ANALYSIS OF ALTERNATING CURRENT INFLUENCE ON PIPELINES

By

K.Manikandan

R 160308004

College of Engineering

University of Petroleum & Energy Studies

Dehradun

May, 2010

ANALYSIS OF ALTERNATING CURRENT INFLUENCE ON PIPELINES

A thesis submitted in partial fulfillment of the requirements for the Degree of

Master of Technology

(Pipeline Engineering)

By

K.Manikandan

R 160308004

Under the guidance of

A.Aravind Kumar

(Assistant Professor)

Approved

.

Dean

College of Engineering

University of Petroleum & Energy Studies

Dehradun

May, 2010

ii

CERTIFICATE

This is to certify that the work contained in this thesis titled "ANALYSIS OF ALTERNATING CURRENT INFLUENCE ON PIPELINES" has been carried out by K.MANIKANDAN under my supervision and has not been submitted elsewhere for a degree.

A.ARAVIND KUMÁR 05/05/10

College of engineering studies University of petroleum & energy studies Dehradun, India

Date :

ACKNOWLEDGEMENT

I avail this opportunity to thank all the persons with whom I have been associated in the successful completion of my project. I wish to express my sincere thanks to Mr. A.Aravind Kumar (Assistant Professor - UPES) for his constant support and guidance.

My sincere thanks to Mr. Anand Kulkarni – Director - Corrosion Control Services (B) PVT ltd, for his constant motivation and providing me a technical exposure regarding this project.

I wish to express my sincere thanks to Mr. Mohammed Shabbir Hussain – Managing Director – BITCO Engineering Co. W.L.L, Kuwait in providing me complete support by providing technical journals, and his continues encouragement during the progress of my project can't be explained in a word.

ABSTRACT:

Interference is one of the major challenges that the pipeline cathodic protection industry facing now a days. Interference is due to AC&DC transmission lines, DC transit system and foreign pipelines. Due to the recent increase in the number of industries, HVAC transmission lines are increasing in great number. There might be a situation arises when the pipeline and power line shares the same corridor. Project focuses primarily on the alternating current influence on the pipelines. In India HVAC overhead lines are available in the range of 66KV, 132KV, 220KV, & 400KV and their corresponding maximum operating current varies between 200 to 200 Amperes. Based on the current influenced corresponding mitigation methods will be carried out. Alternating current influenced on the pipelines is due to electromagnetic or inductive coupling, resistive or conductive coupling, and electrostatic or capacitive. Practical data are considered and the amount of current that will influence on the pipelines is identified and their corresponding plots are made. Based on the current influenced corresponding mitigation methods will be carried out.

CONTENTS

•

S.NO	TITLE	PAGE NO
	LIST OF FIGURES	x
	LIST OF TABLES	XI
1	INTRODUCTION	1
2	TOLERANCE LIMIT	3
2.1	Step, Touch potentials	4
2.2	Electrical current influence on human body	4
2.3	Touch potential criteria	5
2.4	Step, Touch potential of a pipeline section	6
2.5	Reference	6
3	SECTION - 01 STEADY STATE	7
	OPERATING CONDITION	
3.1	Specification of the line	8
3.2	Depth of earth return current	9
3.3	Mutual impedance – power line and pipeline	10
3.4	EMF induced on the pipeline-w/o earth	11
3.5	EMF induced on the pipeline-with earth	11
3.6	Electrical Characteristics of pipeline	11
3.6.1	Pipeline shunt admittance	11
3.6.2	Pipeline series impedance	11
3.6.3	Propagation Constant	12
3.6.4	Characteristic impedance	12

S.NO	TITLE	PAGE.NO
3.7	Voltage variation – Powerline and pipeline	12
3.8	Voltage to Earth tabulation	13
3.9	Plot – Voltage Distribution	14
3.10	Current variation – powerline and pipeline	14
3.11	Tabulation – Current variation	15
3.12	Plot – Current distribution	16
3.13	Reference	16
4	SECTION - 02 STEADY STATE	17
	OPERATING CONDITION	
4.1	Specification of the line	18
4.2	Depth of earth return current	19
4.3	Mutual impedance – power line and pipeline	19
4.4	EMF induced on the pipeline-w/o earth	20
4.5	EMF induced on the pipeline-with earth	21
4.6	Electrical Characteristics of pipeline	21
4.6.1	Pipeline shunt admittance	21
4.6.2	Pipeline series impedance	21
4.6.3	Propagation Constant	21
4.6.4	Characteristic impedance	22
4.7	Voltage variation – Powerline and pipeline	22
4.8	Voltage to Earth tabulation	23
4.9	Current variation – powerline and pipeline	23

S.NO	TITLE	PAGE.NO
4.10	Tabulation – Current variation	24
4.11	Plot – Voltage Distribution	25
4.12	Plot – Current Distribution	. 25
4.13	Reference	25
5	SECTION – 03 STEADY STATE	26
	OPERATING CONDITION	
5.1	Specification of the line	27
5.2	Depth of earth return current	28
5.3	Mutual impedance – power line and pipeline	e 28
5.4	EMF induced on the pipeline-w/o earth	29
5.5	EMF induced on the pipeline-with earth	30
5.6	Electrical Characteristics of pipeline	30
5.6.1	Pipeline shunt admittance	30
5.6.2	Pipeline series impedance	30
5.6.3	Propagation Constant	30
5.6.4	Characteristic impedance	31
5.7	Voltage variation – Powerline and pipeline	31
5.8	Voltage to Earth tabulation	32
5.9	Current variation – powerline and pipeline	32
5.10	Tabulation – Current variation	33
5.11	Plot – Voltage Distribution	34
5.12	Plot – Current Distribution	34
5.13	Reference	34

.

S.NO	TITLE	PAGE.NO
6	SECTION - 04 STEADY STATE	35
	OPERATING CONDITION	
6.1	Specification of the line	36
6.2	Depth of earth return current	37
6.3	Mutual impedance – power line and pipeline	37
6.4	EMF induced on the pipeline-w/o earth	38
6.5	EMF induced on the pipeline-with earth	39
6.6	Electrical Characteristics of pipeline	39
6.6.1	Pipeline shunt admittance	39
6.6.2	Pipeline series impedance	39
6.6.3	Propagation Constant	39
6.6.4	Characteristic impedance	40
6.7	Voltage variation – Powerline and pipeline	40
6.8	Voltage to Earth tabulation	41
6.9	Current variation – powerline and pipeline	41
6.10	Tabulation – Current variation	42
6.11	Plot – Voltage Distribution	42
6.12	Plot – Current Distribution	43
6.13	Reference	43
7	EMF INDUCED - FAULT	44
	OPERATING CONDITION	
7.1	S-01 1 Φ to earth fault current	45
7.2	S-02 1 Φ to earth fault current	45

S.NO	TITLE	PAGE NO
7.3	S-03 1 Φ to earth fault current	46
7.4	S-04 1 Φ to earth fault current	47
7.5	Reference	47
8	CONCLUSION & SUGGESTIONS	48
8.1	Conclusion	49
8.2	Suggestions	49
8.3	Further Developments	49
8.4	Reference	49

LIST OF FIGURES

FIG.NO	TITLE	PAGE.No
1	Step, Touch, Mesh Potentials	4
2	Touch voltage limit for 70 and 50kg person	5
3	Double circuit tower with one earth wire	8
4, 8, 12, 16	Double circuit line considered	8,18,27,36
5, 9, 13, 17	Pipeline parallel to power line	12,22,31,40
6,10,14,18	Voltage distribution plot	14,25,34,42
7,11,15,19	Current distribution plot	16,25,34,43

.

LIST OF TABLES

TABLE.NO	TITLE	PAGE.NO
1	Current influence on human body	4
2	Step, touch potentials of SA-SS section	6
3	Mutual impedance between power line and pipeline	10
4	Distance between earth and the phases	10
5	Mutual impedance between the earth	10
	And phases of transmission line	
6	Voltage influenced along various sections of parallelism	n 13
7	Current Distribution	15
8	Mutual impedance between power line and pipeline	20
9	Distance between earth and the phases	20
10	Mutual impedance between the earth	20
	And phases of transmission line	
11	Voltage influenced along various sections of parallelisr	n 23
12	Current Distribution	24
13	Mutual impedance between power line and pipeline	29
14	Distance between earth and the phases	29
15	Mutual impedance between the earth	29
	And phases of transmission line	
16	Voltage influenced along various sections of parallelist	m 32
17	Current Distribution	33
18	Mutual impedance between power line and pipeline	38
19	Distance between earth and the phases	38

S.NO	TITLE	PAGE.NO
20	Mutual impedance between earth and	38
	Phases of a transmission line	
21	Voltage influenced along various sections of parallelis	m 41
22	Current distribution	42
23	Mutual impedance	45
24	Mutual impedance	45
25	Mutual impedance	46
26	Mutual impedance	46

.

INTRODUCTION

Introduction:

Transfer of electrical energy between the pipeline and power line takes place due to electrostatic coupling, electromagnetic coupling and conductive coupling. Electrostatic coupling is because of the aboveground pipelines in the vicinity of overhead AC transmission lines, this primarily happens during the early construction stage when the pipelines are placed above the sand bags. Primary focus of the project is on Electromagnetic coupling or inductive coupling, which arises because of the steady state operating current of the transmission lines and conductive coupling which arises mainly due to the single phase to earth fault operating current.

Type of circuit:

Single circuit

Triangular circuit

Double circuits with vertical and horizontal configurations

Electrostatic coupling:

Electrostatic coupling which is also referred to as conductive coupling arises due to the transfer of electrical energy between the power line and aboveground pipelines. Mitigation of the electrostatic coupling can be carried out by proper grounding of power line and pipeline. Electrostatic coupling does not play a major role in the interference of onshore pipelines, because all the onshore pipeline are of buried.

Electromagnetic coupling:

Electromagnetic coupling which is also referred to as inductive coupling arises due to the transfer of energy between steady state operating current of the transmission lines and pipelines. Pipeline is considered as separate lossy conductor and there will be mutual impedance between the each phase of the transmission line and the pipelines, followed by the mutual impedance between the earth and each phase of the transmission lines. Based on the mutual impedance available corresponding EMF induced on the pipeline during steady state operating current is identified.

Conductive coupling:

Conductive coupling which is also referred to as resistive coupling arises due to the transfer of energy between the single phase to earth fault operating current of transmission lines and pipelines. Fault in the transmission line arises mainly due to the lightning stroke, conductor failure, and insulators failure. Conductive coupling also referred to as short term interference because the fault happens for short duration of time which varies from 0.2 to 0.5 sec. Analysis of conductive coupling can be made based on fault current and fault duration.

TOLERANCE LIMIT

2.1 Step, Touch Potentials:

Step potential is the potential difference between the two points on the earth surface and the distance between the two points is assumed to be 1m apart

Touch potential is the potential difference between a metallic structure and the point on the earth's surface separated by a distance equal to the normal maximum horizontal reach of the human (approximately 1m)

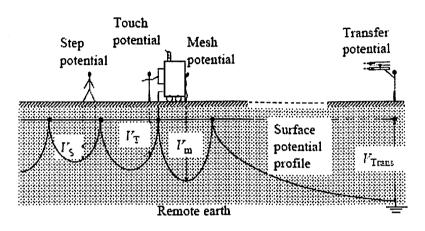


Figure no: 1 step, touch, and mesh potential

2.2 Electric current influence on the human body:

CURRENT	REACTION
< 1 milliamperes	Safe range
1 milliamperes	Faint consciousness
5 milliamperes	Shock might be slight, not painful but a sensation is felt
6-25 milliamperes – women	Painful shock – muscular control loss
9-30 milliamperes – men	Let go current (range)
50-150 milliamperes	Pain is severe with an extreme shock and death may be possible
1000-4300 milliamperes	Muscular contraction and damage of nerves
10000 milliamperes	Cardiac arrest, probability of death is high

Table no 1: Current influence on human body

TOUCH **(V**) 200 ETOUCH 150 130 V 100 ETOUCH 50 80 65 V 60 2 5 6 7 8 9 10 0.5 TIME (s)

2.3 Touch voltage criteria for metal - metal contact:

Figure no 2: Touch voltage limit for 70 and 50kg person

As per IEEE standard 80:2000 the permissible touch & step potential for 50Kg person is

V step50kg = $(1000 + 6Cs * \rho)$ Ib Volts

V touch50kg = $(1000 + 1.5Cs * \rho)$ Ib Volts

Whereas Ib is given by

Ib = 0.116 / \sqrt{ts} Amperes and ts should be between 0.03 seconds and 3 seconds

As per IEEE standard 80:2000 the permissible touch & step potential for 70Kg person is

V step70kg = $(1000 + 6Cs * \rho)$ Ib Volts

V touch70kg = $(1000 + 1.5Cs * \rho)$ lb Volts

Ib = 0.157/ \sqrt{ts} Amperes and ts should be between 0.03 seconds and 3 seconds

	fault	fault current -	fault current -	Vstep	Vtouch	Vstep	Vtouch
pipeline	duration	50kg	70kg	50	50	70	70
SA-01	0.5	0.164048773	0.222031529	183.735	168.97	248.675	228.692
SA-02	0.5	0.164048773	0.222031529	183.735	168.97	248.675	228.692
SS-01	0.5	0.164048773	0.222031529	183.735	168.97	248.675	228.692
SS-02	0.5	0.164048773	0.222031529	183.735	168.97	248.675	228.692
SS-03	0.5	0.164048773	0.222031529	183.735	168.97	248.675	228.692
resistivity	20	ohm-m					

2.4 Step, touch potential of SA-SS pipeline section:

Table no 2: Step, touch potentials of SA-SS section

Fault duration in seconds

Fault current in amperes

Step and touch potentials in volts

2.5 Reference:

IEEE Std 80-1986 IEEE Guide for safety in AC substation grounding, page no: 43 - 47

W.B.Kouwenhoven "Human safety and electrical shock", Electrical safetypractices,monograph,112, instrument society of America page no:93,NOV 1968

NACE RP-0177 mitigation of alternating current and lightning effects on metallic structure, page no: 2, 3

SECTION - 01 STEADY STATE OPERATING CONDITION

3.1 Pipeline and Powerline specification : SA-01

Length of parallelism : 9.30 KM

Distance of the tower from pipeline : 100m

Depth at which pipeline layed : 2m

Phase to phase distance : 7.5 m

KV rating : 380 KV

Type of circuit : Double circuit

Maximum operating current : 1200 Amperes

Coating thickness : 3.2mm

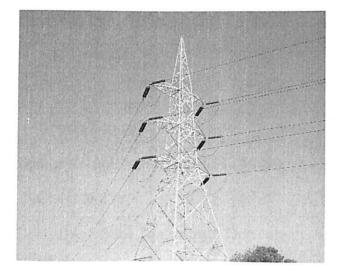


Figure no 3: Typical double circuit tower with one earth wire

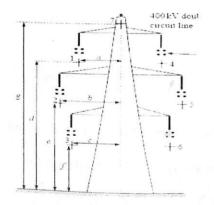


Figure no 4: Double circuit line considered

8

From the figure above f = 13m, a=6.93m, b=10.16m, c=8.33m

Dpr1 =
$$\sqrt{(100 - 6.93)^2 + (13+2)^2}$$

= 92.88m
Dpy1 = $\sqrt{(100 - 10.16)^2 + (13+7.5+2)^2}$
= 92.61m
Dpb1 = $\sqrt{(100 - 8.33)^2 + (13+7.5+7.5+2)^2}$
= 96.45m
Dpr2 = $\sqrt{(100 + 6.93)^2 + (13+2)^2}$
= 109.3 m
Dpy2 = $\sqrt{(100 + 10.16)^2 + (13+7.5+2)^2}$
= 112.43 m
Dpb2 = $\sqrt{(100 + 8.33)^2 + (13+7.5+7.5+2)^2}$
= 112.40 m
Dpe = $\sqrt{(100)^2 + (13+7.5+7.5+7.5+2)^2}$
= 106.8 m

Dpr1, Dpy1, Dpb1, Dpr2, Dpy2, Dpb2 are the distance the R,Y,B phases of the tower line and the pipeline

Dpe is the distance between the pipeline and the earth line

3.2 Depth of Earth Return Current:

$$D_{\rm erc} = 653.87 \times \sqrt{\frac{\rho_{\rm e}}{f}} \,{\rm m}$$

Derc = depth of earth return current

Earth resistivity is denoted by $\rho e = 200$ ohm-m

Frequency f is in hertz ; f = 60 HZ

Derc = 658.87 x $\sqrt{(200/60)}$ = 1202 m

9

3.3 Mutual impedance between the power line and pipeline:

$$Z_{\rm pj} = \pi^2 10^{-4} f + j4\pi f \, 10^{-4} \sqrt{\frac{\left[\log_{\rm e} \left(1 + 1.382 \frac{D_{\rm erc}^2}{d_{\rm pj}^2}\right)\right]^2}{4} - \frac{\pi^2}{16} \,\Omega/\rm km}$$

Zpj = mutual impedance between the conductors

F is the frequency = 60 HZ

Derc = depth of earth return current = 1202 m

Dpj = distance between the pipeline and powerline phases

Mutual impedances Values		
Zpr1	0.059+j0.1920	
Zpy1	0.059+j0.1922	
Zpb1	0.059+j0.1892	
Zpr2	0.059+j0.1798	
Zpy2	0.059+j0.1777	
Zpb2	0.059+j0.1772	
Zpe	0.059+j0.1815	

Table no 3: Mutual impedance between power line and pipeline

Distance between the earth and phases of the transmission line

Distance	Values in m	
Der1	23.99	
Dey1	18.11	
Deb1	10.21	

 Table no 4: distance between the earth and phases

Mutual impedance between the earth and phases of transmission line

Mutual impedance	Values	
Zer1	0.059+j0.2935	
Zeyl	0.059+j0.1314	
Zeb1	0.059+j0.3576	
Zee	0.1136+j0.6988	

Table no 5: Mutual impedance between the earth and phases of transmission line

Mutual impedances are represented in ohms/KM

3.4 EMF induced on the pipeline without earth:

 $-\mathsf{EMF}_{\mathsf{p}} = Z_{\mathsf{pR}}I_{\mathsf{R}} + Z_{\mathsf{pY}}I_{\mathsf{Y}} + Z_{\mathsf{pB}}I_{\mathsf{B}} \, \forall \mathsf{km}$

-EMFp = -3.6372000000001+J4.380000000002 Volts/Km

EMFp = 3.6372000000001-J4.380000000002

Absolute value = 5.693 volts/km

3.5 EMF induced on the pipeline with earth:

$$-\mathrm{EMF}_{\mathrm{p}} = (Z_{\mathrm{pR}}I_{\mathrm{R}} + Z_{\mathrm{pY}}I_{\mathrm{Y}} + Z_{\mathrm{pB}}I_{\mathrm{B}}) - \frac{Z_{\mathrm{pE}}}{Z_{\mathrm{FF}}}(Z_{\mathrm{ER}}I_{\mathrm{R}} + Z_{\mathrm{EY}}I_{\mathrm{Y}} + Z_{\mathrm{EB}}I_{\mathrm{B}}) \,\mathrm{V/km}$$

EMFp = 23.6047476293827-J35.1528144666602

Absolute value = 42.03 volts/km

<u>3.6 Electrical characteristics of the pipeline:</u>

<u>3.6.1 Pipeline shunt admittance:</u>

$$y_{\rm c} = \frac{2000\pi r_{\rm p}}{\rho_{\rm c} t_{\rm c}} + j \frac{\pi r_{\rm p} f \varepsilon_{\rm c} 10^{-6}}{9 t_{\rm c}} \,{\rm S/km}$$

Radius of the pipeline = rp = 0.5588m

Resistivity of the pipeline coating = $\rho c = 25 \times 10^{6}$

Thickness of the coating = tc = 3.2mm

Frequency = f = 60 HZ

Coating relative permittivity = $\varepsilon c = 5 \times 10^{-6}$

Yc = 0.043 + j0.0182 S/Km

3.6.2 Pipeline series impedance:

$$z = \frac{\sqrt{\rho_{\rm p}\mu_{\rm p}f}}{3.163r_{\rm p}} + \pi^2 10^{-4}f + j \left[\frac{\sqrt{\rho_{\rm p}\mu_{\rm p}f}}{3.163r_{\rm p}} + 4\pi 10^{-4}f \log_{\rm e}\left(\frac{D_{\rm erc}}{r_{\rm p}}\right)\right] \Omega/\rm{km}$$

Radius of the pipeline = rp = 0.5588m

Derc = depth of earth return current = 1202 m

Relative permeability of the metal = μ = 300

 $Z = 0.0874 + j \ 0.6061 \ ohms/Km$

3.6.3 Propagation constant:

Propagation constant $\gamma = \sqrt{(z * y)} / km$

And $\gamma = \sqrt{(0.0874 + j \ 0.6061)} \times (0.043 + j 0.0182) = 0.10324 + j 0.1339$

3.6.4 Characteristic impedance:

 $Z = \sqrt{(z / y)}$ ohms

 $Z = \sqrt{(0.0874 + j \ 0.6061) / (0.043 + j0.0182)} = 3.152 + j1.77925$ ohms

3.7 Distribution of voltage along the pipeline and powerline parallelism:

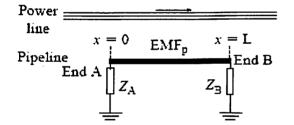


Figure no 5: shows the portion of pipeline parallel to powerline

$$\mathcal{V}(x) = \frac{E_0}{2\gamma} [(2e^{-\gamma L} - e^{-2\gamma L})e^{\gamma x} - e^{-\gamma x}] V$$

Propagation constant is denoted by γ

L is the overall length of parallelism = 9.30m

X which varies from 0 to 9.30 Km

Eo is the EMF induced on the pipeline

V(x) shows the variation of voltages along the various length of parallelism

			r	
Х	Ео	γ	L	voltage-abs
0	23.604-35.1528i	0.10324+0.1339i	9.3	112.9054539
1.5	23.604-35.1528i	0.10324+0.1339i	9.3	68.69681144
2	23.604-35.1528i	0.10324+0.1339i	9.3	56.02277349
2.5	23.604-35.1528i	0.10324+0.1339i	9.3	46.48552339
3	23.604-35.1528i	0.10324+0.1339i	9.3	42.59342909
3.5	23.604-35.1528i	0.10324+0.1339i	9.3	46.06710699
4	23.604-35.1528i	0.10324+0.1339i	9.3	55.71522923
4.5	23.604-35.1528i	0.10324+0.1339i	9.3	69.10211984
5	23.604-35.1528i	0.10324+0.1339i	9.3	84.53054714
5.5	23.604-35.1528i	0.10324+0.1339i	9.3	101.1012203
6	23.604-35.1528i	0.10324+0.1339i	9.3	118.3462324
6.5	23.604-35.1528i	0.10324+0.1339i	9.3	136.0072086
7	23.604-35.1528i	0.10324+0.1339i	9.3	153.9312411
7.5	23.604-35.1528i	0.10324+0.1339i	9.3	172.0228004
8	23.604-35.1528i	0.10324+0.1339i	9.3	190.2206242
8.5	23.604-35.1528i	0.10324+0.1339i	9.3	208.4860931
9	23.604-35.1528i	0.10324+0.1339i	9.3	226.7971609
9.3	23.604-35.1528i	0.10324+0.1339i	9.3	237.8015682

3.8 Voltage to earth along the pipeline is tabulated as:

Table no 6: Voltage influenced along various sections of parallelism

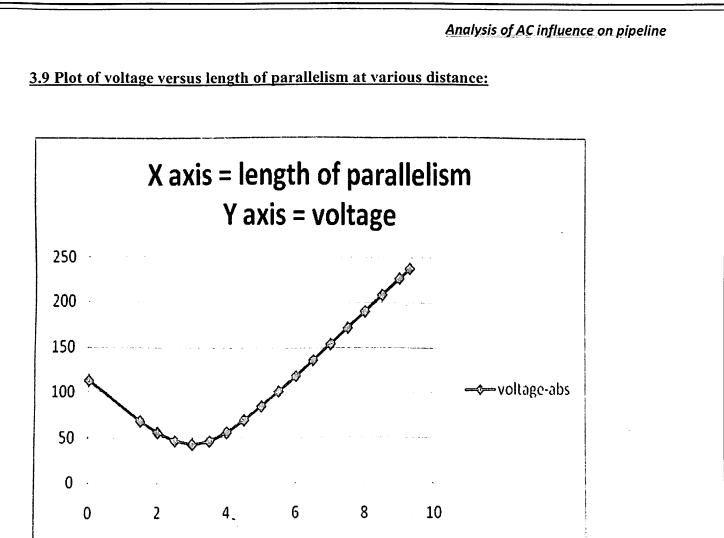


Figure no 6:Voltage versus Length of parallelism

3.10 Distribution of Current along the pipeline and powerline parallelism:

$$I(x) = \frac{E_{o}}{2\gamma Z_{o}} [2 + (e^{-2\gamma L} - 2e^{-\gamma L})e^{\gamma x} - e^{-\gamma x}] A$$

L is the overall length of parallelism = 9.30m

X which varies from 0 to 9.30 Km

Eo is the EMF induced on the pipeline

Zo is the characteristic impedance

3.11 Representation of current distribution along various section:

X	Ео	Γ	L	I(xabs)
0	23.60476-35.15281i	0.10324+0.1339i	9.3	31.1776
0.5	23.60476-35.15281i	0.10324+0.1339i	10.3	32.69179
1	23.60476-35.15281i	0.10324+0.1339i	11.3	33.97301
1.5	23.60476-35.15281i	0.10324+0.1339i	12.3	34.97087
2	23.60476-35.15281i	0.10324+0.1339i	13.3	35.64841
2.5	23.60476-35.15281i	0.10324+0.1339i	14.3	35.97796
3	23.60476-35.15281i	0.10324+0.1339i	15.3	35.93847
3.5	23.60476-35.15281i	0.10324+0.1339i	16.3	35.51372
4	23.60476-35.15281i	0.10324+0.1339i	17.3	34.69107
4.5	23.60476-35.15281i	0.10324+0.1339i	18.3	33.46067
5	23.60476-35.15281i	0.10324+0.1339i	19.3	31.81488
5.5	23.60476-35.15281i	0.10324+0.1339i	20.3	29.74785
6	23.60476-35.15281i	0.10324+0.1339i	21.3	27.2552
6.5	23.60476-35.15281i	0.10324+0.1339i	22.3	24.33383
7	23.60476-35.15281i	0.10324+0.1339i	23.3	20.98169
7.5	23.60476-35.15281i	0.10324+0.1339i	24.3	17.19766
8	23.60476-35.15281i	0.10324+0.1339i	25.3	12.98142
8.5	23.60476-35.15281i	0.10324+0.1339i	26.3	8.333356
9	23.60476-35.15281i	0.10324+0.1339i	27.3	3.254407
9.3	23.60476-35.15281i	0.10324+0.1339i	28.3	0.000809

Table no 7: Current distribution

3.12 Plot for current distribution along the various section:

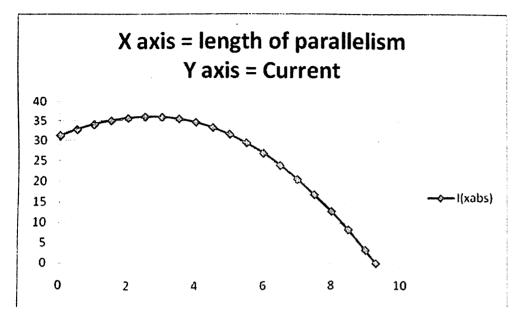


Figure no 7: current distribution plot

3.13 Reference:

Power Systems Modelling and Fault Analysis, Theory and Practice-Nasser Tleis page number: 588 - 601

SECTION - 02 STEADY STATE OPERATING CONDITION

4.1 Pipeline and Powerline specification : SA-02

Length of parallelism : 13.50 KM

Distance of the tower from pipeline : 100m

Depth at which pipeline layed : 2m

Phase to phase distance : 7.5 m

KV rating: 110 KV

Type of circuit : Double circuit

Maximum operating current : 800 Amperes

Coating thickness : 3.2mm

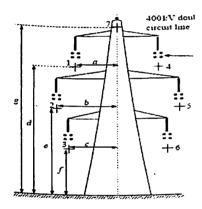


Figure no 8: Double circuit line considered

From the figure above f = 13m, a=6.93m, b=10.16m, c=8.33m

$$Dpr1 = \sqrt{(100 - 6.93)^2 + (13 + 2)^2}$$

= 92.88m

$$Dpy1 = \sqrt{(100 - 10.16)^2 + (13 + 7.5 + 2)^2}$$

= 92.61m

$$Dpb1 = \sqrt{(100 - 8.33)^2 + (13 + 7.5 + 7.5 + 2)^2}$$

= 96.45m

 $Dpr2 = \sqrt{(100 + 6.93)^2 + (13+2)^2} = 109.3 \text{ m}$

Dpy2 = $\sqrt{(100 + 10.16)^2 + (13+7.5+2)^2}$ = 112.43 m Dpb2 = $\sqrt{(100 + 8.33)^2 + (13+7.5+7.5+2)^2}$ = 112.40 m Dpe = $\sqrt{(100)^2 + (13+7.5+7.5+7.5+2)^2}$ = 106.8 m

Dpr1, Dpy1, Dpb1, Dpr2, Dpy2, Dpb2 are the distance the R,Y,B phases of the tower line and the pipeline

Dpe is the distance between the pipeline and the earth line

4.2 Depth of Earth Return Current:

$$D_{\rm erc} = 658.87 \times \sqrt{\frac{\rho_{\rm e}}{f}} \,{\rm m}$$

Derc = depth of earth return current

Earth resistivity is denoted by $\rho e = 200$ ohm-m

Frequency f is in hertz ; f = 60 HZ

Derc = 658.87 x $\sqrt{(200/60)}$ = 1202 m

4.3 Mutual impedance between the power line and pipeline:

$$Z_{\rm pj} = \pi^2 10^{-4} f + j4\pi f \, 10^{-4} \sqrt{\frac{\left[\log_e \left(1 + 1.382 \frac{D_{\rm err}^2}{d_{\rm pj}^2}\right)\right]^2}{4} - \frac{\pi^2}{16} \,\Omega/\rm{km}}$$

Zpj = mutual impedance between the conductors

F is the frequency = 60 HZ

Derc = depth of earth return current = 1202 m

Dpj = distance between the pipeline and powerline phases

Mutual impedances	Values	
Zpr1	0.059+j0.1920	
Zpy1	0.059+j0.1922	
Zpb1	0.059+j0.1892	····
Zpr2	0.059+j0.1798	
Zpy2	0.059+j0.1777	
Zpb2	0.059+j0.1772	
Zpe	0.059+j0.1815	

Table no 8: Mutual impedance between power line and pipeline

Distance between the earth and phases of the transmission line

Distance	Values in m	
Der1	23.99	
Dev1	18.11	· -···
Deb1	10.21	

Table no 9: Distance between the earth and the phases

Mutual impedance between the earth and phases of transmission line

Mutual impedance	Values	
Zer1	0.059+j0.2935	
Zey1	0.059+j0.1314	
Zeb1	0.059+j0.3576	
Zee	0.1136+j0.6988	

Table no 10: Mutual impedance between earth and phases

Mutual impedances are represented in ohms/KM

4.4 EMF induced on the pipeline without earth:

 $-\mathbf{E}\mathbf{M}\mathbf{F}_{\mathbf{p}} = Z_{\mathbf{p}\mathbf{R}}I_{\mathbf{R}} + Z_{\mathbf{p}\mathbf{Y}}I_{\mathbf{Y}} + Z_{\mathbf{p}\mathbf{B}}I_{\mathbf{B}} \mathbf{V}/\mathbf{k}\mathbf{m}$

Ir = 800 Amperes

Iy=-400+692.8i Amperes

lb=-400-692.8i Amperes

-EMFp = -2.42479999999998+2.9199999999999999 Volts/Km

Absolute value = 3.79 volts/km

4.5 EMF induced on the pipeline with earth:

$$-\mathrm{EMF}_{\mathrm{p}} = (Z_{\mathrm{pR}}I_{\mathrm{R}} + Z_{\mathrm{pY}}I_{\mathrm{Y}} + Z_{\mathrm{pB}}I_{\mathrm{B}}) - \frac{Z_{\mathrm{pE}}}{Z_{\mathrm{FF}}}(Z_{\mathrm{ER}}I_{\mathrm{R}} + Z_{\mathrm{EY}}I_{\mathrm{Y}} + Z_{\mathrm{EB}}I_{\mathrm{B}}) \,\mathrm{V/km}$$

EMFp = 15.7364984195884-23.4352096444401i volts/Km

Absolute value = 28.228 volts/km

4.6 Electrical characteristics of the pipeline:

4.6.1 Pipeline shunt admittance:

$$y_{\rm c} = \frac{2000\pi r_{\rm p}}{\rho_{\rm c} t_{\rm c}} + j \frac{\pi r_{\rm p} f \varepsilon_{\rm c} 10^{-6}}{9 t_{\rm c}} \,\mathrm{S/km}$$

Radius of the pipeline = rp = 0.5588m

Resistivity of the pipeline coating = $\rho c = 25 \times 10^{6}$

Thickness of the coating = tc = 3.2mm

Frequency = f = 60 HZ

Coating relative permittivity = $\varepsilon c = 5 \times 10^{-6}$

Yc = 0.043 + j0.0182 S/Km

4.6.2 Pipeline series impedance:

$$z = \frac{\sqrt{\rho_{\rm p}\mu_{\rm p}f}}{3.163r_{\rm p}} + \pi^2 10^{-4} f + j \left[\frac{\sqrt{\rho_{\rm p}\mu_{\rm p}f}}{3.163r_{\rm p}} + 4\pi 10^{-4} f \log_{\rm e}\left(\frac{D_{\rm erc}}{r_{\rm p}}\right)\right] \Omega/\rm{km}$$

Radius of the pipeline = rp = 0.5588m

Derc = depth of earth return current = 1202 m

Relative permeability of the metal = $\mu = 300$

Z = 0.0874 + j 0.6061 ohms/Km

4.6.3 Propagation constant:

Propagation constant $\gamma = \sqrt{(z * y) / km}$

And $\gamma = \sqrt{(0.0874 + j \ 0.6061) \times (0.043 + j 0.0182)} = 0.10324 + j 0.1339$

4.6.4 Characteristic impedance:

 $Z = \sqrt{(z / y)}$ ohms

 $Z = \sqrt{(0.0874 + j \ 0.6061) / (0.043 + j 0.0182)} = 3.152 + j 1.77925$ ohms

4.7 Distribution of voltage along the pipeline and powerline parallelism:

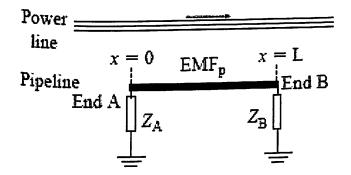


Figure no 9: shows the portion of pipeline parallel to powerline

$$V(x) = \frac{E_0}{2\gamma} [(2e^{-\gamma L} - e^{-2\gamma L})e^{\gamma x} - e^{-\gamma x}] V$$

Propagation constant is denoted by γ

L is the overall length of parallelism = 13.50m

X which varies from 0 to 13.50 Km

Eo is the EMF induced on the pipeline

V(x) shows the variation of voltages along the various length of parallelism

			r ·	
X	Ео	Г	L	voltage-abs
0	15.7364-23.4352i	0.10324+0.1339i	13.5	98.33825614
1.5	15.7364-23.4352i	0.10324+0.1339i	13.5	75.05391432
2	15.7364-23.4352i	0.10324+0.1339i	13.5	67.10810759
2.5	15.7364-23.4352i	0.10324+0.1339i	13.5	59.19951698
3	15.7364-23.4352i	0.10324+0.1339i	13.5	51.47774799
3.5	15.7364-23.4352i	0.10324+0.1339i	13.5	44.19123326
4	15.7364-23.4352i	0.10324+0.1339i	13.5	37.76120685
4.5	15.7364-23.4352i	0.10324+0.1339i	13.5	32.87609832
5	15.7364-23.4352i	0.10324+0.1339i	13.5	30.4689553
5.5	15.7364-23.4352i	0.10324+0.1339i	13.5	31.27275027
6	15.7364-23.4352i	0.10324+0.1339i	13.5	35.18457034
6.5	15.7364-23.4352i	0.10324+0.1339i	13.5	41.41452256
7	15.7364-23.4352i	0.10324+0.1339i	13.5	49.14441974
7.5	15.7364-23.4352i	0.10324+0.1339i	13.5	57.81233997
8	15.7364-23.4352i	0.10324+0.1339i	13.5	67.07859439
8.5	15.7364-23.4352i	0.10324+0.1339i	13.5	76.7401966
9	15.7364-23.4352i	0.10324+0.1339i	13.5	86.67223254
9.5	15.7364-23.4352i	0.10324+0.1339i	13.5	96.79502599
10	15.7364-23.4352i	0.10324+0.1339i	13.5	107.0564646
10.5	15.7364-23.4352i	0.10324+0.1339i	13.5	117.4224086
11	15.7364-23.4352i	0.10324+0.1339i	13.5	127.8713753
11.5	15.7364-23.4352i	0.10324+0.1339i	13.5	138.391534
12	15.7364-23.4352i	0.10324+0.1339i	13.5	148.978982
12.5	15.7364-23.4352i	0.10324+0.1339i	13.5	159.6367501
12.5	15.7364-23.4352i	0.10324+0.1339i	13.5	170.3742298
13.5	15.7364-23.4352i	0.10324+0.1339i	13.5	181.2068417
	1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		·	

4.8 Voltage to earth along the pipeline is tabulated as:

Table no 11 : Voltage influenced along various sections of parallelism

4.9 Distribution of Current along the pipeline and powerline parallelism:

$$I(x) = \frac{E_{o}}{2\gamma Z_{o}} [2 + (e^{-2\gamma L} - 2e^{-\gamma L})e^{\gamma x} - e^{-\gamma x}] A$$

L is the overall length of parallelism = 9.30m

X which varies from 0 to 9.30 Km

Eo is the EMF induced on the pipeline & Zo is the characteristic impedance

X	Eo	Γ	L	I(xabs)
		0.10324+0.1339i	13.5	27.15449
0.5	15.73649-23.4352i	0.10324+0.1339i	13.5	28.55152
	15.73649-23.4352i	0.10324+0.1339i	13.5	29.90543
$\frac{1}{15}$	15.73649-23.4352i	0.10324+0.13391	13.5	31.17443
1.5	15.73649-23.4352i			32.3261
2	15.73649-23.4352i	0.10324+0.1339i	<u>13.5</u> 13.5	33.3351
2.5	15.73649-23.4352i	0.10324+0.1339i	-	
3	15.73649-23.4352i	0.10324+0.1339i	13.5	34.18132
3.5	15.73649-23.4352i	0.10324+0.1339i	13.5	34.84856
4	15.73649-23.4352i	0.10324+0.1339i	13.5	35.32364
4.5	15.73649-23.4352i	0.10324+0.1339i	13.5	35.59571
5	15.73649-23.4352i	0.10324+0.1339i	13.5	35.6557
5.5	15.73649-23.4352i	0.10324+0.1339i	13.5	35.49604
6	15.73649-23.4352i	0.10324+0.1339i	13.5	35.11034
6.5	15.73649-23.4352i	0.10324+0.1339i	13.5	34.4932
7	15.73649-23.4352i	0.10324+0.1339i	13.5	33.64009
7.5	15.73649-23.4352i	0.10324+0.1339i	13.5	32.54717
8	15.73649-23.4352i	0.10324+0.1339i	13.5	31.21127
8.5	15.73649-23.4352i	0.10324+0.1339i	13.5	29.62972
9	15.73649-23.4352i.	0.10324+0.1339i	13.5	27.80038
9.5	15.73649-23.4352i	0.10324+0.1339i	13.5	25.72151
10	15.73649-23.4352i	0.10324+0.1339i	13.5	23.39175
10.5	15.73649-23.4352i	0.10324+0.1339i	13.5	20.81005
11	15.73649-23.4352i	0.10324+0.1339i	13.5	17.97565
11.5	15.73649-23.4352i	0.10324+0.1339i	13.5	14.888
11.5	15.73649-23.4352i	0.10324+0.1339i	13.5	11.54675
12.5	15.73649-23.4352i	0.10324+0.1339i	13.5	7.951662
12.5	15.73649-23.4352i	0.10324+0.1339i	13.5	4.102614
13.5	15.73649-23.4352i	0.10324+0.1339i	13.5	0.000626
	13./3049-23.43321			

4.10 Representation of current distribution along various section:

Table no 12: Current distribution

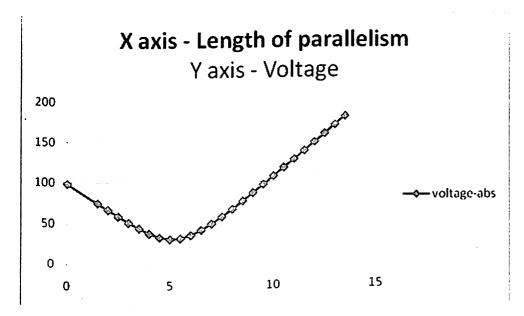


Figure no 10: Voltage variation along the section

4.12 Current distribution plot along the section:

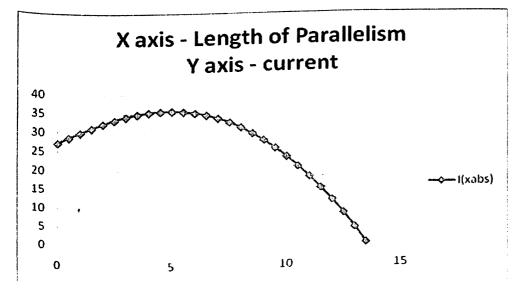


Figure no 11: Current distribution plot

4.13 Reference:

Power Systems Modelling and Fault Analysis, Theory and Practice-Nasser Tleis page number: 588 – 601

SECTION -03 STEADY STATE OPERATING CONDITION

5.1 Pipeline and Powerline specification : S-03

Length of parallelism : 23.00 KM

Distance of the tower from pipeline : 50m

Depth at which pipeline layed : 2m

Phase to phase distance : 7.5 m

KV rating: 380 KV

Type of circuit : Double circuit

Maximum operating current : 1200 Amperes

Coating thickness : 3.2mm

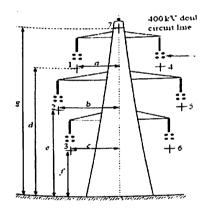


Figure no 12: Double circuit line considered

From the figure above f = 13m, a=6.93m, b=10.16m, c=8.33m

$$Dpr1 = \sqrt{(50 - 6.93)^2 + (13 + 2)^2}$$

= 45.60m

$$Dpy1 = \sqrt{(50 - 10.16)^2 + (13 + 7.5 + 2)^2}$$

$$Dpb1 = \sqrt{(50 - 8.33)^2 + (13 + 7.5 + 7.5 + 2)^2}$$

 $Dpr2 = \sqrt{(50 + 6.93)^2 + (13+2)^2} = 58.873 m$

Dpy2 = $\sqrt{(50 + 10.16)^2 + (13+7.5+2)^2}$ = 64.22 m Dpb2 = $\sqrt{(50 + 8.33)^2 + (13+7.5+7.5+2)^2}$ = 65.59 m Dpe = $\sqrt{(50)^2 + (13+7.5+7.5+7.5+2)^2}$ = 62.5 m

Dpr1, Dpy1, Dpb1, Dpr2, Dpy2, Dpb2 are the distance the R,Y,B phases of the tower line and the pipeline

Dpe is the distance between the pipeline and the earth line

5.2 Depth of Earth Return Current:

$$D_{\rm erc} = 658.87 \times \sqrt{\frac{\rho_{\rm e}}{f}} \,{\rm m}$$

Derc = depth of earth return current

Earth resistivity is denoted by $\rho e = 200$ ohm-m

Frequency f is in hertz; f = 60 HZ

Derc = 658.87 x $\sqrt{(200/60)}$ = 1202 m

5.3 Mutual impedance between the power line and pipeline:

$$Z_{\rm pj} = \pi^2 10^{-4} f + j4\pi f \, 10^{-4} \sqrt{\frac{\left[\log_{\rm e} \left(1 + 1.382 \frac{D_{\rm err}^2}{d_{\rm p}^2}\right)\right]^2}{4} - \frac{\pi^2}{16} \,\Omega/\rm km}$$

Zpj = mutual impedance between the conductors

F is the frequency = 60 HZ

Derc = depth of earth return current = 1202 m

Dpj = distance between the pipeline and powerline phases

Mutual impedances	Values	
Zprl	0.059+j0.245	
Zpyl	0.059+j0.244	
Zpb1	0.059+j0.236	
Zpr2	0.059+j0.226	
Zpy2	0.059+j0.219	
Zpb2	0.059+j0.218	
Zpe	0.059+j0.221	

Table no 13: Mutual impedance between pipeline and power line

Distance between the earth and phases of the transmission line

Distance	Values in m	
Der1	23.99	
Deyl	18.11	
Deb1	10.21	

Table no 14: Distance between earth and phases

Mutual impedance between the earth and phases of transmission line

Values	
0.059+j0.2935	
0.059+j0.1314	
0.059+j0.3576	
0.1136+j0.6988	
	0.059+j0.2935 0.059+j0.1314 0.059+j0.3576

Table no 15: Mutual impedance between earth and phases

Mutual impedances are represented in ohms/KM

5.4 EMF induced on the pipeline without earth:

 $-\mathsf{EMF}_{\mathsf{p}} = Z_{\mathsf{p}\mathsf{R}}I_{\mathsf{R}} + Z_{\mathsf{p}\mathsf{Y}}I_{\mathsf{Y}} + Z_{\mathsf{p}\mathsf{B}}I_{\mathsf{B}} \, \forall \mathsf{km}$

Ir = 1200 Amperes

Iy=-600+1039.2i Amperes

lb=-600-1039.2i Amperes

-EMFp = -9.2488800000001+14.94i Volts/Km

EMFp = 9.2488800000001-14.94i Volts/Km

Absolute value = 17.57 volts/km

5.5 EMF induced on the pipeline with earth:

$$-\mathrm{EMF}_{\mathrm{p}} = (Z_{\mathrm{pR}}I_{\mathrm{R}} + Z_{\mathrm{pY}}I_{\mathrm{Y}} + Z_{\mathrm{pB}}I_{\mathrm{B}}) - \frac{Z_{\mathrm{pE}}}{Z_{\mathrm{FF}}}(Z_{\mathrm{ER}}I_{\mathrm{R}} + Z_{\mathrm{EY}}I_{\mathrm{Y}} + Z_{\mathrm{EB}}I_{\mathrm{B}}) \,\mathrm{V/km}$$

EMFp = 35.2201801533966-50.5769783379711i volts/Km

Absolute value = 61.631 volts/km

5.6 Electrical characteristics of the pipeline:

5.6.1 Pipeline shunt admittance:

$$y_{\rm c} = \frac{2000\pi r_{\rm p}}{\rho_{\rm c} t_{\rm c}} + j \frac{\pi r_{\rm p} f \varepsilon_{\rm c} 10^{-6}}{9 t_{\rm c}} \,\mathrm{S/km}$$

Radius of the pipeline = rp = 0.5588m

Resistivity of the pipeline coating = $\rho c = 25 \times 10^{6}$

Thickness of the coating = tc = 3.2mm

Frequency = f = 60 HZ

Coating relative permittivity = $\varepsilon c = 5 \times 10^{-6}$

 $Y_c = 0.043 + j0.0182$ S/Km

5.6.2 Pipeline series impedance:

$$z = \frac{\sqrt{\rho_{\rm p}\mu_{\rm p}f}}{3.163r_{\rm p}} + \pi^2 10^{-4} f + j \left[\frac{\sqrt{\rho_{\rm p}\mu_{\rm p}f}}{3.163r_{\rm p}} + 4\pi 10^{-4} f \log_{\rm e} \left(\frac{D_{\rm erc}}{r_{\rm p}} \right) \right] \Omega / \rm km$$

Radius of the pipeline = rp = 0.5588m

Derc = depth of earth return current = 1202 m

Relative permeability of the metal = $\mu = 300$

Z = 0.0874 + j 0.6061 ohms/Km

5.6.3 Propagation constant:

Propagation constant $\gamma = \sqrt{(z * y)} / km$

And $\gamma = \sqrt{(0.0874 + j \ 0.6061)} \times (0.043 + j 0.0182) = 0.10324 + j 0.1339$

5.6.4 Characteristic impedance:

 $Z = \sqrt{(z / y)}$ ohms

 $Z = \sqrt{(0.0874 + j \ 0.6061) / (0.043 + j 0.0182)} = 3.152 + j 1.77925$ ohms

5.7 Distribution of voltage along the pipeline and powerline parallelism:



Figure no 13: shows the portion of pipeline parallel to powerline

$$V(x) = \frac{E_0}{2\gamma} [(2e^{-\gamma L} - e^{-2\gamma L})e^{\gamma x} - e^{-\gamma x}] V$$

Propagation constant is denoted by γ

L is the overall length of parallelism = 23Km

X which varies from 0 to 23Km

Eo is the EMF induced on the pipeline

V(x) shows the variation of voltages along the various length of parallelism

X	Ео	γ	L	Voltage
<u>x</u> 0	35.22018-50.576i	0.10324+0.1339i	23	217.6898
1	35.22018-50.576i	0.10324+0.1339i	23	201.9889
2	35.22018-50.576i	0.10324+0.1339i	23	185.905
3	35.22018-50.576i	0.10324+0.1339i	23	169.0636
4	35.22018-50.576i	0.10324+0.1339i	23	151.2392
5	35.22018-50.576i	0.10324+0.1339i	23	132.3662
6	35.22018-50.576i	0.10324+0.1339i	23	112.5718
7	35.22018-50.576i	0.10324+0.1339i	23	92.27395
8	35.22018-50.576i	0.10324+0.1339i	23	72.4739
9	35.22018-50.576i	0.10324+0.1339i	23	55.60746
10	35.22018-50.576i	0.10324+0.1339i	23	47.16045
11	35.22018-50.576i	0.10324+0.1339i	23	53.02146
12	35.22018-50.576i	0.10324+0.1339i	23	70.58361
13	35.22018-50.576i	0.10324+0.1339i	23	93.9586
14	35.22018-50.576i	0.10324+0.1339i	23	120.0376
15	35.22018-50.576i	0.10324+0.1339i	23	147.5167
16	35.22018-50.576i	0.10324+0.1339i	23	175.8263
17	35.22018-50.576i	0.10324+0.1339i	23	204.7323
18	35.22018-50.576i	0.10324+0.1339i	23	234.1994
19	35.22018-50.576i	0.10324+0.1339i	23	264.3418
20	35.22018-50.576i	0.10324+0.1339i	23	295.4052
21	35.22018-50.576i	0.10324+0.1339i	23	327.7581
22	35.22018-50.576i	0.10324+0.1339i	23	361.8843
23	35.22018-50.576i	0.10324+0.1339i	23	398.3723

5.8 Voltage to earth along the pipeline is tabulated as:

Table no 16: Voltage influenced along various sections of parallelism

5.9 Distribution of Current along the pipeline and powerline parallelism:

$$I(x) = \frac{E_0}{2\gamma Z_0} [2 + (e^{-2\gamma L} - 2e^{-\gamma L})e^{\gamma x} - e^{-\gamma x}]A$$

L is the overall length of parallelism = 9.30m

X which varies from 0 to 9.30 Km

Eo is the EMF induced on the pipeline

Zo is the characteristic impedance

		Г_	
Eo	γ		I(xabs)
35.22018-50.5769i	0.10324+0.1339i	23	66.83003
35.22018-50.5769i	0.10324+0.1339i	23	74.05259
35.22018-50.5769i	0.10324+0.1339i	23	81.21975
35.22018-50.5769i	0.10324+0.1339i	23_	87.97628
35.22018-50.5769i	0.10324+0.1339i	23	94.08882
35.22018-50.5769i	0.10324+0.1339i	23	99.39518
35.22018-50.5769i	0.10324+0.1339i	23	103.7756
35.22018-50.5769i	0.10324+0.1339i	23	107.1366
35.22018-50.5769i	0.10324+0.1339i	23	109.4022
35.22018-50.5769i	0.10324+0.1339i	23	110.5084
35.22018-50.5769i	0.10324+0.1339i	23	110.4001
35.22018-50.5769i	0.10324+0.1339i	23	109.0294
35.22018-50.5769i	0.10324+0.1339i	23	106.3539
	0.10324+0.1339i	23	102.3355
35.22018-50.5769i	0.10324+0.1339i	23	96.93933
	0.10324+0.1339i	23	90.13237
	0.10324+0.1339i	23	81.88238
	0.10324+0.1339i	23	72.15643
	0.10324+0.1339i	23	60.91945
	0.10324+0.1339i	23	48.13273
	0.10324+0.1339i	23	33.75247
	0.10324+0.1339i	23	17.72828
	0.10324+0.1339i	23	0.003068
	35.22018-50.5769i 35.22018-50.5769i	35.22018-50.5769i $0.10324+0.1339i$ $35.22018-50.5769i$ $0.10324+0.1339i$ $35.22018-50.$	35.22018-50.5769i0.10324+0.1339i23

5.10 Representation of current distribution along various section:

Table no 17: Current distribution

5.11 Plot for voltage variation along the various section:

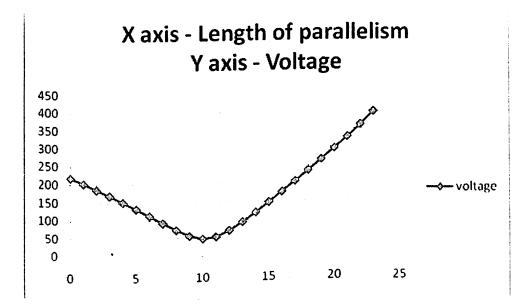


Figure no 14: Voltage variation along the section

5.12 Current distribution plot along the section:

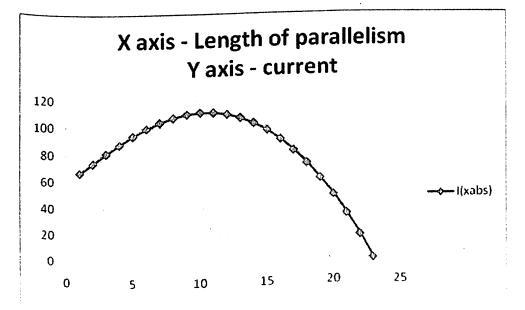


Figure no 15: Current distribution plot

5.13 Reference:

Power Systems Modelling and Fault Analysis, Theory and Practice-Nasser Tleis page number: 588 - 601

SECTION - 04 STEADY STATE OPERATING CONDITION

6.1 Pipeline and Powerline specification : S-04

Length of parallelism : 0.90 KM

Distance of the tower from pipeline : 50m

Depth at which pipeline layed : 2m

Phase to phase distance : 7.5 m

KV rating : 380 KV

Type of circuit : Double circuit

Maximum operating current : 1200 Amperes

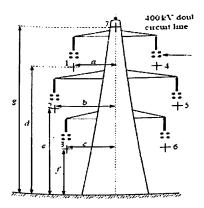


Figure no 16: Double circuit line considered

From the figure above f = 13m, a=6.93m, b=10.16m, c=8.33m

$$Dpr1 = \sqrt{(50 - 6.93)^2 + (13 + 2)^2}$$

= 45.60m

$$Dpyl = \sqrt{(50 - 10.16)^2 + (13 + 7.5 + 2)^2}$$

= 45.75m

$$Dpb1 = \sqrt{(50 - 8.33)^2 + (13 + 7.5 + 7.5 + 2)^2}$$

= 51.34m

 $Dpr2 = \sqrt{(50 + 6.93)^2 + (13+2)^2} = 58.873 m$

 $Dpy2 = \sqrt{(50 + 10.16)^2 + (13 + 7.5 + 2)^2}$

= 64.22 m

 $Dpb2 = \sqrt{(50 + 8.33)^2 + (13 + 7.5 + 7.5 + 2)^2}$

= 65.59 m

Dpe = $\sqrt{(50)^2 + (13+7.5+7.5+7.5+2)^2}$

Dpr1, Dpy1, Dpb1, Dpr2, Dpy2, Dpb2 are the distance the R,Y,B phases of the tower line and the pipeline

Dpe is the distance between the pipeline and the earth line

6.2 Depth of Earth Return Current:

$$D_{\rm erc} = 658.87 \times \sqrt{\frac{\rho_{\rm e}}{f}} \,{\rm m}$$

Derc = depth of earth return current

Earth resistivity is denoted by $\rho e = 200$ ohm-m

Frequency f is in hertz ; f = 60 HZ

Derc = 658.87 x $\sqrt{(200/60)}$ = 1202 m

6.3 Mutual impedance between the power line and pipeline:

$$Z_{\rm pj} = \pi^2 10^{-4} f + j4\pi f \, 10^{-4} \sqrt{\frac{\left[\log_{\rm e} \left(1 + 1.382 \frac{D_{\rm eff}^2}{d_{\rm pj}^2}\right)\right]^2}{4}} - \frac{\pi^2}{16} \, \Omega/\rm km$$

Zpj = mutual impedance between the conductors

F is the frequency = 60 HZ

Derc = depth of earth return current = 1202 m

Dpj = distance between the pipeline and powerline phases

Mutual impedances	Values	
Zpr1	0.059+j0.245	
Zpyl	0.059+j0.244	
Zpb1	0.059+j0.236	
Zpr2	0.059+j0.226	
Zpy2	0.059+j0.219	
Zpb2	0.059+j0.218	
Zpe	0.059+j0.221	

Table no 18: mutual impedance between power line and pipeline

Distance between the earth and phases of the transmission line

Distance	Values in m	
Der1	23.99	
Dey1	18.11	
Deb1	10.21	·

Table no 19: distance between earth and phases

Mutual impedance between the earth and phases of transmission line

3

Table no 20: mutual impedance between earth and the phases

Mutual impedances are represented in ohms/KM

6.4 EMF induced on the pipeline without earth:

 $-\mathsf{EMF}_{\mathsf{p}} = Z_{\mathsf{pR}}I_{\mathsf{R}} + Z_{\mathsf{pY}}I_{\mathsf{Y}} + Z_{\mathsf{pB}}I_{\mathsf{B}} \, \mathsf{V}\!/\mathsf{km}$

Ir = 1200 Amperes

ly=-600+1039.2i Amperes

lb=-600-1039.2i Amperes

-EMFp = -9.2488800000001+14.94i Volts/Km

EMFp = 9.2488800000001-14.94i Volts/Km

Absolute value = 17.57 volts/km

6.5 EMF induced on the pipeline with earth:

$$-\mathrm{EMF}_{\mathrm{p}} = (Z_{\mathrm{pR}}I_{\mathrm{R}} + Z_{\mathrm{pY}}I_{\mathrm{Y}} + Z_{\mathrm{pB}}I_{\mathrm{B}}) - \frac{Z_{\mathrm{pE}}}{Z_{\mathrm{FF}}}(Z_{\mathrm{ER}}I_{\mathrm{R}} + Z_{\mathrm{EY}}I_{\mathrm{Y}} + Z_{\mathrm{EB}}I_{\mathrm{B}}) \,\mathrm{V/km}$$

EMFp = 35.2201801533966-50.5769783379711i volts/Km

Absolute value = 61.631 volts/km

6.6 Electrical characteristics of the pipeline:

6.6.1 Pipeline shunt admittance:

$$y_{\rm c} = \frac{2000\pi r_{\rm p}}{\rho_{\rm c} t_{\rm c}} + j \frac{\pi r_{\rm p} f \varepsilon_{\rm c} 10^{-6}}{9 t_{\rm c}} \,\mathrm{S/km}$$

Radius of the pipeline = rp = 0.5588m

Resistivity of the pipeline coating = $\rho c = 25 \times 10^{6}$

Thickness of the coating = tc = 3.2mm

Frequency = f = 60 HZ

Coating relative permittivity = $\varepsilon c = 5 \times 10^{-6}$

Yc = 0.043 + j0.0182 S/Km

6.6.2 Pipeline series impedance:

$$z = \frac{\sqrt{\rho_{\rm p}\mu_{\rm p}f}}{3.163r_{\rm p}} + \pi^2 10^{-4} f + j \left[\frac{\sqrt{\rho_{\rm p}\mu_{\rm p}f}}{3.163r_{\rm p}} + 4\pi 10^{-4} f \log_e\left(\frac{D_{\rm erc}}{r_{\rm p}}\right)\right] \Omega/\rm{km}$$

Radius of the pipeline = rp = 0.5588m

Derc = depth of earth return current = 1202 m

Relative permeability of the metal = $\mu = 300$

Z = 0.0874 + j 0.6061 ohms/Km

6.6.3 Propagation constant:

Propagation constant $\gamma = \sqrt{(z * y)} / km$

And $\gamma = \sqrt{(0.0874 + j \ 0.6061)} \times (0.043 + j 0.0182) = 0.10324 + j 0.1339$.

6.6.4 Characteristic impedance:

 $Z = \sqrt{(z / y)}$ ohms

 $Z = \sqrt{(0.0874 + j \ 0.6061) / (0.043 + j 0.0182)} = 3.152 + j 1.77925$ ohms

6.7 Distribution of voltage along the pipeline and powerline parallelism:

Figure no 17: shows the portion of pipeline parallel to powerline

$$\mathcal{V}(x) = \frac{E_{o}}{2\gamma} [(2e^{-\gamma L} - e^{-2\gamma L})e^{\gamma x} - e^{-\gamma x}] V$$

Propagation constant is denoted by γ

L is the overall length of parallelism = 0.90Km

X which varies from 0 to 0.90Km

Eo is the EMF induced on the pipeline

V(x) shows the variation of voltages along the various length of parallelism

X	Ео	Г	L	voltage
0	35.22018-50.576i	0.10324+0.1339i	0.9	3.843959
0.1	35.22018-50.576i	0.10324+0.1339i	0.9	4.473626
0.2	35.22018-50.576i	0.10324+0.1339i	0.9	1,0.07281
0.3	35.22018-50.576i	0.10324+0.1339i	0.9	16.09708
0.4	35.22018-50.576i	0.10324+0.1339i	0.9	22.20247
0.5	35.22018-50.576i	0.10324+0.1339i	0.9	28.33573
0.6	35.22018-50.576i	0.10324+0.1339i	0.9	34.48097
0.7	35.22018-50.576i	0.10324+0.1339i	0.9	40.63161
0.8	35.22018-50.576i	0.10324+0.1339i	0.9	46.78429
0.9	35.22018-50.576i	0.10324+0.1339i	0.9	52.93702

6.8 Voltage to earth along the pipeline is tabulated as:

Table no 21: Voltage influenced along various sections of parallelism

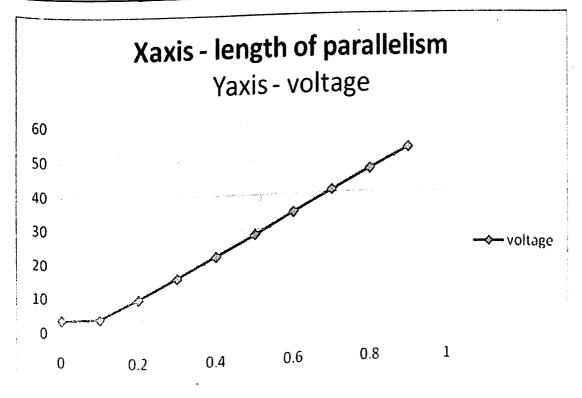
6.9 Distribution of Current along the pipeline and powerline parallelism:

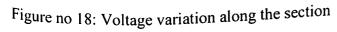
$$I(x) = \frac{E_0}{2\gamma Z_0} [2 + (e^{-2\gamma L} - 2e^{-\gamma L})e^{\gamma x} - e^{-\gamma x}]A$$

L is the overall length of parallelism = 9.30m

X which varies from 0 to 9.30 Km

Eo is the EMF induced on the pipeline


Zo is the characteristic impedance


X	Ео	γ	L	I(xabs)
0	35.22018-50.5769i	0.10324+0.1339i	0.9	1.060927
0.1	35.22018-50.5769i	0.10324+0.1339i	0.9	1.057631
0.2	35.22018-50.5769i	0.10324+0.1339i	0.9	1.025772
0.3	35.22018-50.5769i	0.10324+0.1339i	0.9	0.96528
0.4	35.22018-50.5769i	0.10324+0.1339i	0.9	0.876111
0.5	35.22018-50.5769i	0.10324+0.1339i	0.9	0.758235
0.6	35.22018-50.5769i	0.10324+0.1339i	0.9	0.611637
0.7	35.22018-50.5769i	0.10324+0.1339i	0.9	0.436308
0.8	35.22018-50.5769i	0.10324+0.1339i	0.9	0.232245
0.9	35.22018-50.5769i	0.10324+0.1339i	0.9	0.000831

6.10 Representation of current distribution along various section:

Table no 22: Current distribution

42

6.12 Current distribution plot along the section:

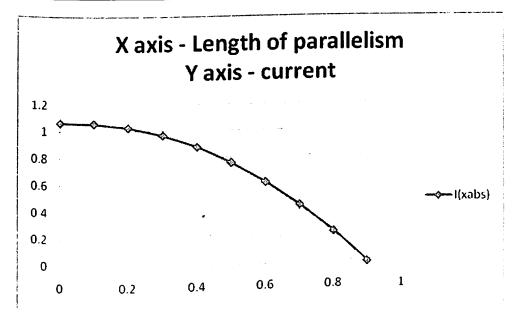


Figure no 19: Current distribution plot

6.13 Reference:

Power Systems Modeling and Fault Analysis, Theory and Practice-Nasser Tleis page number: 588 - 601

EMF INDUCED - FAULT OPERATING CONDITION

7.1 S-01 single phase to earth faulted operating condition:

$$k = 1 - \frac{Z_{\rm ER}}{Z_{\rm EE}} \times \frac{Z_{\rm pE}}{Z_{\rm pR}}$$

Mutual impedances	Values	
Zprl	0.059+j0.1920	
Zpr2	0.059+j0.1798	
Zer	0.059+j0.2935	
Zee	0.1136+j0.6988	

Table no 23: mutual impedances

K = 0.586629738976518+0.0182819790463379i

Induced EMF on the pipeline is given by

-EMFp = Zpr*If*K volts/Km

If is the fault current = 25.5 KA

-EMFp = 1591.83926943992+5616.7883672129i volts/Km

Absolute value = 5832 Volts/Km

7.2 S-02 Single phase to earth faulted operated condition:

Mutual	Values
Mutual impedances Zpr1	0.059+j0.1920
Zpr2	0.059+j0.1798
Zer	0.059+j0.2935
Zee	0.1136+j0.6988

Table no 24: mutual impedances

K = 0.586629738976518 + 0.0182819790463379i

Induced EMF on the pipeline is given by

-EMFp = Zpr*If*K volts/Km

If is the fault current = 31.5 KA

-EMFp = 1966.38968577872+6938.38563008652i volts/Km

Absolute value = 7211.649 Volts/Km

7.3 S-03 single phase to earth faulted operating condition:

Mutual impedances	Values	
Zpr1	0.059+j0.245	
Zpr2	0.059+j0.226	
Zer	0.059+j0.2935	
Zee	0.1136+j0.6988	

Table no 25: mutual impedances

K = 0.602145633416682 + 0.0209581886481039i

Induced EMF on the pipeline is given by

-EMFp = Zpr*If*K volts/Km

If is the fault current = 25.5 KA

-EMFp = 1560.13788619274+7295.1333197932i volts/Km

Absolute value = 7460.094 Volts/Km

S-04 single phase to earth faulted operating condition:

Mutualizzation	Values	
Mutual impedances Zpr1	0.059+j0.245	
Zpr2	0.059+j0.226	
Zer	0.059+j0.2935	
Zee	0.1136+j0.6988	

Table no 26: mutual impedances

K = 0.602145633416682+0.0209581886481039i

Induced EMF on the pipeline is given by

-EMFp = Zpr*If*K volts/Km

If is the fault current = 31.5 KA

-EMFp = 1927.22915353221+9011.6352773916i volts/Km

Absolute value = 9215.41 Volts/Km

7.4 S-04 single phase to earth faulted operating condition:

Mutual impedances	Values	
Zprl	0.059+j0.245	
Zpr2	0.059+j0.226	
Zer	0.059+j0.2935	

Table no 27: mutual impedances

K = 0.602145633416682 + 0.0209581886481039i

Induced EMF on the pipeline is given by

-EMFp = Zpr*If*K volts/Km

If is the fault current = 25.5 KA

-EMFp = 1560.13788619274+7295.1333197932i volts/Km

Absolute value = 7460.094 Volts/Km

7.5 Reference:

Power Systems Modeling and Fault Analysis, Theory and Practice-Nasser Tleis page number: 588 - 601

CONCLUSION & SUGGESTIONS

8.1 Conclusion:

Analysis of the alternating current (HVAC) transmission lines influenced on the pipelines are made. Voltage distribution and current distribution plot for the various sections of the pipelines are plotted.

EMF induced on the pipelines including earth wire and without earth wires are identified. Mutual impedances between the power line and pipelines serves as the inputs in identifying EMF induced on the pipelines.

Analysis is made for both steady state operating condition and also for fault operating condition. EMF induced on the pipeline when the fault arises on the pipelines are also identified based on the practical fault duration and fault current data.

8.2 Suggestions:

Better use of GPS coordinates & the photographs of each section of the transmission lines should be available for proper analysis. Better mapping of the pipeline by the use of Google earth can be carried out to make analysis faster and quicker.

8.3 Further Developments:

Effective software will be developed based on various tools like simulink, & Wavelet techniques in order to make the analysis more effective and efficient.

8.4 Reference:

IEEE Std 80-1986 IEEE Guide for safety in AC substation grounding, page no: 43 - 47

W.B.Kouwenhoven "Human safety and electrical shock", Electrical safetypractices,monograph,112, instrument society of America page no:93,NOV 1968

NACE RP-0177 mitigation of alternating current and lightning effects on metallic structure, page no: 2, 3

Power Systems Modelling and Fault Analysis, Theory and Practice-Nasser Tleis page number: 588 - 601