute the vertices and the collection of patrolling paths that connect any two of the patrol
chaukis constitute the edges, comprising the focal wildlife reserve as a graph l_(V, E,\Vr).

In consonance with the objective of estimating the presence of a patrolling network across the
focal wildlife reserve, the modelling considers only the topology of the network between the

different patrol chaukis. We assume that the flux between any twopatrol chaukis (can be self-

repeating patrol chaukis also)would be symmetric on the network.
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Figure. 8.1 Hypothetical wildlife reserve (black curve in the grid pattern) showing patrol chaukis (star
shapes), patrol paths between the chaukis (red curves joining the shapes, also self-looped) and the matrix
(grid pattern)

In Figure. 17, the wildlife reserve is represented by a black curve in the grids, while the star
vertices represent chaukis for the patrol guards, with the connections between the chaukis
represented by the red lines. The grid pattern in the figure represents the matrix, a component of
the wildlife reserve that is neither chaukis nor patrol path in the landscape (Chetkiewicz et al.

2006). The objective for the work is to compute a path joining the different chaukis, which
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would minimize the risk of the passage of patrol guards through the wildlife reserve and
maximize the probability of penetration detection.
To model the possible paths to serve as an optimal passage for the patrol guards from a source
chauki to a destination chauki within the wildlife reserve, we first identify a set of vulnerability
factors, which may be anthropogenic or natural, and each of which may either promote or
constrain the passage of the patrol guards through the wildlife reserve to various degrees, and
hence become the major determinants in the structural optimization of patrol paths. The wildlife
reserve vulnerability factors that we take into consideration are:
1. Electric poles — presence or absenée
2. Water base — percentage presence or absence
3. Prey base — percentage presence or absence
4. Anthropogenic Disturbances
i) Agricultural Land — presence or absence
ii) Forest Land (usability) — percentage presence or absence
iii) Encroachment - presence or absence
iv) Roadways/Railways — presence or absence
5. Previous Disturbance sightings
i) Camp fires — presence or absence
ii) Poacher’s Sighting — presence or absence
iii) Electrocution Sightings — presence or absence
iv) Carcass Poisoning Sightings —presence or absence
v) Human Animal Conflict Sights —presence or absence
6. Grassland — percentage presence or absence
7. Forest types
i) Open — percentage presence or absence
ii) Dense — percentage presence or absence
iii) Moderately Dense — percentage presence or absence

We assume that the patrol guards in the wildlife reserve (®, )and the adversary combined with
each of the above mentioned vulnerability factors(®, )constitute the two rational agents that

play a mixed strategy Hawk and Dove gameG iterated over a number of generations. The

players may use a number of strategies in the game in order to optimize their payoff. These
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payoffs are the costs incurred by the patrol guards while patrolling the reserve in order of law
enforcement and conservation.

Next we code the different patrol chaukis in the wildlife reserve, based on their GPS coordinates
and the grid number of the grid in which the corresponding chauki lies, a sample of the coding is

shown in Table 1:

Table. 8.1 Coding for the Patrol chaukis in the wildlife reserve:

| S. No | Patrol chauki Latitude Longitude Grid Number Code
1. | Patrol chauki 1 138°53'23"N | 77°00'27"W | 2251 2251-53-00-1
2. | Patrol chauki 2 38°63'23"N | 77°0127"w | 2278 2278-63-01-2
3. | Patrol chauki 3 38°73'23""N | 77°02'27"W | 2256 2256-73-02-3
4. | Patrol chauki 4 38°83'23"N | 77°0327"w | 2241 2241-83-03-4
5. | Patrol chauki 5 38°93'23"N | 77°04'27"'W | 2298 2298-93-04-5
6. | Patrol chauki 6 39°03'23"N | 77°05'27"W | 2266 2266-03-05-6
7. | Patrol chauki 7 39°13'23"N | 77°06'27"'W | 2387 2387-13-06-7
8. | Patrol chauki 8 39°23'23"N | 77°07'27"W | 2354 2354-23-07-8
9. | Patrol chauki 9 39°33'23""N | 77°08'27"'W | 2376 2376-33-08-9
10. | Patrol chauki 10 39°43'23"N | 77°09'27"W | 2309 2309-43-09-10
11. | Patrol chauki 11 39°53'23"N | 77°10'27"'W | 2498 2498-53-10-11
12. | Patrol chauki 12 39°63'23""N | 77°11'27"W | 2465 2465-63-11-12
13. | Patrol chauki 13 39°73'23"N | 77°12"27"w | 2453 2453-73-12-13
14. | Patrol chauki 14 39°83'23"N | 77°13'27"wW | 2477 2477-83-13-14
15. | Patrol chauki 15 39°93'23"N | 77°14'27"W | 2567 2567-93-14-15
16. | Patrol chauki 16 40°03'23"N | 77°15'27"W | 2543 2543-03-15-16
17. | Patrol chauki 17 40°13'23"N | 77°16'27"W | 2599 2599-13-16-17
18. | Patrol chauki 18 40°23'23"N | 77°17'27"'W | 2512 2512-23-17-18
19. | Patrol chauki 19 40°33'23"N | 77°18'27"W | 2609 2609-33-18-19
20. | Patrol chauki 20 40°43'23"N | 77°19'27"w | 2687 2687-43-19-20

We next compute the costs incurred by the patrol guards in traversing the patrol pathsthrough

each grid in the given wildlife reserve. With each grid, we associate a numeric weight ¢, thus
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rendering ' a weighted graph. We designate the weight assigned to a grid as the cost incurred
by the patrol guard for passage through that grid, and define this cost function as the mapping
c:E->¥X
e c(e)= reN,Vee E,N={0,1,...}.
We assume that the cost of travelling through a grid is a numeric proxy for the perceived (by the
patrol guard) penetration detection or (even physical) risk associated with the grid, and hence to
the probability of penetration detectionobserved by the patrol guard in traversing that grid. We
further assume that the probability of penetration detection being essentially and only based on
the presence or the absence of even one or all, of the above mentioned vulnerability factors.
The costs to each of the possible grid is assigned taking into consideration the possible kind of
vulnerability factors mentioned in the foregoing, that a traversing patrol guard is likely to
| encounter while negotiating that grid. The payoff matrix for the game G is constructed based on
these costs. One of the prime objectives in designing intelligent patrolling path would be to
minimize the risk(mortality or physical injury) and maximizing the probability of penetration
detection, we describe the research problem as: Given an undirected, connected landscape

F(V,E,\Vr), an index set 1=1{0,,.,n}c R, >v,eV,e,e E with ie the cost function

¢, =cle,)Vie I, compute a spanning treeTor the Hamiltonian circuit H such thath,. is
ieN

minimum.

Therefore, the objective of our work is to compute a spanning tree or the Hamiltonian circuit for
the given condition, such that the sum total of the costs incurred by the patrol guards in its
passage between the chaukis embedded in the given wildlife reserve, through the landscape
matrix, is minimized.

One of the most commonly used solution procedure to address the research problem is the
Boruvka-Kruskal algorithm (Kruskal’s algorithm) (Boruvka 1926; Kruskal 1956, 1997).
Kruskal’s algorithm is a tree-search algorithm that accepts as input a weighted connected graph,
and returns as output an optimal spanning tree. The execution of the Algorithm starts with |V|
isolated trees in the forest (a set of trees, and hence essentially an acyclic graph), each initially
with 1 vertex. The Algorithm then constructs a spanning tree edge-by-edge, by making a
decision to select the least cost path that connects two trees, to return a single tree in the forest.

At the termination of the Algorithm, the forest has only 1 component, namely, the output
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spanning tree. Being a greedy algorithm, Kruskal’s algorithm makes a ‘greedy’ (locally optimal)
decision at each stage of its run, without being concerned about the impact of this decision on
the global optimality of the output.

A major advantage of using Kruskal’s algorithm for solving our defined problem is that the

Algorithm has a linear time complexity, given by O(E|log|E[). Additionally, for Kruskal’s

Algorithm, the following theorem guarantees the optimality of the output spanning tree:

Theorem 15 Every Bourvka-Kruskal tree is an optimal tree (Bondy and Murty 2008).

In computing the payoff matrix, we further assume that the players involved in this game choose
to play both mixed and pure strategies. The reasoning for various vulnerability factors that we
consider as impacts on patrol paths in the wildlife reserve, and their corresponding cost

assignments and subsequent payoff evaluations are as below:

1. Electric poles: Electrocution is one of the major poaching practices in wildlife reserves
in India. The presence of electric poles in a grid of resolution 5 X 5 or 2 X 2 makes the
complete grid vulnerable for electrocution and also the adjacent grids which must be
patrolled on every movement to check for the adversary detection. So as the complete
grid may get effected and support the adversary so we consider only presence and
absence and no membership of this factor in the grid. So, as a dominant factor, the
presence of electric poles in a grid makes the adversary to behave as a HAWK and the
patrol guards as DOVE for the hawk and dove game and thus provides a score of -5 to
the grid.

2. Water Base: Poisoning of the water bodies present inside the wildlife reserve like lakes,
ponds, percolation pits, etc. is done by the poachers in order to kill the animals as they
always visit these water bodies to drink water. As the poisoning of the water bodies can
only take place in the regions where water would be available, so we check the
percentage cover of a water body in the grid. So if a water body covers 30% of the area
of a grid then the membership function of the factor p,~= 0.3 and as a vulnerable factor,

the score of water base in the particular grid = p,X -5=0.3 X -5=-1.5.
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Similar to the above two explained factors, the scores calculated for the other vulnerability

factors, which have been discussed is shown in the following table:

Table. 8.2 Scores contributed by each vulnerability factor to the grid through presence or membership value:

Factor Sub-Factors Factor Membership Hawk- Score
Code Function Value | Dove Provided
| | Score To The
Grid
Electric Pole A 1 -5 -5
Water Base B Pw -3 - X3
Prey Base ' C Hp -5 - X5
Anthropogenic Agricultural Land D Ma -5 M XS
Disturbances Forest Land E M -3 -peX 3
(Usability)
Encroachment F 1 -5 -5
Roadways / pr(depends on -5 -He XS
Railways the distance
from the grid
and decreases
uniformly as 0.1
with every grid
' layer distaﬁce)
Previous Camp Fires H 1 -5 -5
Disturbance Poacher Sightings I 1 -5 -5
Sightings Electrocution J 1 -5 -5
Sightings
Carcass Poisoning K 1 -5 -5
Sightings
Human Animal L 1 -5 -5
Conflict Sights
Grassland M Ug -5 - ugX5
Forest Types Open N Ko -3 - HX 3
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Dense O Ha -5 -1eX 5

Moderately Dense P [T -4 - UmX 4

Based on the above criteria of scoring, the various factors with respect to the forest guards using
the strategy pair of Hawk and Dove game the following cost matrix is obtained, with scores for
the grids entered in the matrix based on Figure. 18, Figure 19, Table 3.

1110 | 1135] 1120] 1125 | 1130] 1135[ 1140 [ 1145[ 1150] 1355 1170 | 1175 1180] 1185 [ 1160 | 1105 1200
2110 | 2115| 2je8prze0130 2135 2140 | 2145] 2150 " 2160] 2165] g0 | 2175t-eegp! 2185 2195
3110 | 313F] 3120] 3125 ;%mf‘fm 3145b#3150] 3155 | 3160] 3165] 3170 5| 3180% 3100 | 3195 340

4110 | 45| 4120| 4125 | 4130| 4135] 41407 4145| 4150] 4155 | 4160| 4165] 4170 | 4175| 4180] 4185 | 4190 | 4105] axdo
5110 | §115| 5120f 5125 | 5130| 5135| 5140 | 5145| 5150] 5155 | 5160| 5165] 5170 | 5175| 5180] 5185 | 5150 | 5195] A300
6110 5| 6120] 6125 | 6130 6135] 6140 | 6145| 6150|6155 | 6160] 6165] 6170 | 6175| 6150] 6185 | 6190 | 6157 6200
7110 | 7MS| 7120| 7425 | 7130] 7135] 7140 | 7145| 7150] 7155 | 7160| 7165] 7270 | 7175| 7180] 7185 | 7100 | 7785 7200
8110 | 81s{~g120] 8125 | 8130 8135( 8140 | 8145| B150] 8155 | 8160| 8165| 8170 | 8175| 8180 8185 | 8150 sigs| 8200
9110 | 9115| 91Ro| 9125 | 9130| 9135| 9140 | 9145 o150| 9155 | 9160] 9165 9170 | 9175| 9180| 9185 | 9190 | o 9200
1011010115/ 101210125 10130 10135{ 10140 10145 10150{ 10155 10160| 10165/ 10170 | 10175/ 10180/ 10185 | 10190 10195 10200
11120 11115( 111£0] 11125 11130] 11135] 11140| 11145 11150( 11155 | 11160| 11165 11170| 11175| 12180| 11185 | 11190 11199 13200
12110 12%20 1212512130} 12135/ 12140 12145 12150{ 12155 | 12160| 1216512170 | 12175] 12180/ 1218512190 12198y 12200
13110] 13135) 13120| 13125 | 13130| 1313513140 | 13145 13150| 13155 | 13160{ 13165]13170] 13175] 13180] 13185 | 13190 13195 13200
14110| 14f35] 14120 14125 14130] 14135( 14140| 14145| 14150] 14155 14160| 14165 14170 | 14175 14180] 14185 | 14190 18855 14200
151101415/ 15120]15125] 15130[ 15135| 15140 15145 15150{ 15155 15160] 15165| 15170| 15175| 15180] 15185 LEe80T 15155 15200
16110| 1#115] 16120( 16125 | 16130{ 16135| 16140 16145| 16150/ 16155 16160{ 16165| 16170 16175| 16180| 1518f | 16190 16155) 16200
17110 f7115] 17120( 17125 17130| 17135| 17140 | 17145 17150{ 17155 | 17160| 17165| 17270 | 17175| 17180| 1716% | 17190 | 17195 17200
18110 |{18115| 18120] 18125 | 18130 18135/ 18140 18145 18150| 18155 | 18160| 18165| 18170 18175| 18180 18185{ 18190 18195 18200
10110[§9115] 10120[10125 [ 19130[ 19135 19140( 19145 10150( 19155 | 19160( 19165| 10170 | 19175 10180| 10185 91095/ 10200
20110 ] J0115] 20120] 20125 20130] 20135] 20140| 20145( 20150{ 20155 20160] 20165[ 20170 20175 20180/ 20185 | 20190 20200
2111021115/ 21120{ 21125 | 21130 21135| 21140 21145| 21150| 21155 | 21160| 21165| 21170 21175 21180] 21185 | 21190 21155 %1200
22114 22115 22120 22125 | 22130 22135/ 22140 | 22145| 22150/ 22155 | 22160 22165 22170 22475] 22180{ 22185 | 22190| 22105 ]
23fl0[23115{ 231 23135/23140| 23145 23150] 23155 23160| 23165| 23170 23175| 23180] 23185 | 23190 231953200
24§10| 24115] #120] 24125] 24130 29435( 24140 24145] 24150( 24155 24160] 24165| 24170 24175 24180/ 24185 | 24190 2 24200
25110] 25194] 25120] 25125 | 25130| 251325140 25345) 25150( 25155 | 25 #7ST70] 25075 Z5Teenasags | 25100| 255] 25200
261 | 26415] 26120] 26125 ] 26130] 26135] 25140 [ 2614 5[26160] 26165| 26170 26175 26180] 26185 | 26130] 26195| 26200

Figure. 8.2 Hypothetical wildlife reserve (black curve in the grid pattern) showing patrol chaukis (red grids),

and the matrix (grid pattern with particular grid numbers)
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Figure. 8.3 Hypothetical wildlife reserve (black curve in the grid pattern) showing patrol chaukis (black

spots), and the matrix (grid pattern with particular grid numbers) with all the factors represented in the

map.

Table. 8.3 Percentage cover of each considered forest type in each grid of the considered landscape shown in

Figure. 8.3:
i} _ FOREST TYPE %age COVER .
GRID OPEN MODERATELY DENSE DENSE
NUMBER FOREST FOREST FOREST
2160 82.945 2.055 0
2161 78.624 6.376 0
2162 79.433 5.567 0
2163 81.234 3.766 0
2164 76.443 8.557 0
2165 89.543 4.543 0
2260 79.267 5.733 0
2261 64.344 20.656 0
2262 57.789 27.211 0
2263 34.567 50.433 28.1299
2264 56.986 28.014 0
2265 92.765 7.765 0
2360 5.34 79.66 0
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2361 67.54 17.46 0
2362 12.45 62.55 34.765
2363 17.765 37.235 33.1705
2364 23.765 61.235 31.3705
2365 89.665 4.665 0
2460 4.311 80.689 0
2461 64.543 20.457 0
2462 9.13 0 4.261
2463 12.34 0 33.798
2464 11.24 73.76 35.128
2465 69.398 15.602 0
2560 65.654 19.346 0
2561 36.543 48.457 27.5371
2562 12.234 72.766 0
2563 16.432 68.568 33.5704
2564 5.34 79.66 36.898
2565 67.432 17.568 0
2660 79.432 5.568 0
2661 23.234 61.766 31.5298
2662 13.123 71.877 34.5631
2663 2.234 82.766 37.8298
2664 3.456 31.544 37.4632
2665 64.654 20.346 0
2760 93.567 8.567 0
2761 34.654 50.346 28.1038
2762 23.432 61.568 31.4704
2763 11.234 73.766 35.1298
2764 6.321 78.679 36.6037
2765 82.432 2.568 0
2860 25.567 9.433 0
2861 31.123 53.877 29.1631
2862 23.432 61.568 31.4704
2863 12.345 72.655 34.7965
2864 7.432 77.568 36.2704
2865 68.934 16.066 0
2960 71.432 13.568 0
2961 87.322 2.322 0
2962 74.876 10.124 0
2963 73.744 11.256 0
2964 79.324 5.676 0
2965 84.432 0.568 0
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Table. 8.4 Membership value of each factor to be considered in each grid of the sample wildlife reserve

considered in Figure. 8.3:

D# |A| B < D | E |F|G|H KL M N o P
216 0. 0.8294 0.0205
0 (1 0 0 0 0 [1{6 (0|0 0|0 0 5 0 5
216 0. 0.7862 0.0637
1 |1 0 0 0 0 |0/6|0]0 0|0 0 4 0 6
216 0.7943 0.0556
2 {0 0 0 0 0 |O0|1(0]0 0|0 0 3 0 7
216 0.8123 0.0376
3 |0 0 0 0 0 |[0]|1(0f0O 00 0 4 0 6
216 0.7644 0.0855
4 |0 0 0 0 0 |[0]1]0]O 0(0 0 3 0 7
216 0.8954 0.0454
5 |0]-0 0 0 0 |0[1(0]|0 0|0 0 3 0 3
226 0.02 ' 0.7926 0.0573
0 |1 0 0 2 0 ([0[1 0|0 0|0 0 7 0 3
226 0.6434 0.2065
1 |1 0 0 003| 0 (1(1 {0 0]0 0 4 0 6
226 0.0 0. 0.5778 0.2721
2 |1 0 0 0 1 /0/6|1]|0 0|0 0 9 0 1
226 0.141 | 0.274 A 0. 0.3456 | 0.2812 | 0.5043
3 |0 2 5 0 0 |[0[6 (0|0 1(0 0 7 99 3
226 ' 0.5698 0.2801
4 |0 0 0 0 0 |01 (0fO 0|0 0 6 0 4
226 0. 0.9276 0.0776
5 |0 0 0 0 0 [1{6 (1|0 0|0 0 5 0 5
236 0.

0 (0 0 0 1 0 |0/ 6|00 0[0 0 0.0534 0 0.7966
236 0.2 0.

1 )1 0 0 001 3 [0/ 6 |1 0|0 0 0.6754 0 0.1746
236 0. 0.3476

2 |1 0 0 0 0 |06 (0|0 0|1 0.1 0.1245 5 0.6255
236 0.112 0. 0.1776 | 0.3317 | 0.3723
3 |1 0 3 0 0 (0[] 6 (0|0 0|0 0.3 5 05 5
236 0.093 0.2376 | 0.3137 | 0.6123
4 |0 0 2 0 0 |Oj]1 (01 00 0 5 05 5
236 0. 0.8966 0.0466
5 |0 0 0 0 0 |16 |1 0|0 0 5 0 5
246 0. 0.0431 0.8068
0 (0 0 0 1 0 |02 (00 0]0 0 1 0 9
246 0.3 0. 0.6454 0.2045
1|0 0 0 002 1 (1/2 1|0 0j{0 0 3 0 7
246 | 1| 0.412 0 0 0 |0{0.{0]0 0[{0]| 0.45 |0.0913 | 0.0426 0




2 6 6 i
246 0.3179
3 0 0 0 1 0 0.75 | 0.1234 8 0
246 0.287 0.3512
4 0 9 0 1 1 0 0.1124 8 0.7376
246 0. 0.6939 0.1560
5 0.14 0 0 6 0 0 8 0 2
256 0.6565 0.1934
0 0 0 0.02 0 0 0 4 0 6
256 0. 0.3654 | 0.2753 | 0.4845
1 0.14 0 0.08 2 0 0 3 71 7
256 0.234 0. 0.3482 | 0.1223 0.7276
2 0 5 0 6 0 98 4 0 6
256 0.1643 | 0.3357 | 0.6856
3 0 0 0 1 0 0 2 04 8
256 0. 0.3689
4 0 0 0 6 0 0 0.0534 8 0.7966
256 0. 0.6743 0.1756
5 0 0 0 2 0 0 2 0 8
266 0. 0.7943 0.0556
0 0 0 0 2 0 0 2 0 8
266 0. 0.2323 | 0.3152 | 0.6176
1 0 0 0 6 0 0 4 98 6
266 0.112 0.1312 | 0.3456 | 0.7187
2 0 3 0 1 1 0 3 31 7
266 0.112 0.0223 | 0.3782 | 0.8276
3 0 3 0 1 0 0 4 98 6
266 0. 0.0345 | 0.3746 | 0.3154
4 0.33 0 0 6 0 0 6 32 4
266 0. 0.6465 0.2034
5 0 0 0 2 0 0 4 0 6
276 0. 0.9356 0.0856
0 0 0 0 6 0 0 7 0 7
276 0.112 0.3465 | 0.2810 | 0.5034
1 0 3 0 1 0 0 4 38 6
276 0.112 0.2343 | 0.3147 | 0.6156
2 0 3 0 1 1 0 2 04 8
276 0.112 0. 0.1123 | 0.3512 | 0.7376
3 0 3 0 6 0 0 4 98 6
276 0. 0.0632 | 0.3660 | 0.7867
4 0 0 0 2 0 1 37 9
276 0.8243 0.0256
5 0 0 0 0 0 0 2 0 8
286 0.2556 0.0943
0 0.37 0 0 1 0 0 7 0 3
286 0.112 0.3112 | 0.2916 | 0.5387
1 0 3 0 1 0 0 3 31 7
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286 0. 0.2343 | 0.3147 | 0.6156
2 [0 o 0 0 0 |0/ 6 (0|0 2 04 8
286 0. 0.1234 | 0.3479 | 0.7265
3 |9 0 0 0 0 |02 ]0]0 5 65 5
286 0.0743 | 0.3627 | 0.7756
4 |0 0 0 0 0 |00 |O]O 2 04 8
286 0.6893 0.1606
5 (0 0 0 0 0 ([0fO0fO]|O 4 0 6
296 0.7143 0.1356
0 |0 0 0 0 0 |0j11]0]|0 2 0 8
296 0. 0.8732 0.0232
1|0 0 0 0 0 |02 (0|0 2 0 2
296 0.7487 0.1012
2 |0 0 0 0 0 ([0jO0fO]|O 6 0 4
296 0.7374 0.1125
3 [0 0 0 0 0 |0jO0f0]|O 4 0 6
296 0.7932 0.0567
4 |0 0 0 0 0 [0jO0(O]fO 4 0 6
296 0.8443 0.0056
5 1|0 0 0 0 0 ([0jo0ofO]|O 2 0 8

Table. 8.5 Cost of each factor to be considered in each grid of the sample wildlife reserve considered in

Figure. 8.3 based on Table. 8.4 membership values and Table. 8.2 cost constraints:

GRID

# |A |B |c |p | |F|le|H K|lL|m [N |0 |P
20| 5| o] o] ol o|s|3|o 0 0|25 oloos
261/ | o] o] ol olo|3o 0 0|24| o|ozss
262] o o o] ol olols|o 0 0|24| 0|02
23] o| o] o| o| olo|s|o 0 0|24| oloas
26| o] o] o] o olo|s|o 0 0|23| 0|03
25| o] o] o] o olols|o olo| 0|27 oo
260 5| o] oloar| olo|s|o 0 0|24| o022
261| 5| o] olois| ols|s|o 0 o|19| olos
262] 5| o] o| oloos|o|3ls 0 o|17| o|1oss
2263| 0|0a2a|1373| o| olo|3|o 5 o| | 14|2017
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2264 0 0 0 0 0 5. 0{0 0 1.7- 0 1.12]-.
2265 0 0 0 0 0 3: 0|0 0 2.8- 0 0.31;
2360 0 0 0 -5 0 ; 0|0 0 0.2. 0 3.18;
2361 -5 0 0 0.05. 0.69- 3- E': 0 0| -2 0 0.698-
2362 -5 0 0 0 0 ?: 5. 0 0.!': 0.4-' 1.7. 2.502.
2363 -5 0 0.565 0 0 3: 0[O0 1.5: 0.5- 1.7- 1.489-
2364 0 0 0.46; 0 0 5- 010 0 0.7- 1.6- 2.44;
2365 0 0 0 0 0 3- 0(0 0 2.7- 0 0.187-
2460 0 0 0 -5 0 ; 0/0 0 0.]-. 0 3.228-
2461 0 0 0| -0.1 0.9?: 1-. 0|0 0 1.9- 0 0.818-
2462 -5 1.23; 0 0 0 3- 0|0 2.?: 0.?: 0.2. 0
2463 -5 0 0 0 0 5- 0(0 3.8- 0.4. 1.6- 0
2464 -5 0| -1.44 0 0 5- 0[O0 0 0.3: 1.8. -2.95
2465 0| -0.42 0 0 0 3: 0|0 0 2.1-. 0 0.624.
2560 0 0 0| -0.1 0 0 0 5. 0| -2 0 0.77;
2561 0| -0.42 0| -0.4 0 ; 0 !': 0 1.£ 1.; 1.938-
2562 0 0 1.17; 0 0 ?: 0i0 1.7- 0.; 0 2.911-. '
2563 -5 0 0 0 0 5- 0|0 0 0.5. 1.7- 2.743-
2564 -5 0 0 0 0 .’: 5. 0 0 0.5 1.8- 3.186.
2565 -5 0 0 0 0 1-. 0|0 0| -2 0 0.703-
2660 0 0 0 0 0 ]-. 0[O0 0 2.; 0 0.223;
2661 0 0 0 0 0 3- 0|0 0 0.; 1.6. 2.471-.
2662 0 0 0.562- 0 0 5. 0{0 0 0.:1 1.7- 2.875:
2663 0 0 - 0 0 - 0jo0 0 - - -
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Table. 8.6 Cumulative Cost to be considered in each grid and the RANK of each grid for concern based on
the costs for the sample wildlife reserve considered in Figure. 8.3 based on Table. 8.4. Table 8.5 and Table.

8.2 cost constraints:

GRID # COST OF GRID RANK OF GRID ACCORDING TO CONCERNING COSTS
2160 -15.57055 10
2161 -10.61376 28
2162 -7.60567 42
2163 -7.58766 43
2164 -7.63557 41
2165 -7.86801 36
2260 -12.71733 . 19
2261 -22.90656 3
2262 -15.85211 8
2263 -14.256925 16
2264 -7.83014 38
2265 -16.09355 6
2360 -11.3466 22
2361 -26.4646 1
2362 -23.11375 2
2363 -13.742375 17
2364 -15.196875 13
2365 -15.87655 7
2460 -9.35689 31
2461 -14.78457 15
2462 -11.97475 21
2463 -15.7101 9
2464 -21.4835 4
2465 -11.12602 26
2560 -7.84346 37
2561 -11.231425 23
2562 -9.19165 32
2563 -14.9142 14
2564 -18.1915 5
2565 -8.72568 34
2660 -3.60568 49
2661 -7.74415 39
2662 -15.558425 1
2663 -10.83065 27
2664 -12.2286 20
2665 -8.75346 33
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2760 -11.14969 25
2761 -10.02015 30
2762 -15.3007 12
2763 -8.60565 35
2764 -11.166975 24
2765 -7.57568 44
2860 -7.25433 45
2861 -10.108425 29
2862 -12.7392 18
2863 -6.016375 46
2864 -5.1392 47
2865 -2.71066 50
2960 -7.68568 40
2961 -3.71254 48
2962 -2.65124 52
2963 -2.66256 51
2964 -2.60676 53
2965 -2.55568 54

MOST CRITICAL GRID

| CRITICAL GRID

X - | MODERATELY CRITICAL
- | GriD

NORMAL CRITICAL GRID

LOW CRITICAL GRID

LOWEST CRITICAL GRID

Figure. 8.4Criticality of each grid for surveillance for law enforcement in the sample wildlife reserve of

Figure.
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Table. 8.7 Coding for the Patrol chaukis in the sample wildlife reserve shown in Figure. 8.3:

S.No | Patrol chauki Latitude Longitude Grid Number | Code
1. | Patrol chauki 1 38°53'23"N | 77°00'27"W | 2262 2262-53-00-1
2. | Patrol chauki 2 38°63'23"N | 77°01'27"'W | 2264 2264-63-01-2
3. | Patrol chauki 3 38°73'23"N | 77°02'27"W | 2563 2563-73-02-3
4. | Patrol chauki 4 38°83'23"N | 77°03'27"W | 2661 2661-83-03-4
5. | Patrol chauki 5 38°93'23""N | 77°04'27"'W | 2764 2764-93-04-5

The pseudo code for Kruskal’s algorithm for generating the minimum spanning tree if the source
and sink Patrol chaukis are different is as below:
Procedure Kruskal (T, c)
START
DECLARE
E = set of Grids
A = Patrol chaukis
F = storage set for grids
a = initial patrol chauki for start of patrol
n = number of grids
e = gridsfor movement
BEGIN
F=FE,A=¢
Set initial e = min (all the weights)
Set the grid containing the initial patrol chauki as initial grid

while |4|<n-1 loop

findeeF > c(e)is minimum

F=F-{e}

if F(A U {e}) acyclic then
A=AU{e};

end if;end loop F(A)is a minimum spanning tree end Kruskal; END
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A minimum spanning tree (MST) for the focal complex, obtained on using Kruskal’s algorithm,
with its optimality guaranteed by Theorem 15, is shown in Figure. 21:

Let us assume that a patrol guard starts from the chauki 2262-53-00-1 and aims to move till the
chauki2264-63-01-2. The path for the patrol guard is decided based on the pseudo code
mentioned above i.e. Procedure Kruskal. The steps for patrolling are decided by the algorithm 1,
algorithm 2 and algorithm 3 of prediction of probability of penetration detection. Suppose the
guard enters the distance to be moved by the guard as 14 kilometers. Therefore, considering the
criticality levels, grid resolution of 2 X 2 and the distance to be travelled in the grid, the patrol
path is decided and presented to the guard for movement.

STEP 9 STEP 10 STEP 11 STEP 12
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P1: 2262-53-00-1
P2:2264-63-01-2

Figure. 8.5Path for the patrol guard is decided based on the pseudo code Procedure Kruskal.

The pseudo code for Travelling salesman problemusing transportation simplex method for

generating the Hamiltonian circuit if the source and sink Patrol chaukis are same is as below:

Procedure travelling salesman problem (transportation simplex method)
START

DECLARE

U= variable associated with the i-th supply constraint

Vi= variable associated with the j-th demand constraint

Z= Ui

Ciy=cost of grid i. j.

BEGIN

Find an initial basic feasible solution by some starting procedure. Then,
1. Set U; = 0. Solve for the other U;’s and V;'s by:

Cy— U; + V; = 0 for basic variables.
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Then calculate the Cy—Z;; values for non-basic variables by:

Ci—Zj=Cyi—U+V;

Choose the non-basic variable with the most negative Cy—Z;; value as the entering variable. If all
Ci—Z; values are non-negative, |

STOP; the current solution is optimal.

2. Find the cycle that includes the entering variable and some of the BASIC variables.
Alternating positive and negative changes on the cycle, determine the “change amount” as the
smallest allocation on the cycle at which a subtraction will be made.

3. Modify the allocations to the variables of the cycle found in step 2 by the “change amount”
and return to step 1.

Note: there must be m + n - 1 basic variables for the transportation simplex method to work!

=> Add dummy source or dummy destination, if necessary

(m=# of sources and n=t# of destinations)

END;

A Hamiltonian circuit for the focal complex, obtained on using Travelling salesman problem
algorithm, shown in Figure. 22:

Let us assume that a patrol guard starts from the chauki 2262-53-00-1 and aims to return back to
the chauki 2262-53-00-1. The path for the patrol guard is decided based on the pseudo code
mentioned above i.e.Procedure travelling salesman problem (transportation simplex method).
The steps for patrolling are decided by the algorithm 1, algorithm 2 and algorithm 3 of
prediction of probability of penetration detection. Suppose the guard enters the distance to be
moved by the guard as 14 kilometers. Therefore, considering the criticality levels, grid
resolution of 2 X 2 and the distance to be travelled in the grid, the patrol path is decided and

presented to the guard for movement.
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STEPS STEP9 STEP 10

STEP 11 STEP 12

52 =) S
P1:2262-53-00-1

Figure. 8.6Path for the patrol guard is decided based on the pseudo codeProcedure travelling salesman
problem (transportation simplex method).
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With every movement in the wildlife reserve for monitoring, the patrol guard is expected to note
down all the different activities observed by him walking through the various grids and update
the database accordingly. Once the database is updated the calculation of new costs is done

automatically in the real time and new paths are generated accordingly.
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; 9.ALGORITHM

Algorithm Intelligent Patrolling System
// input:
e  Grid resolution details (N X N)
e  Factors to be considered:
= Electric poles
v Water base
=  Prey base
»  Anthropogenic disturbances
®  Previous Disturbance sightings
»  Grassland
= Forest types.
o Membership value of each considered factor (u;)
e Distance to be travelled (d)

} // output: Intelligent Patrolling Path Description for Forest Patrol Guards.
Procedure FindFunc(d,t)
’ Create matrix M of size (2d + 1)(2d + 1), initialized with Os

Fill out all entries in M as follows:
M[2d+ 1,2d+ 1] =1
Jori«— 1to2ddo
M[imax{i+ 1,2d + 1}] =p
M [i, min{l,i-2}] = 1-p
Compute MT = M
Res = vector of size d initialized with Os
Jor 1 <loc <ddo
V = vector of size 2d + 1 initialized with 0s.
V [2loc] «— 1
Resfloc] =V x MT [2d + 1]
Return Res
Procedure FindP(d,t)
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F « Algorithm FindFunc(d,t).

Set pops +— 0.

Compute local maxima (Pmax, Fpivor(Pmax)) Of Fpivor in the range (0,1).
foreach F, 1 <i<ddo

Compute intersection point p; of F; and Fpiy, in the range (0,1).
if FpivorD) > Fpivor(Pmax) and Fpivol(p) < Fi(py) Vk then

DPopt < Di.

if Fpivol(Pmax) > Fpivo(Dy) and Fpivo(p) < Fi(py) Vk then

Popt <~ Pmax.

Return (Dmax, Fpivor(Pmax))-

Procedure MaximinFence(d,t)

M — FindFencePPD(d,t)
fori—1toddo
OpP[i] « FindP(d,t) with additional given input M[i] as a vector of ppd functions.
Return OpP
Load entrance patrol chauki = Py
Load ending patrol chauki = P,
For each grid
For each considered factor
Cost of grid Cy= u;* score from Hawk and Dove game
End for
End for
Place the grid consisting Psas origin grid (0,0)
For (k= 0, k= 0tod/N, k++)
If each unit is described according to the resolution, then
Check grids (-N, -N), (-N, 0), (-N, N), (0, -N), (N, N), (N, 0), (N, N), (0, N) for most critical
grid.
If most critical grid found = C;
Place connectivity between (0, 0) and C;
End for.

75



CONCLUSION

This work presents the problem of multi-patrol guards patrolling in strong, full-knowledge,
adversarial environments. In this problem a team of patrol guards is required to repeatedly visit
some path, in our basic case a set of grids, and detect penetrations that are controlled by an
adversary. We assume the patrol guards act in a strong adversarial model, in which the adversary
has full knowledge of thepatrol guards and uses this knowledge in order to penetrate through the
weakest and most critical spot of the patrol. We describe a framework for the basic case of
multipatrol guards patrol around a polygon, and use this framework for developing, in
polynomial time, an optimal patrol algorithm, i.e., an algorithm that strengthens the weakest and
most critical spot of the patrol. This framework is then extended in order to solve the problem
also in an environment and in various movement and sensing models of the patrol guards. The
work makes several assumptions allowing the computation of an optimal strategy for the
patrolling patrol guards. One such assumption is the first order Markovian strategy of the
patrolling patrol guards. Although proving or disproving the optimality of using first order
Markovian strategy is hard, it could be interesting to examine the case of higher order
Markovian strategies and compare their time complexity and performance to the solution
discussed here.
The present work has been developed with objectives to

a) obtain a cost-wise optimal and feasible patrol network, using a replicable computational

procedure and
b) identify the most critical spots, along with their underlying vulnerability structure so as
to focus efforts towards securing them.

In this work, we have used Kruskal’s algorithm and travelling salesman problem to obtain a
minimum spanning tree and a Hamiltonian circuit respectively that could serve as a model

framework for a real-world intelligent patrolling system.
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Abstract

The problem of adversarial multi-path guard dependent patrol has gained interest in recent years, mainly
due to its immediate relevance to various security applications. In this problem, patrol guards are required
to repeatedly visit a target area in a way that maximizes their chances of detecting an adversary trying to
penetrate through the patrol path. When facing a strong adversary that knows the patrol strategy of the
guards, if the guards use a deterministic patrol algorithm, then in many cases it is easy for the adversary
to penetrate undetected (in fact, in some of those cases the adversary can guarantee penetration).
Therefore, this project presents a non-deterministic patrol framework for the guards. Assuming that the
strong adversary will take advantage of its knowledge and try to penetrate through the patrol’s weakest
spot, hence an optimal algorithm is one that maximizes the chances of detection in that point. We
therefore present a polynomial-time algorithm for determining an optimal patrol under the Markovian
strategy assumption for the guards, such that the probability of detecting the adversary in the patrol’s
weakest spot is maximized. We build upon this framework and describe an optimal patrol strategy for
several patrol guards based on their movement abilities (directed or undirected) and sensing abilities
(perfect or imperfect), and in different environment models - either patrol around a perimeter (closed
polygon) or an open fence (open polyline).

In this work, we use game theory and graph theory to model and design a patrolling guard path web. We
construct a graph using the patrol chaukis as vertices and the possible paths between these vertices as
edges. A cost matrix is constructed to indicate the cost incurred by the patrol guard for passage between
the habitat patches in the landscape, by modelling a Hawk and Dove game. A minimum spanning tree or
a Hamiltonian path, depending on the start and end point is then obtained by employing Kruskal’s
algorithm or Travelling Salesman problem, which would suggest a feasible adversary detection path for
the patrol guards within the landscape complex.

Keywords: Patrol Guards, adversary, Hawk and Dove game, Graph theory, Mlmmum spanning tree,
Hamiltonian Path, Kruskal’s algorithm, Travelling Salesman Problem.
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