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A. OVERVIEW OF LEAK DETECTION

The methodologies used for leak detection cover a wide spectrum of technologies and
processes and are based on a number of different detection principles. They vary from
intermittent aerial inspections to hydrocarbon sensors to sophisticated real-time
monitoring. Each approach has its strengths and weaknesses. These strengths and
weaknesses are dependent on the application and the complexity of the pipeline system to
which the leak detection is applied. In combination with processes and procedures,
applying the appropriate technology (or technologies) is the key to an effective leak
detection system.

Classification of Leak Detection Technologies

Leak det;ction technologies can be classified according to the physical principles
involveq in the leak detection. Using this type of classification, leak detection systems
can be divided into the following four groups:

1. Physical Inspection - This type of leak detection involves either direct or remote
visual inspection to detect a leak.

2. Manual Tabulation - This type of leak detection includes direct monitoring of
pipeline flow and/or pressure for evidence of a leak. This may also involve manual
calculations to identify lost product.

3. Discrete Sensor-Based Technologies - Sensor-based technologies rely on the use  of
an external sensor to detect the escaping hydrocarbon liquid. These systems include, but
are not limited to:

* Liquid Sensing
* Vapor Sensing
» Acoustic emissions

4. Computational Pipeline Monitoring - Computational Pipeline Monitoring (CPM)
systems are distinguished from other leak detection systems by the use of an algorithm
that uses input from field sensors that monitor the internal pipeline parameters (e.g.
pressure, flow, temperature, frictional pressure drop, density, batch interfaces) to
determine when a leak has occurred. These systems include, but are not limited to:

» Over and short comparison .
* Mass balance with line pack correction:

- Line pack correction based on pressure and temperature sensors
- Line pack correction based on transient flow modeling

« Pattern of discrepancy in pressure/flow between model and measurement

* Rate of pressure/flow change
« Statistical methods those are not model-based
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« System identification methods based on digital signal analysis The operational
principle, data and equipment requirements, the strength, the weakness, and the realistic
performance limits (size, response time, location, false alarm) for leak detection methods
listed above are addressed in the subsequent sections of this report.

Evaluation of Leak Detection Systems

Each leak detection system is unique based on the pipeline on which it is used. As such,
the capabilities of the system and the degree to which it mitigates risk to high
consequence areas (HCAs) must be evaluated for each pipeline system. More
sophisticated systems will have more unique capabilities. The criteria used to evaluate the
capability of an installed leak detection technology may include, but are not limited to,
the following:

1. Leak Size or Leak Flow Rate - What is the minimum leak size that the system is
capable of detecting? A leak is detectable only when its’ effect rises above uncertainties
in the variables being monitored (see Response Time below). The size of a leak is usually
expressed as a percentage of the throughput of the pipeline. Leak size is a function of the
size and shape of the opening (leak area) and the pipeline pressure. A leak can be either
constant in size, such as a pre-existing small leak, or variable over time, such as a sizable
leak that diminishes as the pipeline is depressurized.

2. Response Time - What is the time needed to detect a leak of a given size? Depending
on the leak detection methodology used, the response time can vary over a wide range.
For algorithms based on volumetric balance, the response time is related to the leak size.
This is because of the uncertainties in the variables involved. Uncertainties, or noise in
the variables used for leak detection, are always present. A leak can be detected only
when its effect, herein called leak signal, is discernable amongst noise. Since noise is
random in nature while a leak signal is not, over time, the accumulated noise remains at a
noise level while the accumulated leak signal grows in size. Eventually, the accumulated
leak signal rises above the noise and becomes detectable in a probabilistic sense (see
False Alarms and Misses below). A minimum time period exists for each minimum
detectable leak. A curve that relates minimum detectable leak size to response time is a
leak threshold curve for this leak detection methodology. Two such leak threshold curves
are shown in figure 2-1 to illustrate the general trend. Given an uncertainty level, larger
minimum detectable leaks have a shorter response time. A smaller uncertainty in the
variable results in a tighter threshold. It takes less time to detect for a given size leaks if
the uncertainty is reduced. Small leaks with size approaching the combined no
repeatability of instrumentation has a very long response time. Such leaks can only be
determined by physical observations. For leak detection methods based on discrepancy
patterns generated from a real-time transient flow model, the response time is not a
function of leak size. Instead, it is a function of the propagation speed (about 3000 to

4000 ft/s) of a pressure disturbance and the distance between the leak and the nearest
pressure or flow sensors.

.
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Fisure 2-1 Detectable Leak Size Versus Response Time

3. Leak Location Estimation - Can the system locate a leak and what is the accuracy of
the location estimate? The relevance of this criterion is to aid pipeline operator 1eSponse
to a leak in leak mitigation. Loeation ean be estimated based on the time of arrival of a
leak disturbance at a pair of sensors. Figure 2-2 indicates a leak occurring at time t0. This
leak generates a local pressure drop, which then propagates both upstream and
downstream. If this signal is picked up by pressure transducer A at time t1 and by
pressure transducer B at time 2, then the leak can be located. This approach requires
either a fast data scan rate or the time of arrival at the transducers is registered by data
collectors and later transmitted to the control center.

4. timB
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preasure leak  pressure

geisor B sensor A

Figure 2-2 Locating a Leak by the Time of A rrival of a Leak Signal
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Alternatively, a leak can be located by the profile of the piezometric head, also known as
the hydraulic grade line. Figure 2-3 shows a pipeline with its inlet and outlet pressures
held constant. The dotted profile is associated with the steady state flow prior to a leak.
The solid profile is the hydraulic grade line after the transients caused by the leak have
damped out and a new steady state is established. The leak steepness the upstream
hydraulic grade and flattens the downstream hydraulic grade. The effectiveness of this
approach relies on multiple pressure sensors along the pipeline so that segments of the
hydraulic grade line can be defined after a leak has occurred
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Figure 2-3 Locating a Leak by the Piezometric Head Profile

4. Release Volume Estimation - Does the system have the ability to determine the
volume of liquid released? Reasonably accurate release volume estimation is possible for
CPM methods where a mathematical model for transient flows is used. By using the
measured pressure and flow from each end of a pipeline segment, the leak flow rate as a
function of time can be calculated. Less accurate release volume can be estimated if a
CPM method tracks the mean volume or mass imbalance (line fill change minus the
difference between inflow and outflow). When a leak is detected, the volume or mass
imbalance prior to and after the leak can be used to estimate the release volume over
time.

5. Detecting Pre-existing Leaks - Does the system have the ability to detect between
preexisting leaks, as well as, the onset of a new leak? Some CPM approaches depend on a
change in one or several parameters to detect the onset of a leak. Such approaches will
not be able to detect a leak (usually small) that is in existence before the CPM is
activated.

6. Detecting a Leak in Shut-in Pipeline Segments - Does the system have the ability to

detect the onset of a leak in a shut-in pipeline segment? The detection of a leak under
such a situation is a matter of monitoring line fill change and discerning variations due to
environmental temperature variations and/or due to a leak. CPM methods based only on

metered inflow outflow comparison will not be able to detect a leak in a shut-in pipeline
segment.
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7. Detecting a Leak in Pipelines in a Slack Condition During Transients - Does the
system have the ability to detect a leak in pipelines under a slack condition during
transients? Liquid vaporizes when its pressure is sufficiently low. A pipeline is slack if
vaporization occurs. A pipeline can be slack under both steady state and transient flow
conditions. Leak detection on a slack line under transient conditions is difficult because
the uncertainty in line pack change due to vaporization is large. '

8. Rate of False Alarms and Misses - What is the false alarm rate for the system? There
are many sources of uncertainty in the data that drive the CPM algorithm. These sources
include hydraulic noise, non-repeatability of field sensors, uncertainties introduced by the
data collection and communication system (analog-to-digital conversions, data timing),
uncertainties in batch positions for product lines, and the state of flow (steady, drifting, or
transient). As a result, the output from the algorithm is also uncertain. This uncertainty
can be a significant issue facing the CPM technologies. To illustrate this issue, consider
the volume imbalance as the algorithm output. In terms of standardized volumes, subtract
the change of line fill over a time period from the difference between inflow volume and

outflow volume over the same period. The result is the volume imbalance. A positive
imbalance means a leak. Refer to Figure 2-4 where the estimated imbalance is plotted
against the true imbalance. Had the estimations been perfect, all points should fall on the
45-degree (diagonal) line. However, because of uncertainties, the points will be scattered
around the diagonal line. Points above the diagonal represent under-estimation of the
imbalances, while points below the diagonal represent over-estimated imbalances.

estimated
thresholds
ABC
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| | .
| | ;
@ misses 1 | 1 leake
o + i i 3
& am 1
¥ 0 1l true
E H 1 threshold
B 21 | Malse
g - | noleak I ialarms
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estimated imbalance

Figure 2-4 False Alarms, misses, and leak thresholds
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The estimated imbalance versus true imbalance plot in Figure 2-4 is divided into four
quadrants by the horizontal line labeled “true threshold” and the vertical line B that is the
“perfectly estimated threshold.” In reality, the true threshold is unknowable and the
estimated threshold is determined empirically (by tuning, for example). Scatter of the
points near the center of the plot gives rise to false alarms (for those points falling into
quadrant IV) and misses (for those points falling into quadrant II). Notice that false
alarms and misses occur even when the estimated threshold is perfect. For this reason,
and given the fact that variable uncertainties are unavoidable, CPM is not the appropriate
technology for detecting very small leaks. However, given the practical limitations of
various other technologies, CPMs may be applied as long as their performance
limitations are understood and acceptable to the pipeline operator. Given the scatter in the
estimates, the frequency of false alarms can be reduced by raising the estimated threshold
(vertical line C). In so doing, the chances of misses (leaks not detected) increase.
Lowering the threshold (vertical line A) reduces the chances of misses at the expense of
increasing the frequency of false alarms. Periods of greater line fill uncertainty occur
when the pipeline is undergoing transients due to planned pipeline operations, such as
pump startup and valve swings. To reduce the occurrence of false alarms, the leak
threshold may be raised temporarily during such periods. Having the flexibility to raise
the leak threshold can be an advantage, provided the operator understands that this is
done at the expense of increased chances for misses (see Availability below).

9. Sensitivity to Flow Conditions - Will operational transients (such as those caused by
pump startups or valve swings) degrade the ability to detect a leak? A pipeline seldom
operates at a true steady state. This is especially true for long lines with numerous booster
pump stations and delivery terminals. The line fill changes as a result of transients.
Volume balance methods that do not compensate for line fill change accurately will be
excessively sensitive to the flow conditions. The uncertainty in line fill induced by even
mild transients can routinely exceed the combined non-repeatability of flow
measurements in short time intervals. Transients generated by pump startups, shutdowns,
and valve swings also put extra demands on the data collection system since data polling
frequency and timing skew can become issues of concern. Shorter data sampling periods
help to discern leaks in such a situation.

10. Robustness - Will degradation or malfunction of a system component cause
catastrophic loss of leak detection ability? This criterion measures how gracefully the
leak detection capability degrades when system components malfunction. It also
measures a system’s ability to function in complex pipeline configurations when not all
the needed information is available. Pipeline operators should be alerted at the first sign
of degradation so that restoration efforts can be initiated, and catastrophic loss of leak

detection ability can be avoided.

11. System Self Check - Will the leak detection system have the capability to
automatically check and possibly rectify parameters that affect leak detection
performance? Will it have the capability to detect and locate non-functional or degrading
field sensors and alert pipeline operators?
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12. Ability to Handle Complex Pipeline Configurations - What is the ability of the
system to handle complex pipeline configurations as well as complex operations?
Complex systems may include multiple injection and delivery points, or multiple modes
of operation. These may complicate CPM due to needed model (i.e. algorithm)
refinements, increased data requirements, and increased uncertainty when the needed data
is not available.

13. Availability - Is the leak detection algorithm active around the clock? To avoid false
alarms, some CPM systems that can not handle transient flow conditions usually increase
the detection threshold until the operational transients have passed. Since a leak is equally
likely (or even more likely) to occur when a pipeline is an experiencing transient, the leak
detection function is considered unavailable during periods of raised leak threshold. The
percentage of time during which operational transients exist is an important factor in
selecting the appropriate CPM method.

14. Retrofit Feasibility - What is required to install a new leak detection system and/or
methodology on an existing pipeline? An upgrade requiring modification to or addition
of, field sensors may be less feasible than one that only requires software modifications.
Algorithms that require a prolonged period of on-line parameter tuning are more difficult
to retrofit.

15. Ease of Testing - AP 1130 “Computational Pipeline Monitoring” recommends that a
leak detection system be tested during commissioning and every 5 years thereafter. As a
result, ease of testing to affirm leak detection capability is a relevant criterion. Can the
system be tested with pre-existing leak test data, as well as, by actual withdrawal?

16. Cost - What is the cost of the system including capital and operatignal expenses, as
well as, data and equipment requirements?

17. Ease of Personnel Training - How are personnel trained on the operation and
maintenance of the system? Is the system easy to operate? Complex systems requiring a
high level of training may not afford the same level of leak detection capability when the
human interface is considered.

18. Ease of Maintenance - What are the maintenance requirements for the system? Will
the system degrade with improper or missed maintenance tasks?
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Standards for Leak Detection Systems

Several industry consensus standards have been developed to address the selection,
design, operation, and maintenance of leak detection systems. These standards include:

Tuble 2- Industry Leak Detection Standards

Standard Revision Title

APL A L Secend T dien | Comspatational Pipehne Momenng
Novenibey 2002

ALt Novamber 1893 | Pipehne Vasiabic Uincertanniies and Thetr Litect~ on Lok

Detectadnhiny

APl HIAS First Lditam Eaalisation Methodoopy for Seliware Bused Leak Daetection
Febriny 1995 1 Sastemis
APL Hon Fiest Fditiam Managing System Inteerits Ton Hazardous Daguid Pipelines

November 2001

Of the consensus standards, API 1130 has been incorporated by reference into 49 CFR
195. Specifically, section 195.134, “CPM leak detection” under Subpart C - Design
Requirements, states:

“This section applies to each hazardous liquid pipeline transporting liquid in single
phase (without gas in the liquid). On such systems, each new computational pipeline
monitoring (CPM) leak detection system and each replaced component of an existing
CPM system must comply with section 4.2 of API 1130 in its design and with any other
design criteria addressed in API 1130 for components of the CPM leak detection
system.”

Section 195.444, “CPM leak detection” under Subpart F - Operation and Maintenance
Requirements, states:

“Each computational pipeline monitoring (CPM) leak detection system installed on a
hazardous liquid pipeline transporting liquid in single phase (without gas in the liquid)
must comply with API 1130 in operating, maintaining, lesting, record keeping, and
dispatcher training of the system.”

-10 -
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For the purpose of the regulations 49 CFR 195.2, “Definitions” defines CPM as follows:

“Computation Pipeline Monitoring (CPM) means a software-based monitoring tool that
alerts the pipeline dispatcher of a possible pipeline operating anomaly that may be
indicative of a commodity release.”

-11 -
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B.

PROBABILISTIC LEAK DETECTION IN
PIPELINES USING THE MASS IMBALANCE
APPROACH

Typically, models of pipelines and pipe networks are calibrated to metered data by
optimizing the choice of parameters according to some penalty function. This approach
does not provide a natural way to assess the predictive uncertainty when these models are
used to infer the presence and description of a leak. This report describes a fully
probabilistic approach in which the activities of calibration and prediction are unified,
using the mass-imbalance approach to leak detection as an example. The resulting
probability distribution over leak location and size can be presented graphically, or it can
be used within an optimal decision framework to compute an effective response taking
uncertainty into account. The approach is generalized to different leak-scenarios,
including multiple leaks.

Keywords: BAYESIAN, FRICTION FACTOR, RANDOM FIELD, CALIBRATION,
CALIBRATED PREDICTION

-12 -
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1 INTRODUCTION

The development of methods for the detection of leaks in pipelines and pipe networks
continues to be a very active research area (see, e.g., Mays, 1989; Pesta and Cassley,
1992; Mears, 1993; Mukherjee and Narasimhan, 1996; Rajtar and Muthiah, 1997, and the
references below). Many proposals have the same underlying structure: to solve an
inverse problem subject to parametric uncertainty and measurement error. The accepted
approach appears to be to formulate the problem as an optimization. Kapelan et al.
(2003a) provides a recent example (see also Purdar and Liggett, 1992; Kapelan et al,,
2003b, and the references therein). In this report a model of a pipe network is
parameterized by leak coefficients at each node and by Weisbach friction factors for each
leg. Pressure observations are supplied for a subset of the nodes, and the sum of the
squared differences between the observations and the physical model output is minimized
over the possible values of the parameters. The result is a point estimate for the friction
factors and the leak coefficients. In general a great deal of ingenuity is required to make
this problem solvable in a practical sense, allowing that the optimand may be a rather
irregular function of the parameters. For example, Kapelan et al. (2003a) propose a
hybrid method combining the traditional Gauss-Newton approach with genetic
algorithms.

It is not hard to see the deficiency in optimization approach, even in the cases where
sufficient resources are available to ensure that a solution is found and that solution ‘s
indeed a global optimum in the parameter space. The point estimate conveys no measure
of uncertainty. While there are generalizations that use the curvature of the optimand to
infer a variance matrix (following a maximum likelihood approach), this type of
approximation is only valid in the presence of large amounts of effectively-independent
data: something that is seldom the case in the case of pipelines or pipe networks.

We need, however, to make a careful appraisal of uncertainty, because the detection of a
leak is only the first stage in a complex decision about how to proceed. Decisions of this
nature, i.e. potentially costly decisions made under uncertainty, are best approached
within a decision theoretic framework in which actions are selected based on both
probabilities and consequences (se€, €.8-» Lindley, 1985; Clemen, 1996; Bernado and
"Smith, 1994). What we would really like to compute in this situation is a joint probability
distribution over leak location and size, taking account of parametric uncertainty and
measurement errors, and also taking account of expert knowledge about the ways in
which the particular pipe network might leak.

It may be argued that the probabilistic approach is simply too difficult, and the
formulation of the leak detection problem as an optimization is a practical compromise
although, interestingly, this point is seldom made explicitly. This paper seeks to
challenge this view, demonstrating how a simple leak detection approach the mass
imbalance method can be made fully probabilistic, and showing the kinds of results that

-13 -
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can then be derived. The mass-imbalance approach is used because its simplicity lends
itself to a clear exposition of the key features of the probabilistic approach, but it should
be clear that the method could be extended immediately to more complex systems such as
pipe networks.

The key point of this report is that the probabilistic approach is a natural generalization of
the optimization approach, or, to put it another way, the optimization approach is actually
the probabilistic approach but with very strong (and, one might add, unrealistic)
assumptions about the distributions of the uncertain quantities. Therefore methods that
are currently formulated as optimizations can be made probabilistic quite
straightforwardly, and, if necessary, in stages. Powerful computers and recent advances
in inferential calculations, such as Markov chain Monte Carlo sampling , have helped to
make fast probabilistic inference possible. These types of stochastic techniques can be
improved by a first-stage optimization in order to select an efficient proposal distribution,
which is another way in which the probabilistic approach can be seen as a generalization
of the optimization one.

The outline of the report is it describes the steady state behaviour of a pipeline with a
leak, and the deterministic mass imbalance leak location method; a full list of notation
used in this and subsequent sections is given at the end of the report. It describes the
sources of uncertainty, and how they may be accommodated within a probabilistic
approach to leak description using the mass imbalance method. This includes a
demonstration of two ways in which the probabilistic approach can be used to generalize
the deterministic one. The report describes how we might describe the engineer's
knowledge about the Weisbach friction factor, which is often the major contributor to
parametric uncertainty. This is treated as an uncertain function, or random field, along the
pipeline. It provides a simple example, demonstrating one way in which probabilistic
information about leak location and leak size may be presented. This also illustrates that
reasonable choice for the distributions of the unknown parameters can give rise to a large
amount of uncertainty about the leak. It generalizes the probabilistic model used to
describe the engineer's knowledge about the ways in which the pipeline might leak, to
encompass leak detection and leak attribution.

-14 -
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The steady state equation for a non-leaking pipeline is

AL 2 v
H—TQ—Q'—EQQ—D (]8)

where H is the upstream piezometric head. L and D the pipeline length and pipe
diameter, v the velocity (assumed to be positive), g the gravitational acceleration,
the downstream valve coefficient, and

& . oL
ﬂ'f'l“.'=/ Fiade TR
o

Where f(x) is the Weisbach friction factor at location * = " L.. This friction factor is
allowed to be non-constant along the pipeline, according to variations in pipe roughness.
In (1a) the first term H is the total head available, and the second and third terms describe
how that head is dispersed by friction along the pipeline, and by the valve at the
downstream end of the pipeline. Details may be found in, e.g., Massey (1989) or Wylie
and Streeter (1993). Eq. (1) is one of the simplest configurations of a pipeline, in terms of
its boundary conditions and its lack of features such as additional valves, or constrictions
such as bends or variations in pipe diameter. This simplicity aids presentation, but it is
not a restriction on the application of the probabilistic approach described below. The
probabilistic approach can be generalized in exactly the same way as the physical model,
since it sits “on top' of the physical model.

. {=40,L) . .
If we introduce a single leak at location (©.L , then we can describe the loss of liquid

through the leak with an orifice equation

vty o= V“th{'!j—. {2n)

Where vo and vL are velocities at the upstream and downstream ends of the pipeline, is a

lumped coefficient representing leak size and discharge coefficient, and Y s the
piezometric head at the leak location. The steady state equation is now

.

~

It

PO ps PO g (20s)
D 2y D2y 2

hit;

-~
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Where the second and third terms represent the head dispersed by friction above and

below the leak at?, and #'¢} is indicated. The friction factor is taken to be invariant to the
changes in fluid velocity that follow the onset of the leak. In other words velocity is
sufficiently high or the pipe sufficiently rough that the flow is fully turbulent, to the
extent that even a large leak does not affect the Reynolds’s number sufficiently to impact
on the friction factor. Alternatively, we could restrict attention to small leaks, for which
voand vL remain close to v, the pre-leak velocity.

Taken together, (2) gives us three equations in the three unknowns v0, vL and ROIF
we had precise values for the other parameters, we could solve for these unknowns
exactly. For leak detection, however, we need to solve a different problem, because the
leak is the unknown. This report considers the mass imbalance approach , in which we
infer the leak location from information about v0 and vL. With these two data we can

) ’I ) . . N . . .
solve (2b) for **“, which'we can then invert to find , since * * is continuous and strictly
increasing. The key question is how best to proceed when we do not have precise values
of the other parameters. In the next section we treat this question in terms of probabilities.

2 INFERENTIAL CALCULATIONS

2.1 SOURCES OF UNCERTAINTY

There are three sources of uncertainty when applying the mass imbalance approach. First,
measurement uncertainty. The values v0 and vL are not necessarily the true steady-state
velocity values, owing to transient fluctuations in the fluid, and to measurement errors.
The same could be said for the piezometric head H, but in this report we are treating this
as known, for simplicity. We can remove the effect of transient fluctuations by time-
averaging, because transient behavior in an incompressible fluid tends to die away
rapidly. This assumption is common in steady-state methods (Mukherjee and Arasimhan,
1996). However, the restriction to steady state is not a necessary condition for a
probabilistic treatment: Rougier and Goldstein (2001) derive a fully-probabilistic
treatment of transient fluid behavior, useful in situations where the boundary conditions
are constantly changing, or where the transients reflect extreme events like rapid valve
closure. Removing transient effects leaves systematic meter bias as the main source of
measurement uncertainty, for example mis-calibration or externally driven bias such as
the effects of changes in ambient temperature. These tend to vary slowly in time to the
extent that they can be treated as unknown constants for real-time monitoring,.

The second source of uncertainty is parametric uncertainty. At any point in time we may
not know the exact setting of, say, the downstream valve. More generally, we cannot ever

know the function” { '}, which is effectively an infinite dimensional parameter (i.e. one for
which no finite set of measurements will ever be sufficient). Furthermore, we seldom
know, before the event, the location and size of the leak, should one occur.

-16 -
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The third source of uncertainty is model uncertainty, also termed model inadequacy. Our
model, described by (1) in the absence of a leak, is not a perfect analogue for the
underlying pipeline. To put this more formally, we cannot imagine making precise
measurements of the parameters with the property that the model evaluated at those
parameters would give an exact match with precise measurements of pressure and flow.
To give one example, we do not know how to make a precise measurement of the
‘relative roughness' of a pipe, which is an abstraction of a much more complex
phenomenon.

The treatment of model inadequacy is a rapidly developing area in statistics (see, e.g.,
Kennedy and O'Hagan, 2001; Craig et al., 2001; Goldstein and Rougier, 2004; Higdon et
al., 2004), with direct implications for both model calibration and prediction. The
simplest approach, which we will adopt here for convenience, is to accept the strong
constraint. This states that although we know our model to be imperfect, we still believe
that somewhere in the parameter space there is a combination of values that would make
our model a perfect match for the pipeline itself. This is consistent with optimization
approaches to calibration, which are prevalent in leak detection, as discussed in the
Introduction. The less restrictive model, sometimes referred to as the best-input model
(Rougier, 2004), is a straightforward generalization that can be added into the
probabilistic approach below, when the strong constraint is deemed inappropriate.

2.2 THE PROBABILISTIC MASS IMBALANCE APPROACH

We recast the mass imbalance approach in probabilistic terms. The task is to infer the
distribution of leak location f and leak coefficient  conditional on imperfect
observations of the upstream and downstream velocities, and taking account of our
uncertainty about the valve coefficient * and uncertainty about the friction factor, which

. I
leads to uncertainty about o

The first point to note is that we if we have two velocity meters we should have more
than two velocity observations: potentially we have four. Prior to the leak occurring we

have the measurements of and 17 where the superscript ‘0' indicates that no leak has
occurred. Since both velocities should be equal to v, any difference between them must
be on account of systematic meter bias. Denote the biases as

. 4 R
o nad g, so that vy v b ad v U e Then after the leak occurs we have two
different measurements, but the same systematic biases. In other words,
.l . B :l ty e . N . . .
Ty oty s UL VLR G ere the superseript 1" indicates the presence of a single

* 5
leak. We can choose to disregard the measurements of v and 4 just as the deterministic
mass imbalance approach does, but the probabilistic approach allows us to include these
data, and we would expect them to be informative because they can help us to “correct'
our prediction to take account of meter bias.
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In this subsection, however, we use only the post-leak values vo nakd . g stay as close
as possible to the deterministic mass-imbalance method, and to give the clearest possible
explanation of the general probabilistic approach. In subsection 3.3 we generalize to
include pre-leak values as well.

: - il Rl
Our objective is to compute Pr{t.> @71} \yhere the observed values of random
variables are denoted with an over bar. However, in order to make use of the physics in

(2), we need to introduce additional uncertain quantities, namely pidd ptldand 6. po,
simplicity we eliminate h(l) using (2a) and (2b), to give

1

‘ f‘) it p{“ l‘;’) -
o =l Geg)

Writing

05 (b ply, gl By k). 02 (o). and V3 (udoe}) {-£)

For reasons that will be explained immediately below) the predictive Probability Density
Function (PDF) becomes

Pr(o.c V)« ePr(0.cV’ Ve e P (Y V7 00) Prte) {3)
where

¢ EPr(v V) 'and ¥ are the observed values of V. The equivalence follows from the
definition of conditional probability, and the following equality is a factorization of the
joint distribution that is often referred to as Bayes's Theorem, the two PDFs being the
likelihood function and the prior distribution, respectively. In practice we seldom need to
compute the normalizing constant ¢ explicitly, and so we can ignore it in what follows.

The problem is that (5) is not easily computable, because the likelihood function is
regenerate: it is zero almost surely for reasonable choices of (") because when we puta
choice in (2b) and (3) along with the two values in V' these two equations will not hold
simultaneously (technically they will hold only on a set of measure zero). This requires
quite careful handling. We must choose two of our uncertain parameters to be constrained
by the physical model and the data combined. The natural choices are the two values in, ¢

because for given ¢ the two equations (2b) and (3) define a bi ejective mapping,

€ - . O {f):‘
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That is to say, if we are given' ¢ **1 V" we can solve for * and if we are given ¥ #nd s
Yy

we can solve for V. This may not be obvious. The reason is that using ” we can solve
(2b) and (3) for {0 ¥4} Then we can either compute ¢ using
V’ Or‘ Usill}.{ (., Since

‘,' . (!1“. I:L} e (-’)

Denote by 7 the solution values for  #ing 1" #t the given ¢ The predictive distribution is
not affected if we remove from the prior PDF regions of the parameter space with zero
likelihood. Therefore we can express (5) as

Pr{n V)=ePr(V U udyMi(o) {8n)

where we have removed all non-compatible values of * by making  a deterministic

function o " Following on from (6), the event b g

event 7 #V) Making this substitution, the resulting form for the predictive
distribution

p 0and ¥ is equivalent to the

Pr(0 V) =ePric. i 0.V)Pr(o}. (8

If we want to simplify this further we have to make some additional choices about the

marginal distribution of (6.c). .An obvious simplification presents itself: the engineer's
knowledge about the meter biases is independent of his or her knowledge regarding the
other uncertain quantities. Taking this to be acceptable, we can simplify the predictive

distribution to

Prio V) =cPr{c.7)Pr(n) (sc)

where it is understood that the value ¢ is a function of ¢ and V' In other words, the
likelihood function for # is constructed from the engineer's knowledge about the meter
biases. Informally, the larger the biases are thought to be, the less informative the data in

¥ will be about # where ¢ includes the leak's location ¢ and size coefficient is
i T o 4 (1) X
Like the likelihood function, the prior distribution can also benefit from some quite

natural simplifications. First, the engineer's knowledge about the friction function ™ 1 is
very likely to be independent of his or her beliefs about the other uncertain quantities.
Similarly, the engineer's knowledge about the valve coefficient # is very likely to be
independent of the other uncertain quantities. Finally, the engineer's knowledge about the
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leak coefficient * is very likely to be conditionally independent of the other uncertain

quantities given the leak location,’. If these are acceptable, we can write the prior
distribution in (8c) as

Fr(ey  Piolio~ ples pllin)

= Pripttipths 1yPr(~ GyPr(i} Pris). i

We are taking the pipeline length L as known throughout, so the first PDF represents the

engineer’s knowledge about /* * at two known locations’ *™! * Note that the one
dependence that has been preserved in (9) is that of leak size on leak location. This
allows the engineer to incorporate the knowledge that leaks in certain locations are likely
to be bigger than others, for example those that occur in regions of seismic activity. More

details of this kind of statistical modeling are given in section 6. Using (8c¢) and (9), and

- _ (i.~).
specifications for the PDFs therein, we can turn the data ' intoa prediction for .=,
using standard probabilistic tools such as Monte Carlo sampling.

Note that the probabilistic approach can go where the deterministic one cannot: leak
location with a single meter. Suppose that we have just the downstream meter. Given -

. £ '—l
we still have a bijective mapping between and U1 a4n4 consequently we can compute
‘i and the predictive distribution for  becomes

Pr(t o)) =cPrie i) Prin) {100

. ;:: f 34l vl -1 iy K . . . R .
Where = P10 £)7 "r{V} is as given in (9). The amount of information that the

Prir)

ol . . .
observation U can contribute will depend strongly on the prior. For example, if

|
consisted of two widely separated narrow peaks then we would expect ‘L to be highly
informative, as it would typically select one peak or the other. On the other hand, if

et} . " B N B I
F1{f} was at over the interval ‘" It then we would expect that ‘'~ would not do much
more than put a bulge or a tilt into the predictive distribution of L.

2.3 USING PRE-LEAK MEASUREMENTS

We can follow the steps outlined in the previous section to incorporate the extra

a0 ) Y TR
information available in the observations 'L} We use the difference ‘v 'r. 0 "
and redefine the collection V as

V&) ) (11)
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We can write the relation between the observations V and the biases ‘ as

0o (o 11

Vi to .
5 = |1 + |1 . {12)
iy, £y

vl o1 41

') Cto Vo (

{1y j . 7.
As we can solve (2b) and (3) for o using“, we can map from given " using
(12). This mapping is not invertible, but we can use the structure of (2) that it is still
possible to map back from V to . We can write the left-hand side of (2a) as

. - H ’l 3
lu zL . ("(l‘ : (“1 {JI. ' (’.)
3
= 1:,} L‘;{ ey tg)

) [N B
o) pl" {1»}, : ",'.l {13

Which is a known value given V. Therefore we can solve (2a) directly for the value of .

h(l), which we can substitute into (2b) to solve for UL Once we have solved for '* we

N . o L K .
(A ! 2 . \l- lf.’l - g
can compute - I and then we can find "

Therefore we have shown once again that given 8 we have a bijective relationship

P P 14)

Where V is now the collection given in (11).

Therefore (8c) still holds under the new definition of !’ (being the observed values of the
new V). The collection ¢ has the same meaning, namely those values that are implied

by? and i"', but the procedure for computing * is different, and, in fact, simpler. No extra

« -}
. . . I b
input is required of the engineer, s0 the incorporation of the extra datum is

genuinely a ‘free upgrade'.
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2.4 LIKELIHOOD-BASED APPROACHES TO INFERENCE

It may be helpful to outline the statistical justification for the optimization approach so
that we can see how it could be extended to include uncertainty assessments regarding the
leak, and how this contrasts with probabilistic methods.

Optimization through minimizing a least-squares penalty function can be justified in
inferential terms using maximum likelihood (see, e.g., Pawitan, 2001). In general, the

Maximum Likelihood Estimator (MLE) * satisfies
= muxPr{e = 7) {13)

Remembering that © is a function of ? and V' We must assume that the meter biases are
gaussian, with known means and variances. Taking the means to be zero and denoting the
variance matrix as £, the MLE is then

0= m}xx{ &bl (16)
4

Where ' is the transpose of the vector ©. This is the (generalized) least square
formulation. However, in order to make inferences about the leak, i.e. to have more than

a point estimate for’, we ought to compute not the MLE but the profile likelihood
L{r.~) = ﬁn{x;v;} Pr(r = 7) (17)

Using this profile likelihood we can calculate a value for the variance of our estimates

for " ?) . although this calculation is not at all straightforward. The calculated value is
asymptotically correct in the limit as the length of € becomes large, and subject to
conditions on the approximate independence of the components of €. The problem is,
however, that for leak detection the measurements are seldom abundant and often
dependent. For the simple mass-imbalance approach, for example, we cannot feel
confident about an asymptotically justified measure of uncertainty based on only two
data. Therefore likelihood-based approaches would appear not to be particularly useful in
determining our uncertainty about 9.

Once we move away from likelihood-based inference in our search for measures of
uncertainty about the leak, it is natural first of all to consider the probabilistic case with a
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prior distribution for 6, subject to limits on the values of each of the components. In this
case we can treat the likelihood function as the predictive distribution, subject to
renormalization. No new choices have to be made (except for the limits), but the
treatment of the data is quite different. Rather than maximize the likelihood function for a
point estimate of 6, we would now sample from it (as described in section 5), or
summaries it directly by integrating over  to find the mean vector and variance matrix.

But at this point we may well ask whether at prior for 0 is really an adequate reflection of
the engineer's knowledge about the pipeline. The fully probabilistic approach provides
the engineer with an opportunity to incorporate his or her knowledge about the pipeline
into the inferential calculation. The engineer can adopt or feign ignorance and stick with
a prior, but this is a choice and not a mandatory part of the inferential process. For
example, if some leaks are believed to be more likely than others, then this information

can go into Fr (0) , likewise if some parts of the pipeline are believed likely to b.e rougher
than others, or small values for the valve coefficient are believed to be more likely than
large ones.

To summarize the argument in this subsection, the optimization-based approach to
choosing a point value for 6 does not generalize easily, if at all, to computing measures of
uncertainty. If we want such measures then we have to adopt a fully probabilistic
approach. Once we have made this step, the opportunity arises to incorporate the
engineer's knowledge into the inferential process, which we expect to improve our
assessment of 8 to the extent that the engineer's knowledge about the pipeline is well
founded.

3 MODELLING KNOWLEDGE ABOUT THE FRICTION
FACTOR

The previous calculations involve the PDF of ! at given locations along the pipeline.
The function™ ", defined in (1b) is uncertain because the Weisbach friction factor s
uncertain. This section explains why f might be treated as uncertain, and how f can be

modeled in a flexible manner so that the resulting solution remains tractable.

3.1 SOURCES OF UNCERTAINTY

The standard method to assess Tt {s to determine from experimental data the equivalent
sand-roughness of the pipe material, and then to determine, by fur}her experiment, the
relation between equivalent sand-roughness and the friction coefficient. In practice it is
uneconomical to perform these experiments, and so the results of standard experiments
are used instead, in the form of tabulated values or mathematical formulae (see, e.g.,
Colebrook, 1939). The consensus, as summarized by Massey (1989, p. 204) is that
accurate prediction of friction losses is thus difficult to achieve." As for the scale of the
uncertainty, Haaland (1983, p. 90) notes that the Colebrook-White formula “ . . . may be
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3-5 percent, if not more, in error as compared to experimental data", on top of which
should be added uncertainty about equivalent sand-roughness. As losses to friction will
dominate the other losses in many pipelines, this seems to justify a careful stochastic
analysis.

3.2 BELIEFS ABOUT THE FRICTION COEFFICIENT

The two requirements of a stochastic approach are (a) to find a way to model knowledge
about the friction coefficient along the pipe, and then (b) to turn this into

Pr{pird..... I R VU (18)

Where (X1 1o Xn )are any finite set of locations along the pipeline. This latter PDF is
required in the inferential calculations described in the previous section, for the special

case('r":'.'z) = [‘). But the more general treatment is useful in case we have access to
pressure readings at known locations along the pipeline, which we wogld like to
incorporate into our predictive distribution using the methods previously described.

The technical difficulties of part (b) will restrict the choices for part (a). In fact the only
tractable and non-trivial model for the friction coefficient is a gaussian random field. This

il } O

. . . 1S
model is parameterized by a mean function and a covariance kernel /

iy ZE(er) . sud gale i = Coe( i) f17)) {19

The mean function is the best guess for the point wise value of the friction factor along
. o .

the pipeline (it may, for example, be a constant). The covariance kernel *~ describes two

aspects of uncertainty about the difference between the actual friction factor and the

mean value. First there is the point wise uncertainty, i.c. how far the true value might
deviate from the mean value at each point. This is represented by the standard

deviation” jralr. ). . Second, there is the degree to which deviations at different points

are related, represented by the correlationt2!7: 7}/ v/ T ’ pralie’, -"'"'3: As we assume that
fis a gaussian random field the joint distribution of any finite collection is gaussian. This
is not ideal, as the gaussian distribution does not respect the constraint that f (x) > 0.
However, it will usually be the case that Pr (f(x) <= 0) is tiny, in which case the implicit
truncation of f(x) at zero will have no practical effect. The great p{actical advantage of
using a gaussian random field is that it follows that (18) is also gaussian.
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. . . of .
The mean and covariance of designated points on " are then given by
E(l’i:"‘) I} o= / jaizidz, awd
JU

P
(::.‘.'y" (l’( J'). ;)(.’l‘“) ."3 _!"l} B [ / ;J..p’: . :. ‘l !,:' f!:‘
Jiv Jag

3.3 CHOICES FOR THE COVARIANCE KERNEL

The simplest choice for %! s prale 0" == 8 This would be appropriate if there was
complete certainty about the friction coefficient at every location along the pipe. The next
simplest choice is ## 7"t =™ for some known quantity 6. This would be appropriate

if a single error-free measurement at any location in the pipe would be sufficient for
complete knowledge at every point in the pipe. In other words, there is perfect correlation
between f(x) and f (x’) for all x and x’. These two choices would appear to be
inappropriate for real-world pipes.

If knowing the friction coefficient at x was not sufficient for knowing the coefficient at
some other location x’ then the correlation between f (x) and f (x”) would have to be less
than one. If the point wise uncertainty was the same along the pipe and the correlation

depended only on the separation between x and x’ then the appropriate model would be a

. w{r )= ot ) . ]
stationary kernel of the general form /' 7! , where the function rid

must be positive definite. Here o describes the point wise uncertainty about the friction
coefficient, while "’ controls how the correlation between coefficients at two different

locations drops according to their separation. Essentially, i) controls the predictability
of f (x’) from knowing the value f (x).

‘ . . (.’ . . . . . .
More general specifications for' A are possible, in which the variance 1s not required

to be the same at all, points but depend upon the location, and in which correlation as a
function of distance also depends upon the location. These would be useful in the
presence of detailed beliefs about the behavior of the friction coefficient along the pipe.

The stationary case with appropriate selection of the function ") should be sufficiently

flexible to model general uncertainty.
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3.4 PRACTICAL ISSUES

In general the friction factor depends on both the equivalent sand-roughness and on the
Reynolds number. In this paper, however, we restrict attention to the case where the pre-
leak velocity is sufficiently large or the leak size sufficiently small that the friction factor
both before and after the leak can be modeled with a constant known Reynolds number.
Writing K (x) for the equivalent sand-roughness at location x and 'Re' for the Reynolds
number, we can use the Colebrook-White formula.

l 351 hir) .
_— Yk, ( . ) ol
N Y\ R fir 3D ’

To induce uncertainty about f (x) from uncertainty about K (x). Unfortunately f (x) is not
a linear transformation of K (x), and so we cannot assign a gaussian random field to

and then infer the mean function and variance function for I} directly. However, we can
use our point wise uncertainty about K (x) to induce point wise uncertainty about f (x).
The simplest way to do this is by sampling K (x) and then summarizing the transformed

values for f (x) in terms of the mean and standard deviation.

. . (. )
If we accept that a stationary random field is appropriate for fi , then there is a natural

. rg . . .
choice for ’, namely the Ornstein-Uhlenbeck correlation function

ridy = oxp (1) {22)

For T > 1. This correlation function generates quite ‘rough' sample paths (no pun
intended) that are continuous but not differentiable in the mean-squared sense. It has the

markov property that, for three locations X < X’ <x”,

Cov(f{x1. fix" fiz'y) =1
In other words if we knew the friction coefficient at x’ then also !mOWing ,t,he cqefﬁcient
at x would be of no additional help in predicting tpe coefficient at x”. This seems
appropriate for pipelines, in which both the original pipe roughness and thfe Subsequ.ent
internal surface degradation might be driven primarily by local factors. This correlation

function also has the attractive feature that we can compute the ¢

. ).
ovariance of  directly:

(23)

- . . C oy Tty o TR ;
Coulple). pia'y 2.2°) = {ojryin o 1

For’ - T This explicit form for the covariance helps to speed up the inferential
Cov(p(f). pily )

;aliulations because we need to compute

orl,

for every candidate value
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4 CALCULATIONS BASED ON MODEL

Consider the following example. Oil with kinematic viscosity 10°% m%s flows through a
cast-iron pipe D = 0:1m in diameter and L = 1000m long under a piezometric head
difference of H = 50m, terminating at a valve.

4.1 SPECIFYING PRIOR KNOWLEDGE

In order to treat the leak detection probabilistically, we need to specify the engineer's
prior knowledge about (a) the friction factor and the valve coefficient; (b) the likely
location and size of the leak; and (c) the velocity meter accuracy. In this subsection we
specify ‘reasonable’ choices that may be applied across a range of actual problems.

The PDF of the friction factor is chosen using the approach described in section 4.4,
based on knowledge about the relative roughness of cast iron. Before we do this we need
a typical value for the velocity, to compute the Reynolds number. This can be found from

(1) and (21), setting the valve coefficient ¥ and the equivalent sand-roughness hi to their
best guess values, for which we choose 49 and 0.25* 107 m, respectively. This gives a
velocity of 1.64 m/s, and a Reynolds number of 16.4 * 10°. This combination of
Reynolds number and relative roughness put the pipeline in the transition zone between
laminar flow and complete turbulence.

()
Using this Reynolds number we can sample a large number of values for f based on

uncertainty about hi ! We treat the marginal distribution of K (x) as invariant to x, and
assign it a Gamma distribution. The Gamma distribution is a simple but flexible choice

for strictly positive quantities; its PDF is given on next page
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Figure 12 The wasrginnl distribmtion of the Weishaeh friction factar (), based on
uncertainty ahout the squivalent sand-roughness of enst iron. The overlaid earve
shows n ganssian density funetion.

in eqrefeq:Gamma. For K1) e choose a mean of 0:25 * 107 and a standard deviation
one tenth as large as the mean. The resulting sample for the marginal distribution of f(x)

at any x is shown in Figure 1. A gaussian PDF is overlaid, showing that modeling St
with a gaussian random field is quite reasonable in this case. The mean and standard
deviation of f (x) are chosen to be 0.0316 and 0.396*10. The Ornstein-Uhlenbeck

correlation function, given in (22), is used to describe the spatial structure of fi ). The
value © = 0:513 _ 10_3is chosen, which gives a correlation of 0.95 at a separation of 100m

and 0.60 at 1000m.
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The PDF for the valve coefficient is chosen to be Gamma, with mean 49 and standard
deviation 7. This choice for ¥ corresponds to the belief that most of the head loss in the
pipeline is due to friction. Initially our beliefs about the leak location and size are taken to
be very simple. The PDF for  is chosen to be uniform on the interval (0,L), and the PDF

for | is chosen to be Gamma with mean 0.003 and standard deviation 0.003. This choice
for corresponds to the belief that the leak will be small, of the order a few percent of total
velocity. In section 6 we show how more careful modeling of the leak can be

implemented.

Finally, for our beliefs about meter accuracy we choose independent gaussian PDFs for

o aml oy o ) )
, with mean zero and standard deviation equal to 1 percent of typical velocity.

4.2 RESULTS

The predictive distribution of " is summarized using rc?jectipn sgmplmg. Simple
descriptions of the principles of this kind of sampling are given in Ripley (1987) a.nd
Smith and Gelfand (1992) while Robert and Casella (1999) provides further details,
including extensions to the Markov chain Monte Carlo (MCMC) approach.

. Pr {0}
The simplest form of rejection sampling is used. First, a point 1s sampled from .

Using this value and the data " we can compute *. as described in section 3, and then

the likelihood value ' ZF1(=7) The point is then kept or rejected with probability

V/IM, where
M - supPrc=7 0.V}, {24)
I
For M we can use Pric=m which we know is at least as large as the supremum

because * has a gaussian distribution with zero mean. All the calculations were carried

out in the R statistical programming environment.

) is summarized in terms of High Density Regions

(HDR). These are presented as isodensity contours boundlzlg Zﬂ ﬁrea contammgi g
designated amount of probability, in our case 95%, 50% and ZQ %. As tdese.]a;re 1::ompu e

from a finite sample they are estimates Q‘f the true HDR re.glons, auzl v?f S otut/ some
sampling variation. Samples of size 4%10° were used, as this seemed sutficient to give

Smooth sampled contours.

.3
The predictive distribution of (‘
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To generate some measurement data we set all uncertain values to their 70" percentile
values: this is rather arbitrary but it avoids any suspicion that the results have been tuned
in any way. The resulting leak descriptors are [/ = 700 and y= 0.0361, and the
measurements are

(59,70 50 el ) = (L.63. 1.63. L.66. 1.30). (23

When analyzing the results the focus should not be on whether the probabilistic approach
gets the prediction ‘right' or not, as this depends in part on how consistent the measured
data are with the engineer's prior knowledge: the choice of the 70w percentile is meant to
be representative of ‘moderate consistency'. What is more important is to geta feehpg for
the amount of uncertainty that remains in the predictive distribution, which is proxied by
the area of the HDRs. It is this uncertainty that the deterministic mass imbalance

approach leaves out.

The results for four different types of inference are shown in Figure 2. In the top left-

I3

-

hand panel we have the prior distribution of '’ ) . The iso-density contours fr(?m the true
joint distribution are directly computable in this case, and they are'shown using dashfed
lines, allowing us to get some feeling for the amount of variation induced by the finite

sample. In the other three panels we have the three variations discussed in section 3.

Taking the standard case first, in the bottom left-hand panel, we see that a large amount
(al gl

of uncertainty remains after using the data *™" 1) . Going by the 50% HDR, the leak

location is restricted to the range (300, 1000), and the leak. coefﬁcneqt .tO .the range

(00002; 0.005). While this represents 2 large decrease on the prior ranges, it nﬁdxcates that

the kinds of uncertainties we have chosen, which do not seem extreme, have a \;e}-y

Substantial impact on our ability to describe the leak. The key uncertainty in terms o its

Var(«] < b
impact on our predictive variance is the meter error {) for whlgh it could be argued
that our choice of a standard deviation of only 1% is rather conservative.

The upward slope of the iso-density contours in this panel indicates that the predictive

R iti is i f the orifice equation
L is positively correlated. This is a consequence 0 q

.. . (i,
distribution of *~ {1}

i€y omd ~ .
(2a). A given amount of leakage arises as 2 trade-off between ¢! T where is
" If our data are not strong enough to pin

. I
itself closely and positively related t0 : ouE
of predictive values in which increased

down either / "T 7 , then the result will be a range f
values for ¢ ° may be offset by increased values for .
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In the top right-hand panel we have the one-meter case, in which the datum is the single

observation ‘7'!'.. This is the case for which the mass imbalance method cannot give an
answer. Contrasting this panel to the two-meter case, we can see that the uncertainty, e.g.
as measured by the extent of the 50% HDR, ig much larger, although still much less than
the prior, particularly with regard to leak location.
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In the bottom right-hand panel we have the two meter case with pre- and post leak

ol ;o s
!L.l}.(‘-.;

observations, i.e. the dataset As mentioned in section 3.3 this is
effectively a 'free upgrade’ to the standard case in the bottom left-hand panel. What is
surprising is how much difference it makes: the 90% HDR is perhaps one-fifth the size of
that in the standard case. The reason is that, as mentioned above, the meter error is a key
factor in determining the predictive variance. The extra observation allows us to
vy o .
incorporate information directly relevant to that error, since ™M With the
effect of meter error reduced, the positive correlation between * and that arises from the

orifice equation is even more clearly visible.

5 LEAK DETECTION AND ATTRIBUTION

In the previous section the engineer's knowledge about the leak was modeled very
crudely. In this section we show how more complicated knowledge can be represented,
within a more general framework in which we classify the leak according to a type. In
this case the probabilistic approach encompasses leak attribution as well as leak
description, i.e. we can compute the probability that the leak is of each of the specified
types. If we include among our types a ‘no leak!, then attribution extends to leak
detection, i.e. we can compute the probability that a leak has occurred.
7 4mt,....T

We define a classifying variable . }, which denotes whether the pipeline
has a leak, and what type of leak it is. Let T =0 denote no leak. All of our calculations so
far have been predicated on the notion that there has been a leak, even if only a very

sthall one, i.e. they have been conditioned on T 5 0.Let 7 =1 denote the leak described
in section 5, which we will call an *Ordinary Leak'. For the ordinary leak we have

Pr(e. ardinzry) « 1{E o {0, 1y} = Gamma(r:n 1,5 ¢ 003} {26)

Where 1(P) is the indicator function of the proposition P. The first term is for the uniform
distribution on (0,L), while the second is the gamma PDF with shape parameter a and

scale parameter s, which satisfies

"*1('?“ﬂ iQT)

Gamma(7; 1, 5) > 7

The mean and variance of a Gamma random variable are as and as2, respectively. For
ordinary leaks the values a =1 and s = 0.003 correspond to both the mean and the
standard deviation being 0.003 (the spegial case with a = 1 is known as an exponential
distribution). Note that users of computer software that can generate Gamma random
variables should be alert to the fact that the two parameters can be specified in different
ways; the version given in (27) corresponds to the R statistical programming

environment.
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Now we introduce a second type of leak. Suppose that the engineer was worried about
sabotage along a section of the pipeline that ran alongside an access road. For leaks of

this type we must have / restricted to the section accessible by road, and the leak size
might be much larger: say 5 times as large. Therefore the Sabotage Leak has

Prif.~ sabatage) « L6 S) - Gemma(s:ia L (L15) {28)

Sy, . T .
Where ' is the accessible section of the pipeline. The choices a=1 and s = 0.015

in (28) follow from our previous choice, where the scale parameter is 5 times larger than
in the ordinary leak case. For the accessible section we choose S = (300, 800) for our
example. We complete this more general model by assigning a probability to each of the

types. In section 5 we have =1 ith probability 1, so that Pr(Z =) = 0. Now if the

: . . Pr(T =

engineer believed that the pipeline was very leak-prone then setting Pr(T =11 lose to
zero might indeed be appropriate. But if the pipeline was thought to be tight, then we
would be more inclined to treat data suggesting a small difference between vo and vi as

indicative of measurement error. In other words, for a tight pipeline I =1 would have a
probability close to 1. For our example we suppose that the pipeline is quite leak-prone,
and set

g

.5 i= 0 {(nuleak)

Pr(T = Sudg i=1{ordinary jonk) {29)

0.1 =2 {sabitage leak)
\

Although as we have restricted our}modeling to three leak-types, we should rename the
‘ordinary' leak to the catchall ‘other unspecified leak'. For the inference we can

incorporate 7 among the uncertain pal'ameterso . Then when we compute the predictive

distribution of Y and we are also computing the probability distribution of T conditional
on the velocity data. In other words, we can use the probabilistic approach to turn the data
into an assessment of whether there has been a leak, and on the condition that there has
been a leak -what kind of leak it is.
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We illustrate this with the example from section 5. In that example we had * ~ HAS6L

We reconsider this leak within the more general framework, and also consider two other
leak coefficients, one twice as large, and one four times as large. These three scenarios
are denoted as A, B (2*) and C (4*). The velocity data from the three scenarios are

) gl
o

Seonarin 4 1.G6 L.59 .
{3th
Seennrio 13 160 1.55

Seenarin ¢ 173 1.47

Figure 3 shows the detection and attribution probabilities for each of the three scenarios,
in the top left-hand panel, along with the HDR for leak location and leak coefficient in
each case. The probabilities show that in scenario A there remains a small probability that

T =" ie. that no leak has occurred, and that the difference between measured

upstream and downstream velocities is attributable to meter bias. In the second and third
scenarios, for which the difference between the upstream and downstream velocity

agn T =
measurements is larger, the probability that * b

panels show that as the leak type
Tt ta T =2

probability shifts from T=ltd =2 so the predictive distribution of the leak location
and coefficient also shifts. In scenario C the probability strongly favors a sabotage leak,
and we see that most of the leak location probability is contained in the sabotage leak
section of the pipeline. The more those different types of leak have different “signatures’
in location and size, the more sensitive and effective will be the leak attribution. The
approach outlined in this section can easily be extended to consider multiple leaks arising
from the same or different causes.

" is effectively zero. The other three
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Fig. 2.2.2: Leak Detection by Real Time Transient Modeling
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C.
1. ANALYTICAL MODELING

The single-phase leak equation for gas flow in terms of inlet and outlet pressure is given

by: -

2
Q=CF (P =P ") (oo 6.1)

out

Where q is the gas flow rate at the outlet of the flow line, C is a constant for a particular
pipe, n is normally 0.5 and FL is the reduction of efficiency due to a leak. FL is defined as:

2 -n
F = [1+ LLD( Qup F2G )] e (6.2)
and the dimensionless leak location and leak rate are given by:
| R P D TR PEEPERPPPEPIPR (6.3)
LD="L P
G G0 oveveeeenemese e es e (6.4)

Where Lp is the length of the pipeline, L, is the distance to the leak and q is the leak rate

from the pipeline. As shown by Scott, S.L et al (1999), the outlet gas flow rate in a
multiphase flow line experiencing a leak can be expressed as a function of inlet and outlet
pressure in the following form

505 2 2 05
q = F . (F2_¢ )q( CZT fSG Lp/ d) ( Pin - Pout ) (6.5)
where C is a constant, Z is the real gas compressibility factor, d is the diameter of the
pipe and f is the friction factor. The subscript “SG” denotes superficial single-phase
conditions. The additional term (Fz-w ), which is called the two-phase (2-¢) efficiency is

defined as
Fz_q, = (dP/dx) SG/ (dP/ dx) pag 1T (6.6)

Comparing equations 6.1 and 6.5, the additional two-phase term creates a flow regime
dependent term, which separates the single-phase flow leak from the multiphase flow
leak. This two-phase term creates a change in the response making it much more difficult
to detect a leak in a multiphase flow line. However, this type of analysis makes it possible
to examine the performance of momentum (friction) loss leak detection methods to
determine what size and location of leaks can be detected. This provides greater
confidence and understanding than the “black box” approach taken by most leak
detection suppliers. As shown by Scott et al. (1999), these methods provide for rapid
detection of leaks but have been shown to be high depended upon the location of the leak.
This attribute does not fit well with arbitrary detection limits but can act to reduce
detection time and will function even without a measurement of flow rate at the inlet of
the pipe.

For flow lines where inlet metering is not practical, such as sub sea, special testing
requirements may be needed to optimize these data driven momentum balance methods.
In particular, periodic testing such as the deliverability testing of gas wells, would
provide an accurate and up to date estimate of the Fz_(p term.
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2. SIMULTANEOUS SHUT-IN TEST (SSIT)

To emphasize the difference in single and multiphase flow on leak detection a
Simultaneous Shut-in Test has been performed using the transient simulator OLGA.
Table 6.1 shows the basic data used for the simulation runs detailed in this chapter. An
example OLGA input file is given in Appendix-A. As can be seen three different leak
locations were investigated

Table 6.1
Typical Data for Simulation

Flowline Size

(inches) 8" NB

Flowline Length

(m) 4,360 m

Leak Location Near (875 m)

(Distance from wellhead, m) Middle (2,600 m)
Far (4.270 m)

Leak Size

(inches) 1" =4"

Backpressure for leak
(psia) 15

The first case examined is the shut-in response for a pipeline experiencing a leak. The
first step is to shut in the pipeline at both the ends i.e. at the wellhead (done remotely
from the platform) and at the separator. The response for single-phase gas and for
multiphase (volatile oil) is presented here. For a gas pipeline no leak case the pressure
stabilized to an average value with time. In the presence of a leak a drastic pressure drop
can be observed at both ends, even for a small leak.
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Leak (Multiphase)

For a multiphase pipeline the pressure does not stabilize even for the no-leak case. It is
very difficult to determine whether the pressure variation is because of multiphase flow
or because of the leak.

Effect of Flow Regime on Detection of Leak
The discontinuities in superficial gas and liquid velocities created at the leak point show
very obvious indication of a leak. These changes in superficial gas velocity in gas and
liquid also change the liquid holdup and this in turn creates a heavy change in pressure
drop.
Thepmultiphase flow can be categorized in the following flow regimes
Distributed flow

- Bubble flow

- Slug flow
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Separated flow
- Annular flow regime
- Stratified flow regime

Bubble flow

The Pressure profile for different leak sizes is shown in figure 6.3(a). The leak location is
the middle of the flow line for the following plots. The pressure profile changes
considerably when there is a change in the flow regime i.e. for extremely high leaks.

Bubble flow: Pressure profile

—&é—No leak
—i—Leak 0.5"
Leak 1"
—é—Leak 2"
—¥—Leak 4"
—8—Leak 6"

Pressure, psi

8 4069 5669 12000 16600
Distance, ft

Fig 6.3(a): Pressure Profile for Increasing Leak Size

Figure 6.3(b) shows that the liquid holdup decreases with increase in leak size, where
“10” denotes a 1-inch leak size, “20” denotes a 2-inch leak size, etc. For very large size
the change in liquid holdup is pronounced. The liquid holdup decreases more before the
leak point than after the leak point.
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Bubble flow- liquid holdup
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Fig 6.3(b) Liquid Hold Up in Bubble Flow with Increasing Leak Size

Fig. 6.3 (c) shows that the superficial gas velocity for bubble flow increases before the
leak point. The larger the leak size the greater is the increase in superficial gas velocity.
Figure 6.3(d) shows that the superficial liquid velocity decreases after the leak point.

Bubble flow : superficial gas velocity

50

40 1
'] §E —&—No leak
E 30 I Leak 20
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Fig 6.3 (¢): Superficial Gas Velocity with Leak Size
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Bubble flow- Superficial liquid velocity
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Fig 6.3 (d): Superficial Liquid Velocity Change with Leak Size

The flow regime downstream of the leak changes from bubble to stratified flow. The
decrease in superficial liquid velocity downstream of the leak changes the flow from
bubble flow (distributed) to stratified flow (separated). The bubble flow behaves more
like a single-phase liquid. It is very easy to detect leaks in bubble flow.

Slug flow
Fig 6.4(a) shows that the pressure profile changes due to a leak in a flowline operating in
slug flow are only significant when the flow regime changes as a result of the leak.

Slug flow: Pressure_profile

800

Rﬁg&%&fg}m —o— No Leak case
' —a—Leak 0.5"
Leak 1"
——Leak 2"
—k—Leak 4"

400 -

200 4
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4] ;'u_u 2000 SDED 4000 EQDD
Distance, m

Fig 6.4(a): Pressure Profile with Varying Leak Size
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Figure 6.4(b) shows that the holdup decreases only for very large leaks. Unless the liquid
holdup decreases drastically, there will not be enough pressure drop that can be detected

by PSL. More effective leak detection requires slug tracking, where the number of slugs
and slug length play an important role in whether a leak can be detected or not.

Slug flow: Holdup

g. —@—No leak
% —8—| eak -2"
A i Leak 4"
ir . R i
0 : - ;
0 1000 2000 3000 4000 5000

Distance(m)

Fig 6.4(b): Holdup for Various Leak Sizes

Figure 6.4 (c) shows that the superficial gas velocity changes only for large leaks, it
increases significantly before the leak point and decreases after the leak point. Figure
6.4(d) shows that the superficial liquid velocity decreases after the leak point, however
only for very large leaks. This creates a significant pressure drop, which can easily be
detected by PSL. The flow regime downstream of the leak point changes after the leak

point from slug flow to stratified flow.
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Slug flow : Superficial gas velocity
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Fig 6.4 (c): Superficial Gas Velocity with Varying Leak Size

Slug flow: Superficial liquid velocity
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Fig 6.4{d) Superﬁcial Liquid Velocity with Varying Leak Size

Annular flow
Fig 6.5(a) shows that the pressure profile for annular flow changes significantly with
varying size of leaks.
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annular flow- Pressure profile
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Fig 6.5(a): Pressure Profile with Varving Leak Size

Figure 6.5(b) shows that the holdup decreases dramatically for leaks. This creates a
significant change in pressure drop, which can easily be detected by PSL. .
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Fig 6.5(b): Liquid Holdup for Varying Leak Size

Figure 6.5 (c) shows that the superficial gas velocity (VSG) does not change much for

small leaks and there is a small increase in . for large leaks.

Annular flow- Superficial gas velocity

> G0

o 50 i

3 e | [FNotak
a % Tl —®—La0k 10
SE : Leak 20
g s ——Laak 30
% —#—Loak 40
j= 8

o

7]

Distance, m

Fig 6.5(c): Superficial Gas Velocity Profile with Varying Leak Size
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Figure 6.5(d) shows that the superficial liquid velocity increases before the leak point.
This is contrary to the distributed phase. This kind of change in superficial gas and
superficial liquid velocity does not create a change in flow regime for annular flow. Even

after large leaks the flow remains in the annular flow regime.
z

Annular flow- Superficial Liquid velocity
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Fig 6.5(d): Superficial Liquid Velocity Profile with Varying Leak Size

Stratified flow
Fig 6.6(a) shows that the pressure profile for stratified flow changes significantly only for |

large leaks.

Stratified flow- Pressure profile
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Fig 6.6(a): Pressure Profile with Varying Leak Size
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Figure 6.6(b) shows that the holdup decreases for leaks. This creates a change in pressure
drop, which can be detected by PSL. For stratified flow the only way to detect a leak is
dependent on liquid holdup. A more elaborate analysis with Lockhart Martinelli

parameter will help to understand when leaks in stratified flow can be detected.

Liquid holdup

Stratfied flow- Liquid holdup
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Figure 6.6 (c) shows that the superficial gas velocity increases before the leak point.
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Fig 6.6(b): Liquid Holdup for Varying Leak Size

Stratfied flow- Superficial gas velocity
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Fig 6.6(c): Superficial Gas Velocity for Varying Leak Size
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Figure 6.6(d) shows that the superficial liquid velocity decreases after the leak point. This
kind of change in superficial gas and superficial liquid velocity does not create a change
in flow regime for Stratified flow. Hence even after large leaks, the flow will remain in
the stratified flow regime.

Stratfied flow- Superficial liquid velocity
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Fig 6.6(d): Superficial Liquid Velocity with Varying Leak Size
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Change in Flow Regime Due To Severe Leak

Figure 6.7 shows that for very large leaks with distributed flow (bubble flow, slug flow)
there is a change in flow regime downstream of the leak. The drop in superficial liquid
velocity (VSL) downstream of the leak is so large that the flow becomes stratified flow.

For the case of separated flow (stratified flow, annular flow) the change in v, cannot

create any change in the flow regime. This change in flow regime for the case of bubble
flow and slug flow creates a large pressure drop, which can be easily detected by PSL’s.
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Fig 6.7: Effect of Large Leak on Flow Regime
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Response Time for Detection of Leak

Figure 6.8 shows the response time for same size of leak to stabilize in the various flow
regimes. The response is best for annular flow and worst for slug flow. It is in line with
the observation that the response time for detection of leak in gas lines is better than in oil
lines.

Time for stablization of leak
1800 7
1400
T ! S ——
1000
@
g a0
&
800
40O
m.[l
0 T T T ™ T T
Anrular Stratifed Bubtie
Flow Regime

Fig 6.8: Transient Response-time for Stabilization in Various Flow Regimes

The response time for detection of leak in separated flow (Annular flow, Stratified flow)
is better than that for distributed flow (Bubble flow, Slug flow).
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D. CONCLUSION

The activity of leak detection in the presence of uncertainty is an example of a statistical
‘calibrated prediction’. That is, we want to predict certain quantities such as the leak
location and leak size, but we need at the same time to calibrate our model to imperfect
data in order to reduce our uncertainty about quantities such as the pipe roughness and
the valve settings. Within a fully probabilistic setting we are able to do this in a way that
ensures that our predictive uncertainty accounts for our residual calibration uncertainty.
Other methods, in particular those based on a first-stage optimization of the uncertain
parameters in the model, are not able to provide an adequate measure of uncertainty.
Insofar as the optimization approach can be considered to be inference by maximum
likelihood, the basic condition that justifies an uncertainty analysis using the profile
likelihood is that there is a reasonable amount of independent data. This is often not the
case with pipelines and pipe networks, where there are typically only as many data as
there are meters, and often there are fewer meters than there are uncertain parameters.

This paper has outlined the fully probabilistic treatment of the problem of leak detection
in a single pipe, using the mass-imbalance approach. However, the treatment is perfectly
general, and may be extended straightforwardly to models that cover pipe networks,
providing that each evaluation of the model at a particular choice of the model parameters
is quick. This is certainly the case for simulators of pipe networks. One of the problems
that can arise with a probabilistic treatment is how to present the results. In this paper the
predictive distribution describing the leak location and size has been computed by
sampling. The results can then be presented in an intuitive manner as approximate high-
density regions. Summary statistics such as mean and variances can also be computed,
but the graphical presentation is probably easier to interpret if a rapid response is
required. The paper also shows how we may generalize the problem of leak description,
premised on a single “typical' leak, to leak detection and leak attribution based on a
number of scenarios describing possible events, and the types of leak that might follow.
In this case the probabilistic approach allows us to assign a probability to each scenario
and to update that probability using data from meters. A probabilistic description of our
uncertainty about the pipeline feeds naturally into a decision-theoretic framework for
establishing the most effective response. . For example, the measured value of the

upstream velocity after the leak has occurred is Ty,
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Notation

OQuantitices al funetions
1) = Pipe diameter {nssinmed constant
to. 07 = Velority moeter measurement errors {(cotletively o)
FO 3= Woeishach friction factor along the pipeline
g = Gravitatjonal aceeleration
4 == Loak coofficiemt
H. ki) = Piozometric head at the upstream ewd of the pipeline, piezo-
metric hend along the pipeline
K{ ) = Equivalenr sand-roughiness along the pipeline
£ = Downstream valve eoofficiont
L == Pipoline leapth
pl ) = Definite integral of f1). soe e (1)
Re = Revnolds numbier
5 = Region of the pipeline in which s saborage loak niight eecur
7 = Leak type indieator
= Collection of parametsr values
v == Fluid velocity witliour a lenk
v, 1. v, = Fluid velocity. upstream and downstrenn tidd velocity (enk
lectively V73 a superseript 0 denotes prior to the lonk. amd 1
denotes post-lenk
r. » d = Index variables for distance along pipeline

x>

Random fleld for the Weisbach friction factor
i ()s pale -} = Mean funetion and cowmrisnee function of f{-)
ot = Varianee of the stationnry random field for ()
r() = Correlation function of the stationary random field for f{-)
7 = Deeay rate of the Ornstein-Ublenbeck stationary random field
for fi-)
Prababilistic operatirs and relatesd quantitios
Pr(} = Prohmbility density function
E(). Cov(. ) = Expectatiom and covarinnes
a. x = Shape sl scale parseters for the goime distritmtion
¢ == Constant of proportionality
-t Conditional upon’. in probability distribution functions and

COVARIBRCES

Other syimbols
<& e Defined sy . Equivalnt by definition’

Mensured valiues of pr(vvimlsl}’ uncertain quantities sre dennted with an over-
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E. GRAPHICAL INTERPRETATION
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g puan s ana s s sas g
s b SR
(I e e LANEAG - : ¥

g;; B ow |_l.. e B EI-‘ &7 1 mfw sy

F i-g.‘“fe 5 Corresponding Pressure Measurements as Shown in
Figure 4 above

A R a0 e N

Figure 6 Lambdal and [amhda?_ increaq o Alarm a Ictk At 10:28
hours { AlarmStatus Changes from O to L then 2), This is the same time
window as shown in Fig. 4 and 5.
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Figure 8 Corresponding Pressure Measurements as Shown m Figure 7

above
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Figure 7 Flow Measurements Between 10 and 12 hours on
U3/October/2002

57 =




Modeling Of A Real Time Leak Detection System In Pipelines UPES/DDN

r-m L Smms ".;O-M-!
P e o h bl i
Y T : - e

e

...........

Figure 9 Lambdal and Lambdal lncn,ase to Al
hours {AlarmStatus Changes from 0 to 1, then 2)

arm a‘;Lr.,aL At 11:06
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ements Between 7 and 24 hmlrs on 09/ Ma\rf"?ﬂ[ﬂ
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Figure 12 Lambdal and Lambda2 .
hours {AlarmStatus Changes from 0 1o 1, then 2)
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a5 Shown in Figure 10 above

l“i-,llle e mresmndmg Pressure Measurements 4s
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Figure 14 Corresponding Pressure Measurements as Shown in Figure 13 aho
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| SR 00

SO0 H o

e e

. % -~ . vy ¥ n r..n__e l,.;n(l'\'
Ste L ! > 5 = ) O o o e ice Pt yig ]
HL-ad}' -State Operating Conditions. Flow Differ enc S oFthcihend. &b
Scale on right hand aa‘:;t{} started at around - 10 m7h a;‘u sw-rate probably due ro
decreased to ~20 when there was a small change in the flov e A eialnd
lank change. When the delivery changed from ROS (.m_mge:;t; DRI de::re*med
hﬁﬂ']e}" the flow difference increased from —20 10 t-:llgd"l:';cl'; sy E i S
Shghtlv durin . "he he delivery switchie L F: s,

1o 2 this trg + VWWhen the 3 z o

difference “v'eﬁt b’tci:':m;fi’;_:o /b and it - ncreased slightly betore the end of the
trend i o ~20
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REESchGesOR nea

Figure 15 L ampdat and Lambda2 Increase to Alarm 2 Leak At 10:21, 11:08 &
11:59 hours {AlarmStatus Changes from U 10 1, then 2
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!
!*******************************
ok ok ok ok ok ok ok

I- CASE Definition .
|

CASE PROJECT="Exercise 1: Leak Detection"", \
TITLE="Effect of leak on Reservoir/ Wellhead

I

****************************************

. sk sk s s ok ok ok ok sk ok ok ok ok
!*********************************************************

ook ook o ok ok

i- OPTIONS Definition

OPTIONS COMPOSITIONAL=OFF, DEBUG=OFF, PHASE=THR_E(%]
POSTPROCESSOR=ON, SLUGVOID=SINTEF, STEADYSTATE=ON,
TEMPERATURE=WALL, \

WAXDEPOSITION=OFF

s ok ok ok of ok sk ok ok ok skokosk sk ok sk
!******************************************************

& ok ok ok ok ok ok g

I- FILES Definition

FILES PVTFILE="deep new.tab"

sk ok ek ok ok
st e sk s sk ok e sk ok ke ok ok ok
!*************************************************

%ok o o o ok ok

'~INTEGRATION Definition

""" (E=0.5 h, MAXDT=5 s,
INTEGRATION CPULIMIT=2 h, DTSTART=0.01 5, ENDTIME=0

MAXTIME=( s, MINDT=0.01 s, MINTIME=0's, }
NSIMINFO=10, STARTTIME=0 s

g***********************************

! s ok ok ok ok ok ok
;*\YATEROPTIONS Definition ******************************
ST koo sk o ke o ook ok o o o ok ok ok e R KK

******** =05
WATERFRAC=0.5 ,

WATEROPTIONS DISPERSIONVISC=ON, INVERSION

WATERFLASH:ON’ WATERSLIP_ON **********************************

ok ok
DR 3 e e o e s ok ok ko KRR
Tkt

f~ MATERIAL Definition S 50 WimK
Ry ITY= m-K,
MATERIAL L ABEL=STEEL, CAPACITY=500 Jkg-C. CONDUCTIV
DENSITY=7850 kg/m3, TYPE=SOLID 1500 J/kg-C,
MATERIAL LABEg/L=INSULATION’ CAPASITX(; ﬁéf)ms TgYPE=SOLID
CONDUCTIVITY=0.135 W/m-K, DENSITY=10 ’

S

ok
**********************************
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MATERIAL LABEL=FORMATION, CAPACITY=1256 J/kg-C,
CONDUCTIVITY=1.59 W/m-K, DENSITY=2243 kg/m3. TYPE=SOLID

!
i***********************************************************************
o ok ok sk ok ok ok ok

!- WALL Definition

!
WALL LABEL=WALL-1, ELECTRICHEAT=OFF, MATERIAL=( STEEI__,,
INSULATION, INSULATION ), POWERCONTROL=OFF, THICKNESS=( 0.009, \
2:0.0125)m

— = L

WALL LABEL=WALL-2, ELECTRICHEAT=OFF, MATERIAL=( STEEL,
INSULATION, INSULATION ), POWERCONTROL=OFF, THICKNESS=( 0.0075,\
2:0.0125) m )

WALL LABEL=WELI, WALL, ELECTRICHEAT=OFF, MATERIAL=( STEEL,
FORMATION, FORMATION, FORMATION, FORMAll"ISO)N )\
POWERCONTROL=OFF, THICKNESS=( 0.00688, 4:0.15 ) m _
GEOMETRY LABEL~FLOWLINE, XSTART=707 m, YSTART=0 m, Z_ST(;BI;T—O m
PIPE LABEL=PIPE_1|, DIAMETER=4 in, ELEVATION=0 ini I;ENGTH—I m,
NSEGMENTS=5, ROUGHNESS=2.8¢-005 m, WALL=WALL- _

PIPE LABEL=PIPE 2, EL EVATION=5 m, LENGTH=400 m, NSEGMES\E?ng
PIPE LABEL=PIPE 3, ELEVATION=-5 m, LENGTH=400 m, NSEGM TS
PIPE LABEL=PIPE_4, ELEVATION=0 m, LENGTH=1600 m, NSEGM ENTS=8 200
PIPE LABEL=PIPE_5, EL EVATION=-15 m, LENGTH=900 m, LSEGM 200,
150, 90, 60 ) m, NSEGMENTS=6

PIPE LABEL=PIPE_6, DIAMETER=0.1 m, ELEVATION=1524.20;15963979 m,
LENGTH=1524.0045963979 m, NSEGMENTS=S, WALL-WALL -2

PIPE LABEL=PIPE_7, EIEVATION=0 m, LENGTH=120m, NSEGMEN 2
GEOMETRY LABEL=WELLBORE, XSTART=0 m, YSTART=- ,

m

PIPE LABEL=WELLBORE-1, DIAMETER=4 in, ELEVATION=7\O7 m,
LENGTH=1000 m, NSEGMENTS=5, ROUGHNESS=2.5¢-005 m,

WALL=WELL_ WALL _

PIPE LABEL=WELLBORE-2, ELEVATION=800 m, LENGTH=800 m,
NSEGMENTS=4

!

| e sk ok ok s e o o ok o ok sk ke ok ok ok sk ok sk ok
!***************************************************
0 ke o ok ok o e o

!" NODE Definition

-

gy 2

NODE L ABEL=PERFS, TYPE-TERMINAL, X=0 m, Y—O—rg’ " §=r3 m
NODE LABEL=WELLHEAD, TYPE-MERGE, X=0m, Y= o0 m. Z=0 m
NODE LABEL=PLATFORM, TYPE-TERMINAL, X=0 m, FROM=PERFS
BRANCH LABEL=WELLBORE, FLOAT=ON, FLUID="1", ;
GEOMETRY=WELLBORE, TO=WELLHEAD
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BRANCH LABEL=FLOWLINE, FLOAT=ON, FLUID="1", FROM=WELLHEAD,

GEOMETRY=FLOWLINE, TO=PLATFORM
!

0ok s o s oo o o ok ok ok o s o o e ok s s ke ot s sk o sk o ok sk e sk sk o ok ok ke stk e sk e sk ke sk skl ok sk ook sk sk stk sk sk skok s skeke sk ok ok
skskokook sk ko ok

I-BOUNDARY Definition

!
BOUNDARY NODE=PERFS, TYPE=CLOSED ) ,
BOUNDARY GASFRACTION=1 -, NODE=PLATFORM, PRESSURE=145.037 psia,
TEMPERATURE=22 C, TIME=0 s, TYPE=PRESSURE, \

WATERFRACTION=0 -

|
;***********************************************************************
3k ok o ok sk ok sk ok

I- HEATTRANSFER Definition

: [ENT=6.5 W/m2-C
HEATTRANSFER BRANCH=WELLBORE, HAMBIENT=6. ; 63 C.
HMININNERWALL=10 W/m2-C, HOUTEROPTION=HGIVEN, INTAMBIENT

\

=6 C
INTERPOLATION=VERTICAL, OUTTAMBIENT=6 C o
HEATTRANSFER BRANCH=FLOWLINE, HAMggggéf{st \Iz//mz :
HMININNERWALL=10 W/m2-C, HOUTEROPTI :

INTERPOLATION=SECTIONWISE, \

TAMBIENT=6 C *
!*********************************************************
% sk ok ofe o ok ke ok

' CONTROLLER Definition N
AT kol o ook o o o okl o ke e e e oo o
Sk ook

‘ LES=OFF,
CONTROLLER LABEL=CONTROLLER-1, Cohfﬁgfgﬁlégzs )\
EXTENDED=OFF, MAXCHANGE=0.2 , ST LANUAL.
- STROKETIME=33.33 5, TIME=( 0, 1 ) 5, TYPE=

ek sk ok o ok ok K
Pk e e e o o ok e R oo o
Ak koo o

' SOURCE Definition

kst ke s o ok sk ok ok o ok ok

**********************************

et ok e ok ke s s ok ko ok ok o o ok o

BT _ INE, CD=0.84,
SOURCE LABEL="WATER INGRESS", Bg;g;‘i‘;ﬁﬁf’“
gONTROLLER=CONTROLLER-1, DIAM
RITFLOWMODEL=FROZEN, \ - ERATURE=8 C,
IPE~PIPE_4, PRESSURE=2165 psia, SECTION=4, TEMP
TOTALWATERFRACTION=I - ok AR R oo

ok
ok s oo sl o o ke o ke o ok o o o o kR R R R R KK

R LTI

' WELL Definition
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l***********************************************************************
kokkkkskkok

WELL LABEL=WELLS, AINJ=0 , APROD=0 , BINJ=3e-006 , BPROD=3e-006 ,
BRANCH=WELLBORE, GASFRACTION=-1 -,\

INJOPTION=LINEAR, ISOTHERMAL=YES, LOCATION=MIDDLE,
PIPE=WELLBORE-1, PRODOPTION=LINEAR, RESPRESSURE=100 bara, \
RESTEMPERATURE=100 F, SECTION=1, TIME=0s, WATERFRACTION=0 -,
WAXFRACTION=0 -

*
{ s s ok sk e s o o o s ok ok o ook ok ok ook o ks o s o kR ok sk ok ok ek sk ok kst sk ke ksl o akakok sk skl ok dokokok o
s ok sk ok ok ok ok ok

! VALVE Definition

ook ok ok ok
1 6 e s s s ke s s ok ook ok s s ok ok ok ok s o o o o o o ok o ksl ok sk o o ok ke ke sk skl ksl ok ok ok skl sk skl ok ok ok k
ok ok ook ok ok

VALVE LABEL=WH-VALVE, BRANCH=WELLBORE, cn=o.:gt_,1
CRITFLOWMODEL=FROZEN, DIAMETER=0.089 m, OPENING=1,
PIPE=WELLBORE-2, \

SECTIONBOUNDARY=5, TIME=0 s OWLINE. CD=0.84

VALVE LABEL=PF-VALVE, BRANCH=FL ,CD=0.84, ~
CRITFLOWMODEL=FROZEN, DIAMETER=0.12 m, OPENING=1 , PIPE=PIPE 7.\

SECTIONBOUNDARY=2, TIME=0 s
!

sk ok e ok ok ok ok ok sk ok ok ok
!**********************************************************
3% ok ok ok ok ook

- PRINTINPUT Definition

PRINTINPUT KEYWORD=GEOMETRY
PRINTINPUT KEYWORD=TABLE
1

: st e ok ok ok ok ks ok o ke
EEEPrrmrnmn——————————— U UL LELLE bbbk

ok ke ok ok ok ok

!- OUTPUT Definition

- OUT=2h
OUTPUT COLUMNS=4, DELETEPREVIOUS OFF, DT _
OUTPUT BRANCH=WELLBORE, COLUMNS=4, DgLETEPREVIOUS OFF,
VARIABLE=( UL, UG, UD, AL, PT, DPT, BE, GA, ID )

" OUTPUT BRANCH=WELI BORE, COLUMNS=4, DELETEPREVIOUS=OFF,

- VARIABLE=( RMTOT, BOU, MG, ML, MD, TM, DTM )

OUTPUT BRANCH=FLOWLINE, COLUMNS=4, DELETEPREVIOUS=OFF,

D)
VARIABLE=( UL, UG, UD, AL, PT, DPT, BE, GA. _
OUTPUT BR/(\NC’H=FL0\)\,/LINE, COLUMNS=4, DELETEPREVIOUS=OFF,

VARIABLE=( RMTOT, BOU, MG, ML, MD, TM, DTM))

| 1o o oo o ke e oo o o o R ok ok tlafdatoon ookt ok kol
o Rk ok ook
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! TREND Definition

ok ok
3 ok ok ok sk s o ok ok ke ok o s sk ok ok ok ok ok o ok ok ok ok ok sk o8 e ok ok ok sk o o ke ok o ok sk ke sk st sk ok e ok sk ko sk ok sk skt sk skokosk kol ok ok koo ok
ok ke ok o o ok

TREND BRANCH=WELLBORE, DELETEPREVIOUS=OFF, DTPLOT=25s,
- PIPE=WELLBORE-1, SECTION=2, TIME=0 s, VARIABLE=( PT, \

T™, QG, QLTHL, QLTWT) .
TREND BRANCH=FLOWLINE, DELETEPREVIOUS=OFF, DTPLOT=25s,
PIPE=PIPE_1, SECTION=1, TIME=0 s, VARIABLE=( PT,\

TM, ID, USG, USL, QLTWT, QLTHL, QG) _
TREND BRANCH=FLOWLINE, DELETEPREVIOUS=OFF, DTPLOT=25s,
PIPE=PIPE_3, SECTION=1, TIME=0 s, VARIABLE=(PT,\

™, ID, USG, USL, QLTWT, QLTHL, QG) _
TREND BRANCH=FLOWLINE, DELETEPREVIOUS=OFF, DTPLOT=25 s,

PIPE=PIPE_3, SECTION=1, TIME=0 s, VARIABLE=( PT, \

- ™™, ID, USG, USL, QLTWT, QLTHL, QG ) _
TREND BRANCH=FLOWLINE, DELETEPREVIOUS=OFI\3, DTPLOT=25s,

PIPE=PIPE_4, SECTION=6, TIME=0 s, VARIABLE=( PT,

™, ID, USG, USL, QLTWT, QLTHL, QG) _
TREND BRANCH=I?LOWLINE, DELETEPREVIOUS=OFF, DTPLOT=25s5,

. PIPE=PIPE_5, SECTION=1, TIME=0S, VGA)RIABLE=( PT, \

' TM, ID, USG, USL, QLTWT, QLTHL, Q _
TREND BRANCH=FLOWLINE, DELETEPREVIOI{ST)C%F{?, DTPLOT=25s,

PIPE=PIPE_4, SECTION=4, TIME=0 s, VARIABLE=(PT,

' ™™, ID, USG, USL, QLTWT, QLTHL, QG) _ _
'1\ TREND BRANCH=FLOWLINE, DELETEPREVIOUS=OFF, DTPLOT=25s,
1

 PIPE=PIPE_7, SECTION=1, TIME=0 s, VARIABLE=(PT,
- T™, ID, USG, USL, QLTWT, QLTHL, QG)
!

* ek sk gk ok sk kokokokok
' k% s o ok ok 3k ok ok ok kK %k
! ***************I % ok ok ok 5k ok 3 I“i‘*********************

ok ke ko ok o

! !~ PROFILE Definition

-
o=

P =( HOL, TM, PT,
- PROFILE DELETEPREV]QUS=OFF, DTPLOT=0.25 h, VARIABLE=(H
Nt - =0.25 h,
! PROFIBE BRANCH=FLOWLINE, DELETEPREVIOUS=OFF, DTPLOT
- VARIABLE=( USG, USL)

- ENDCASE
|
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