A Project Report
on

- <”QUIZO: An Android Quiz Game Application”>

Submitted in partial fulfillment of the requirements for the Major Project IT of

Bachelor of Technology

1mn
Computer Science & Engineering

Submitted by:

Manilla Bhalla Neha Ghazi
500009172 500008959

| Under the guidance
| | Dr.Ajay Shankar Singh
Mr.Vishaal Kaushik
Designation
Asst.Prof.CIT,UPES

Rl S

! LEUM
i RO e

& %
& S
g
=1

(@

s A
&, <
oy s &

Harmessing Energy throngh Keowledge

S3gnis

Department of Computer Science & Engineering
i COLLEGE OF ENGINEERING STUDIES

UNIVERSITY OF PETROLEUM & ENERGY STUDIES
Dehradun- 248007

CERTIFICATE

This is to certify that the Project entitled ’QUIZO: An Android Quiz

Game Application” submitted by

Manilla Bhalla Neha Ghazi
500009172 500008959

for the partial fulfillment of the requirements of the course Major Project II of
Bachelor of Technology in Computer Science & Engineering degree of

University of Petroleum & Energy Studies, Dehradun
work done by above students under my supervision.

embodies the confide

/@w b
Signature of Mentor

\@&/

ARy

Designation

@ e et T T T S B S P S O T Y S S e T ok T TR T AT L R T

M(S $)

Project Title

4

DECLARATION

We, Manilla Bhalla & Neha Ghazi bearing the Roll No: R780203017 and R780209043 respectivély
hereby declare that this Project work entitled “QUIZO: An Android Quiz Game Application
was carried out by us under the guidance and sixpervision of Mr. Ajay Shankar & Mr.Vishal Kaushik.
This Project work is submitted to University of Petroleum & Energy Studies in partial fulfilment of the
requirement for the award of Bachelor of Technology in Computer Science and Engineering during the
Academic Semester Jan 2013 - Apr 2013. We also declare that, we have not submitted this dissertation
work to any other university for the award of either degree or diploma.

Place: Dehradun Manilla Bhalla
Meowilha. Blafic,
Neha Ghazi

Date:15-04-2013

Project Title

[
v

ABSTRACT

“ ABSTRACT OF YOUR PROJECT"

This android quiz game application will help the user to test their knowledge in technology.
Quiz game application contain multiple choice questions related to technology. If the user gives

the correct answer then only the game will proceed then game will get over and the score

will be displayed.

Android is a java based operating system that run on Linux 2.6 kernel and it is a software
stack for mobile devices that include an operating system, middleware and key applications.
Applications are usually developed in the Java language using the Android _Software
Development Kit. The. Android SDK provides the tools necessary to begin developing
applications on the Android platform using the Java programming language. Designed primarily
for fouch screen smart phones and tablet computers.

Features of an android include accelerated 3-D graphic engine (based on hardware support),
database support powered by SQLlite and an integrated web browser. Android also support
XML-Based Ul layout. '

Project Title

| 4

- ACKNOWLEDGEMENT

It is a pleasure to thank all those great many people who helped, supported and encouraged us
during this project work.

Firstly we express our sincere gratitude to Mr Ajay Shankar Singh & Mr Vishal Kaushik, the

guide of the project who carefully and patiently leant his valuable time and effort to give
directions as well as to correct various documents with attention and care.

It is a great honour to do this project in this esteemed institution, and we would extend our
thanks to the HOD, Prof Manish Prateek and other faculty members who have shared their

vast knowledge and experience during our stay.

We do also like to appreciate the consideration of the Project Coordinator, our Faculties and
colleagues, which enabled us to balance our work along with this project. It was their attitude
that inspired us to do such an efficient and apposite work.

We are indebted to those people across the globe who have shared their knowledge and
perspectives in the form of online tutorials, forums and other resources which helped us to a
great extend whenever we met with technical obstacles during this endeavour.

We wish to avail this opportunity to express a sense of gratitude and love to all our friends
and our family for their unwavering support, strength, help and in short for everything they
have done during the crucial times of the progress of our project.

Last but not the least we thank GOD ALMIGHTY for HIS blessings and guidance without
which this dream project wouldn't have been reality.

Manilla Bhalla

Neha Ghazi

Project Title

i 4
CONTENTS
Declaration I
Abstract i
Acknowledgement ii
Contents iv
1 Introduction 01-07
1.1 Whatis Quizo? 01
1.2 Why Android? 02-09
10
2 Problem Definitions
3 System Requirement Specification 11-18
3.1 Overall Description 11
3.1.1 Product Perspective 11
312 Product Features 11-12
3.1.3 User Classes and Characteristics 12-15
3.14 Operating Environment 15
3.1.5 Design and Implementation Constraints 15-17
3.16 User Documentation 17-18

Project Title -

v
3.2 System Features
3.21 Functional Requirements
3.22 Non-Functional Requiréments
4 System Design
What is UML Diagram
41 Use Case Diagram
4.2 Class Diagram
4.3 Sequence Diagram
4.4 Activity Diagram
5.0 Code Implementation
5.1 Android
5.2 Eclipse 3.4
5.3 Overview of Java
54 Android SDK
6.0 Testing
6.1 Test Cases
7.0 Output Screens
8 Conclusion
9 Bibliography
10 Appendix

10-11
18
19
19-25

19-22
22-23
23-24
24-25
26-44
26-30
30-
30-34
34-35
43-52

52-67
68
68-
69-73

CHAPTER1 INTRODUCTION

1.1 Whatis QUIZO?

This android quiz game application will help the user to test their knowledge in computers.
Quiz game application contain multiple choice questions related to computers. If the user gives

the correct answer then only the game will proceed then game will get over and the score

will be displayed.

Android is a java based operating system that run on Linux2.6 kemel and it is a software
stack for mobile devices that include an operating system, middleware and key applications.
Applications are usually developed in the Java language using the android kit ie

Android Software Development Kit. The Android SDK provides the tools necessary to begin

developing applications on the Android platform using the Java programming language.
Designed primarily for touch screen smart phones and tablet computers.

Features of an android include accelerated 3-D graphic engine (based on hardware support),
database support powered by SQLite and an integrated web browser. Android also support

XML-Based Ul layout.

Page 1

1.2 Why Android?

Android is a freely downloadable open source software stack for mobile devices that includes

An operating system, middleware and key applications based on Linux and Java.

Android is a java based operating system that run on Linux2.6 kemel and it is a software
stack for mobile devices that include an operating system, middleware and key applications.

Applications are usually developed in the Java language using the Android Software

Development Kit.
The Android SDK provides the tools necessary to begin developing applications on the Android

platform using the Java programming language. Designed primarily for fouch screen smart

phones and tablet computers.

1.2.1 Features Qf Android

o Handset layouts Android can adapt to traditional smart phone layouts, as well other
VGA, 2D, and 3D graphics libraries.

« Storage Android uses SQLite to store allits junk-- | mean, information,

* Connectivity Android supports a wide. variety of technologies, including Bluetooth,
WiFi, GSM/EDGE, énd EV-DO.

o Messaging MMS and SMS are available for Android, as well as threaded text

messaging. So you can send as many textiles as you fike.

Web Browser Android comes pre-loaded with the Web Kit application. Remember if

Page 2

Al
you don't like it, you can always switch it out for something else later on thanks to the

open source nature of the Google Android backend.

e Java Virtual Machine Software you write in Java can be compiled in Dalvik Byte
codes (say that five times fast. | keep ending up with "Danish light bulb".) These can
then be put into a Dalvik Virtual Machine. Basically more robust applications are
supported than on some other Mobile Operating Systems.

o Media Support Android supports a wide range of audio, video, media, and still
formats. MPEG-4, OGG, and AAC are just a few of these. Unfortunately the Media
Player as its known right now is pretty basic, although more robust offerings on are the
horizon from 3¢ Party developers.

o Additional Hardware Supbort Got a touch screen you want to put toits full use?
No problem. Android is capable of utilizing outside hardware like GPS, accelerometers,

and all that other fun stuff.

1.2.2 Building blocks to an Android application

There are four building blocks to an Android application:

Activity

Broadcast Intent Receiver

Service

Content Provider

1.Activity
Activities are the most common of the four Android building blocks. An activity is usually a single

screen in your application. Each activity is implemented as a single class that extends the Activity

Page 3

base class. Your class will display a user interface composed of Views and respond to events. Most
applications consist of multiple screens. For example, a text messaging application might have one
screen that shows a list of contacts to send messages to, a second screen to write the message to the

chosen contact, and other screens to review old messages or change settings. Each of these screens

would be implemented as an activity. Moving to another screen is accomplished by a starting a new
activity. In some cases and activity may retum a value to the previous activity -- for example an activity

that lets the user pick a photo would retum the chosen photo to the caller.

2.Intent and Intent Filters

Android uses a special class called Intent to move from screen to screen. Intent describes what an

application wants done. The two most important parts of the intent data structure are the action and the
data to act upon. Typical values for action are MAIN (the front door of the application), VIEW, PICK,
EDIT, etc. The data is expressed as a URI. For example, to view contact information for a person, you
would create intent with the VIEW action and the data set to a URI representing that person.

There is a related class called an Intent Filter. While an intent is effectively a request to do something,
an intent filter is a description of what intents an activity (or Broadcast Receiver, see below) is capable
of handling. An activity that is able to display contact information for a person would publish an Intent
Filter that said that it knows how to handle the action VIEW when applied to data representing a person.
Activities publish their Intent Filters in the AndroidManifest.xml file. The new activity is informed of the

intent, which causes it to be launched. The process of resolving intents happens at run time when start

Activity is called, which offers two key benefits:
« Activities can reuse functionality from other components simply by making a request in the form

« of an Intent

o Activities can be replaced at any time by a new Activity with an equivalent Intent Filter

Page 4

3.BROADCAST INET RECEIVER

You can use a Broadcast Receiver when you want code in your application to execute in reaction to an
extemnal event, for example, when the phone rings, or when the data network is available, or when it's
midnight. Broadcast Receivers do not display a Ul, although they may use the Notiﬁéation Manager to
alert the user if something interesting has happened. Broadcast Receivers are registered in
AndroidManifest.xml, but you can also register them from code using Context.registerReceiver ().
Your application does not have to be running for its BroadcastReceivers to be called; the system will

start your application, if necessary, when a BroadcastReceiver is triggered. Applications can also send

their own intent broadcasts to others with Context.sendBroadcast ().

4.SERVICE

A Service is code that is long-lived and runs without a Ul. A good example of this is a media player
playing songs from a play list. In a media player application, there would probably be one or more
activities that allow the user to choose songs and start playing them. However, the music playback itself
should not be handled by an activity because the user will expect the music to keep playing even after
navigating to a new screen. In this case, the media player activity could start a service using
Context.startService () to run in the background to keép the music going. The system will then keep
the music playback service running until it has finished. Note that you can connect to a service (and
start it if it's not already running) with the Context.bindService () method. When connecteq to 4
service, you can communicate with it through an interface exposed by the service. For the music
service, this might allow you to pause, rewind, efc.

5.CONTENT PROVIDER

Applications can store their data in files, an SQLite database, or any other mechanism that makes
sense. A content provider, however, is useful if you want your application's data to be shared with other
applications. A content provider is a class that implements a standard set of methods to let other

applications store and retrieve the type of data that is handled by that content provider.

Page 5

Not every application needs to have all four, but your application will be written with some combination
of these.

All the components needed for android application should listed in an xm file called
AndroidManifest.xml. This is an XML file where you declare the components of your application aﬁd

what their capabilities and requirements are.

1.2.3 Storing, Retrieving and Exposing Data

A typical desktop operating system provides a common file system that any application can use to store
and read files that can be read by other applications. Android uses a different system on Android, all
application data are private to that application. However, Android also provides a standard way for an
application to expose its private data to other applications. This section describes the many ways that
an application can store and retrieve data, expose its data to other applications, and also how you can

request data from other applications that expose their data.

Android provides the following mechanisms for storing and refrieving data:

1.Preferences .
A lightweight mechanism to store and refrieve key/value pairs of primitive data types. This
is typically used to store application preferences.

2.Files
You can store your files on the device or on a removable storage mediym. By default, other
applications cannot access these files. '
3.Databases
The Android APIs contain support for SQLite. Your application can create and use a private
SQLite database. Each database is private to the package that creates it
4.Content Providers

A content provider is a optional component of an application that exposes read/write access

Page 6

to an application's private data, subject to whatever restrictions it wants to impose. Content
providers implement a standard request syntax for data, and a standard access mechanism
for the returned data. Android supplies a number of content providers for standard data
types, such as personal contacts.

5.Network
Don't forget that you can also use the network to store and retrieve data.

1.2.4 Security and Permissions in Android

Android is a multi-process system, where each application (and parts of the system) runs in its own
process. Most security between applications and the system is enforced at the process level through
standard Linux facilities, such as user and group IDs that are assigned to applications. Additional finer-
grained security features are provided through a “permission” mechanism that enforces restrictions on
the specific operations that a particular process can perform, and per-URI permissions for granting ad-
hoc access to specific pieces of data.

1.System Architecture
A central design point of the Android security architecture is that no application, by default, has

permission to perform any operations that would adversely impact other applications, the operating
system, or the user. This includes reading or writing the user's private data such as contacts or e-mails,
reading or writing another application's files, performing network access, keeping the device awake,
efc.

An application's process is a secure sandbox. It can't disrupt other applications, except by explicitly
declaring the permissions it needs for additional capabilities not provided by the basic sandbox. These
penﬁissions it requests can be handled by the operating in various ways, typically by automatically
allowing or disallowing based on certificates or by prompting the user. The permissions required by an
application are declared statically in that application; so they can be known up-front at install time and

will not change after that.

Page 7

2.Application Signing

All Android applications (-apk files) must be signed with a certificate whose private key is held by their
developer. This certificate identifies the author of the application. The certificate does not need to be
signed by a certificate authority: it is perfectly allowable, and typical, for Android applications to use self-

signed certificates. The certificate is used only to establish trust relationships between applications, not

for wholesale control over whether an application can be installed. The most significant ways that
signatures impact security is by determining who can access signature-based permissions and who can

share user IDs.

3.User IDs and File Access

Each Android package (.apk) file installed on the device is given its own unique Linux user ID, creating
a sandbox for it and preventing it from touching other applications (or other applications from touching
it). This user ID is assigned to it when the épplication is installed on the device, and remains constant
for the duration of its life on that device.

4.Using Permissions

A basic Android application has no permissions associated with it, meaning it can not do anything that
would adversely impact the user experience or any data on the device. To make use of protected
features of the device, you must include in your AndroidManifest.xml one or more <uses-permission>
tags declaring the permissions that your application needs.

The permissions provided by the Android system can be found at Manifest. permission. Any
application may also define and enforce its own permissions, so this is not a comprehensive list of all

possible permissions.

A particular permission may be enforced at a number of places during your program's operation:

Page 8

o Atthe time of a call into the system, to prevent an application from executing certain
functions.

» When starting an activity, to prevent applications from launching activities of other
applications. Both sending and receiving broadcasts, to control who can receive your
broadcast or who can send a broadcast to you.

o When accessing and operating on a content provider.

Binding or starting a service

5.Declaring and Enforcing Permissions

To enforce your own permissions, you must first declare them in your AndroidManifest xm| using one or

more <permission> tags.

The <protection Level> attribute is required,'telli'ng the system how the user is to bé informed of
applications requiring the permission, or who is allowed to hold that permission, as described in the
linked documentation.

The <permission Group> attribute is optional, and only used to help the system display permissions to
the user. You will usually want to set this to either a standard system group (listed in
android.Manifest.permission_group) or in more rare cases to one defined by yourself. It is preferred to
use an existing group, as this simplifies the permission Ul shown to the user.

Note that both a label and description should be supplied for the permission, These are string resources
that can be displayed to the user when they are viewing a list of permissjong (android:tabel) or details
on a single permission (android:description). The label should be short, a few words describing the key
piece of functionality the permission is protecting. The description should be g couple sentences
describing what the permission allows a holder to do. Qur Convention for the description is two
sentences, the first describing the permission, the secong warning the user of what bad things can

happen if an application is granted the permission.

Page 9

‘,
v

1.2.5 Applications Developed on Android Platforms

o In September 2008, Motorola confirmed that it was working on hardware products that would
run Android.

o Huawei Technologies is planning to launch smart phones that would run Android in Q1 2009.

o Lenovo is working on an Android-based mobile phone that supports the Chinese 3G TD-
SCDMA standard.

 HTCis planning a “portfolio” of Android based phones to be released summer of 2009. 8

« Sony Ericsson is planning to release an Android based handset in the summer of 2009,

« Samsung plans to offer a phone based on Googles Android operatin
quarter of 2009. perating system in the second

o GiiNii Movit Mini is a Internet device based on Google's Android operating system

CHAPTER2 -~ . PROBLEM DEFINITION
This android quiz game application will help the user fo test their knowledge in technology

Quiz game application contain multiple choice questions related to technology. If the user g
: I gives

the correct answer then only the game will proceed then game will get over and the
. - Score

will be displayed.

CHAPTER 3. . SYSTEM: REQUIREMENT SPECIFICATION

3.4 Overall Dgscnptlon

Page 10

3.1.1

3.1.2

Product Perspective
Quizo is an android application that can be used on a client system, so that it can be accessed

in a mobile and can be used to check the technical knowledge.
Product Features
The major functionalities of the proposed system are:

User-Friendly environment which can enhance interest of the user.

‘The application can be adjusted on any mobile which have android operating

system .

Sound-effects in the application gives it professional touch

No Internet access is required to play the application.

Android is "openness." The promise is that developers can produce applications

without interference.

"The fact that (Android) is an advanced, open operating system is important to
the development community, but customers don't buy operating systems.

The interface is flexible.

Page 11

-

e The Android Platform provides a rich security model that allows developers to
request the capabilities, or access, needed by their application and to define new
capabilities that other applications can request.

e Developers have full access to the same framework APIs used by the core
applications

3.1.2.1 ASSUMPTIONS AND DEPENDENCIES

> Having only hardware is not sufficient, to access an application Software is must.

> Assumption is made in such a way that the mobile is charged with enough.battery.

> The battery should be in a working mode.

> The one who using the mobile must have a minimum knowledge of how to play the

game.

3.1.3 User Classes and Characteristics

The class of users that we aim to serve with this product is diverse and diverged on how they
are going to use it. The users must have minimal knowledge of the android operating system.

We also aim this product to be useful to the students of college or professional.

3.1.4 Operating Environment

Page 12

uV
The product is built for Android environment and the internet is not required to play the

application.The framework required are-
1) Java Run Time Environment(JRE)

2) eclipse (eclipse-SDK-3.6.2-win32

3) JDK (cnet2_jdk-6-windows-i586)

]DK contents

The JDK has as its primary components a collection of programmin
tools, including: g

« appletviewer - this tool can be used to run and debug Java applets without a web browser

« apt - the annotation-processing tooltl

« extcheck - a utility which can detect JAR-file conflicts

o idlj - the IDL-to-Java compiler. This utility generates Java bindings from 3 given Java IDL fi
Java UL tile.

java ~ the loader for Java applications. This tool is an interpreter ang

can interpret the class files generated by the javac compiler. Now a

single launcher is used for both development and

deployment. The old deployment launcher, jre, no longer comes with

Sun JDK, and instead it

has been replaced by this new java loader.

Page 13

o javac - the Java compiler, which converts source code into

Java bytecode

« javadoc - the documentation generator, which automatically generates

documentation from source code comments

« jar - the archiver, which packages related class libraries into a single

JAR file. This tool also helps manage JAR files.

javah — the C header and stub generator, used to write native methods

javap — the class file disassembler

javaws — the Java Web Start launcher for JNLP applications

« JConsole — Java Monitoring and Management Console

o jdb - the debugger
o jhat - Java Heap Analysis Tool (experimental)
o jinfo- Thié utility gets configuration information from a running Java

process or crash dump. (experimental)

e jmap - This utility outputs the memory map for Java and can print shared object memory maps
or heap memory details of a given process or core dump. (experimental)

Page 14

jps — Java Virtual Machine Process Status Tool lists the instrumented HotSpot Java Virtual
Machines (JVMs) on the target system. (experimental)

jrunscript — Java command-line script shell.
jstack — utility which prints Java stack traces of Java threads (experimental)

jstat — Java Virtual Machine statistics moniﬁoring tool (experimental)

jstatd — jstat daemon (experimental)

keytool - ool for manipulating the keystore

pack200 — JAR compression tool

policytool — the policy creation and management tool, which can determine policy for a Java
runtime, specifying which permissions are available for code from various sources

VisualVM - visual tool integrating several command-line JDK tools and lightweighticirfcation
needed] performance and memory profiling capabilities

wsimport — generates portable JAX-WS artifacts for invoking a web service.

xjc — Part of the Java API for XML Binding (JAXB) AP!I. It accepts an XML schema and
generates Java classes. ‘

| Page 15

The JDK also comes with a complete Java Runtime Environment, usually

called a private runtime, due to the fact that it is separated from the “regular”
JRE and has extra contents. It consists of a Java Virtual Machine and all of
the class libraries present in the production environment, as well as additional

libraries only useful to developers, such as the internationalization libraries

and the |DL libraries.

Ambiguity between a JDK and an SDK

The JDK forms an extended subset of a software development kit (SDK). In the descriptions that

accompany its recent releases, which implement Java SE, EE and ME, Sun acknowledges that under

its terminology, the JOK forms the subset of the SDK which has the responsibility for the writing and

running of Java programs.! The remainder of the SDK comprises extra software, such as application

servers, debuggers, and decumentation

4) Android Development Tools Plug-in(SDK manager and AVD manager) in

ECLIPSE.

3.1.5 Design and Implementation Constraints

(a-) Design for first page include background image name
Quiz game ie Quizo and three Buttons-
Start, Scores, Instructions

1-) Start -by clicking on the start button the quiz game will start

2-)Scores-include the score

3-)Instructions-include the instructions (how to play the game)

Page 16

(b-) Design for second page include muiltiple choice question
It include four options (means four options) the user has to click on the right

answer.

3.2 System Features

3.2.1Functional Requirements

The system is required to perform the following functions.
1. Display all the information about the application that is being developed and some set of
instructions the user might want to remember before he sets up the system for configuring

global time.
2. Sign in your application with jar signer before running your application

3. Install your apk file with android bridge (i.e adb) .

4. After executing your application

5. Ability to rotate the shapes in clockwise and anti clockwise direction

6. Use up and down arrow keys for rotating.

7. Able to display score

Page 17

8. Ability to pause and resume and stop the application

3.2.2 Non-Functional Requirements

> Application framework enabling reuse and replacement of components.

» Dalvik virtual machine optimized for mobile devices.

> Integrated browser based on the open source Web Kit engine.

> Optimized graphics powered by a custom 2D graphics library; 3D graphics based on the

> OpenGL'ES 1.0 specification (hardware acceleration optional).
> SQLite for structured data storage.

> GPS

> Rich development environment including a device emulator, tools for debugging, memory and

performance profiling, and a plug-in for the Eclipse IDE.

> The system is expected to run on low memory devices also.
> The system should not consume lot of bandwidth so that the other applications will block for the

internet.

> The system should provide secured access to the web server.

Requirements Specifications
- 3.2.3 Software Requirements:

J2SE, Android, Linux, Windows XP, Eclipse 3.4, Mobile IDE Plug-in.

Page 18

3.2.4 Hardware Requirements:

Pentium IV with 2GHZ, 1 GB RAM, 40 GB Hard Drive, Android Phone (optional).

CHAPTER 4 SYSTEM DESIGN

4.1 What is UML?
The Unified Modeling Language (UML) is a standard language for specifying, visualizing, constructing,

and documenting the artifacts of software systems, as well as for business modeling and other non-\

software systems. The UML represents a collection of best engineering practices that have proven
successful in the modeling of large and complex systems. The UML is a very important part of

developing objects oriented software and the software development process. The UML uses mostly

graphical notations to express the design of software projects. Using the UML helps project teams

communicate, explore potential designs, and validate the architectural design of the software.

4.2 Goals of UML:

The primary goals in the design of the UML were:

> Provide users with a ready-to-use, expressive visual modeling language so they can develop

Page 19

and exchange meaningful models.
> Provide extensibility and specialization mechanisms to extend the core concepts.

> Be independent of particular programming languages and development processes.

> Provide a formal basis for understanding the modeling language.

> Encourage the growth of the OO tools market.

> Support higher-level development concepts such as collaborations, frameworks, patterns and

components. Integrate best practices.

4.3 Why Use UML?

As the strategic value of software increases for many companies, the industry looks for techniques to
automate the production of software and to improve quality and reduce cost and time-to-market. These
techniques include component technology, visual programming, pattems and frameworks, Businesses
also seek techniques to manage the complexity of systems as they increase in scope and scale. In
particular, they recognize the need to solve recurring architectural problems, such as physical
distribution, concurrency, replicaﬁon, security, load balancing and fault tolerance. Additionally, the

development for the World Wide Web, while making some things simpler, has exacerbated these

Page 20

architectural problems. The Unified Modeling Language (UML) was designed to respond to these

needs.

4.4 UML Diagrams:

UML diagram is designed to let developers and customers view a software system from a different
perspective and in varying degrees of abstraction. UML diagrams commonly created in visual modeling
tools include.

4.5 Use case Diagram:
A use case is a set of scenarios that describing an interaction between a user and a system. A use

case diagram displays the relationship among actors and use cases. The two main components of a

use case diagram are use cases and actors.

R R

Actor Use Case

An actor is represents a user or another system that will interact with the system you are modeling. A
use case is an external view of the system that represents some action the user might perform in order

to complete a task.

When to Use: Use Cases Diagrams:

Use cases are used in almost every project. They are helpful in exposing requirements and planning

the project. During the initial stage of a project most use cases should be defined. but as the project

¥ |

Page 21

W

b

continues more might become visible.

(_ startGamie

4.6 Class Diagram:

Class diagrams are widely used to describe the types of objects in a system and their relationships

Class diagrams model class structure and contents using design elements such as classes, packa
; ges

and objects. Class diagrams describe three different perspectives When designing a system

conceptual, specification, and implementation. These perspectives become evident as the diagram is

Page 22

created and help solidify the design. This example is only meant as an introduction to the UML and

class diagrams.

When to Use: Class Diagrams:

! Class diagrams are used in nearly all Object Oriented software designs. Use them to describe the

Classes of the system and their relationships to each other.

4.7 Sequence Diagram:

| Sequence diagrams demonstrate the behavior of objects in a use case by describing the objects and

the messages they pass. The diagrams are read left o right and descending. The example below
| shows an object of class 1 start the behavior by sending a message to an object of class 2. Messages

pass between the different objects until the object of class 1 receives the final message.

Object : Classt Object : Class2 hiect : Class3
2 | > |
; —»
‘ =
! e —
| T
T |

Page 23

T

object

p 1 restanGameo’

2: init0

|

3: currentShape.isGameOver = false

4.8 Activity Diagram:

Activity diagrams describe the workflow behavior of a system. Activity diagrams are similar to

state diagrams because activities are the state of doing something. The diagrams describe the state of

activities by showing the sequence of activities performed. Activity diagrams can show activities that

are conditional or parallel.

When to Use: Activity Diagrams

Activity diagrams should be used in conjunction with other modeling techniques such

as interaction diagrams and state diagrams. The main reason to use ‘activity diagrams is to model the

workflow behind the system being designed. Activity Diagrams are also useful for: analyzing a use

Page 24

case by describing what actions needs to take place and when they should occur; describing a

complicated sequential algorithm; and modeling applications with parallel processes.

However, activity diagrams should not take the place of interaction diagrams and state diagrams.

Activity diagrams do not give detail about how objects behave or how objects collaborate.

Page 25

14

CHAPTERS - - CODE IMPLEMENTATION

5.1 Android:

The Android platform is a software stack for mobile devices including an operating system, middleware
and key applications. Developers can create applications for the platform using the Android SDK.
Applications are written using the Java programming language and run on Dalvik, a custom virtual
machine designed for embedded use, which runs on top of a Linux kemel. An embarrassing bug found
on the G1 Phone has been fixed by Google. After starting up the phone if a user then typed “reboot’,
the phone would reboot.

The bug was found accidentally by a user who happened to type “Reboot” into his phone.

Google moved quickly to fix the problem, users in the US are already reporting having received the
update and according to the BBC, users in the UK will have the update by 12th November.
The G1 has had surprisingly few bugs for a phone that is based on a completely new platform and is

the first phone to use it.

5.1.1 Android Architecture:

The following diagram shows the major components of the Android operating system. Each section is

described in more detail below.

Page 26

" 5.1.1.1 Applications:

APPLICATION

Contacts Phone

Window
Manager

Content

Activity Manager Providers

Resource

Telephony Marger

Package Manager Manager

LIBRARIES

Media

ace Manager
Surfac g Framework

OpenGL | ES FreeType

LINUX KERNEL

Display

D Camera Driver

Driver

Audio

Keypad Driver Wik Dnver

| Underlying all applications is a set of services and systems, including:

AFPPLICATION FRAMEWORK

Flash Memory

Drivers

View
System

Locauon

Notificaton
Manager

Manager

ANDROID RUNTIMEW

Core Libraries

Machine

Binder (IPC)

Driver

Power
Management

i » Arich and extensible set of Views that can be used to build an application, including lists, grids,
text boxes, buttons, and even an embeddable web browser
!

B T T ——

> Content Providers that enable applications to access data from other applications (such as

Contacts), or to share their own data

> A Resource Manager, providing access to non-code resources such as localized strings,

graphics, and layout files
> A Notification Manager that enables all applications to display custom alerts in the status bar

> An Activity Manager that manages the life cycle of applications and provides a common

" navigation back stack
5.1.1.3 Libraries:
Android includes a set of C/C++ libraries used by various components of the Android system. These
capabilities are exposed to developers through the Android application framework. Some of the core
libraries are listed below:

> System C library - a BSD-derived implementation of the standard ¢ system library (libc), tuned

for embedded Linux-based devices
> Med-ia Libraries - based on Packet Video's Open CORE: the libraries support playback and

recording of many popular audio and video formats, as welj as static image files, includi
, including

MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG

> Surface Manager - mana i
| 9 965 access to the display Subsystem and seamlessly composites 2D

and 3D graphic layers from multiple applications

Page 28

> LibWebCore - a modem web browser engine which powers both the Android browser and an
embeddable web view
» SGL - the underlying 2D graphics engine

> 3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries use either

hardware 3D acceleration (where available) or the included, highly optimized 3D software

rasterizer

> FreeType - bitmap and vector font rendering

» SQLite - a powerful and lightweight relational database engine available to all applications

5.1.1.4 Android Runtime:

Android includes a set of core libraries that provides most of the functionality available in the core
libraries of the Java programming language.

Every Android application runs in its own process, with its own instance of the Dalvik virtual machine.
Dalvik has been written so that a device can run multiple VMs efficiently. The Dalvik VM executes files
in the Dalvik Executable (.dex) format which is optimized for minimal memory footprint. The VM is
register-based, and runs classes compiled by a Java language compiler that have been transformed

into the .dex format by the included “dx” tool.

Page 29

The Dalvik VM relies on the Linux kernel for underlying functionality such as threading and low-level

memory management.

5.1.1.5 LINUX KERNEL:

Android relies on Linux version 2.6 for core system services such as security, memory management,
process management, network stack, and driver model. The kemel also acts as an abstraction layer

between the hardware and the rest of the software stack.

5.2 Eclipse 3.4:

An open-source Java IDE and platform for rich client applications Eclipse is an open source platform-
independent software framework for delivering what the project calls or is known as “rich-client
applications" (as opposed to “thin clients”, this means the clients perform heavy-duty work on the host.
So far this framework has typically been used to develop ides (Integrated Development Environments),
such as the highly-regarded Java IDE called Java Development Toolkit (JDT) and compiler that come
as part of Eclipse (and which are also used to develop Eclipse itself). However, it can be used for other

types of client application as well, see the popular Bit Torrent client for example.

5.3 JAVA

T
v

5.3.1 OVERVIEW OF JAVA:

Computers connected to the net are from many different manufacturers, running on different operating

systems and they differ in architecture, computing power and capacity. By considering this point SUN

Microsystems Corporation felt the need for a new programming language suitable for this

heterogeneous Environment and java was the solution. This breaks barriers between different
computers, chips and operating Systems. .

myProgram. java

Cinrngailer

The main properties of the Java, which made Java so popular, are as follows:
> Simple

» Secure

> Portable

» Object-Oriented

» Robust

Page 31

» Multithreaded

» Interpreted

» High performance

5.3.2 The Key Features Of Java Is Byte Code:

The key that allows Java to solve both the security and the portability problems just described is that

the output of a Java compiler is not executable code. Rather, it is Byte code. Byte code is a highly

optimized set of instructions designed to be executed by the Java runtime systems, which is called the

myProgran.java

Java AP| :
Java Virtual Machine }Java Platform
Hardware-Based Platform|

g

Java Virtual Machine (JVM). That is, in its standard form, the JVM is an interpreter for Byte code. This

may come has a bit of surprise.

5.3.4 Java Platform:

One characteristic of Java is portability, which means that computer programs written in the Java
language must run similarly on any supported hardware/operating-system platform. One should be able
to write a program once, compile it once, and run it anywhere.

This is achieved by compiling the Java language code, not to machine code but to Java bytecode -

instructions analogous to machine code but intended to be interpreted by a virtual machine (VM) written

specifically for the host hardware. End-users commonly use a Java Runtime Environment (JRE)

installed on their own machine for standalone Java applications, or in a Web browser for Java applets.
Standardized libraries provide a generic way to access host specific features such as graphics,

threading and networking. In some JVM versions, bytecode can be compiled to native code, either

before or during program execution, resulting in faster execution.
A major benefit of using bytecode is porting. However, the overhead of interpretation means that
interpreted programs almost always run more slowly than programs compiled to native executables

would, and Java suffered a reputation for poor performance. This gap has been narrowed by a number

of optimisation techniques introduced in the more recent JVM implementations.

One such technique, known as just-in-time (JIT) compilation, translates Java bytecode into native code

the first time that code is executed, then caches it. This result in a program that starts and executes

A

a

Page 33

faster than pure interpreted code can, at the cost of introducing occasional compilation overhead durin_g
execution. More sophisticated VMs also use dynamic recompilation, in which the VM analyzes the
behavior of the running program and selectively recompiles and optimizes parts of the program.
Dynamic recompilation can achieve optimizations superior to static compilation because the dynamic
compiler can base optimizations on knowledge about the runtime environment and the set of loaded
classes, and can identify hot spots - paﬂs of the progr_am, often inner loops, that take up the-most

execution time. JIT compilation and dynamic recompilation allow Java programs to approach the speed
of native code without losing portability.

5.4 Android SDK:

The Android SDK includes a comprehensive set of development tools. These include a debugger,

libraries, a handset emulator (based on QEMU), documentation, sample code, and tutorials. Currently

supported development platforms include x86-based computers running Linux (any modem deskiop

Linux Distribution), Mac OS X 10.4.8 or later, Windows XP or Vista. Requirements also include

Java Development Kit, Apache Ant, and Python 2.2 or later. The officially supported

M\L@M@ﬂm‘*—m (IDE) is Eclipse (3.2 or later) using the Android Development
Tools (ADT) Plug-in, though developers may use any text editor to edit Java and XML files then use

command line tools to create, build and debug Android applications.

Page 34

B
L]

A preview release of the Android software development kit (SDK) was released on 12 November 2007.
On 15 July 2008, the Android Developer Challenge Team accidentally sent an email to all entrants in
the Android Developer Challenge announcing that a new release of the SDK was available in a
"private” download area. The emgil was intended for winners of the first round of the Android Developer
Challenge.. The revelation that Google was supplying new SDK releases to some developers and not

others (and keeping this arrangement private) have led to widely reported frustration within thé Android

developer community.

On 18 August 2008 the Android 0.9 SDK beta was released. This release provides an updated and
extended API, improved development tools and an updated design for the home screen. Detailed
instructions for upgrading are aVaiIabIe to those already working with an earlier release. On 23
September 2008 the Android 1.0 SDK (Release 1) was released.ll According to the release notes, it
included "mainly bug fixes, although some smaller features were added". It also included several AP|
changes from the 0.9 version.

On March 9, 2009, Google released version 1.1 for the android dev phone. While there f
. are a few

aesthetic updates, a few crucial updates include support for “search by voice, priced I lock
, apps, alarm cloc

fixes, sending gmail freeze fix, fixes mail notifications and refreshing intervals, and now the maps show

business reviews". Another important update is that Dev phones can now access paid apps and

A
.

Page 35

developers can now see them on the Google marketplace.

Code Snippets :
1)Code for Activity :

package com.myapp.quiz;

import com.myapp.gquiz.QuestionlActivity.MyCount;
import com.myapp.quiz.R;

import android.app.Activity;

import android.content.Intent;

import android.content.pm.ActivityInfo;
import android.graphics.Color;

import android.media.AudioManager;

‘ import android.media.SoundPool;

! import android.os.Bundle;

i import android.os.CountDownTimer;
import android.view.KeyEvent;

import android.view.View;

import android.widget.ImageView;
import android.widget.CheckBox;

import android.widget.TextView;

import android.view.View.OnClickListener;
import android.widget.Toast;

public class QuestionlActivity extends Activity im
View.OnClickListener Y implements
{
DatabaseHandler db = new DatabaseHandler (this);
CheckBox optl,opt2,opt3,optd; ’

int givenans;

private SoundPool sounds1, sounds2, sounds3, sounds4 :
private int buzzer,claps,alarm, beep; ;
TextView timeElapsed, text;

Long highscore=(long) 0;

int gid=1l;

MyCount counter = new MyCount(21000,1000);

i /** Called when the activity is fj
i
{ @Override TSt created. */
public void onCreate (Bundle sa
{ vedInstanceState)
super.onCreate(savedInstanceState).
) 14
setContentView(R.layout.questioni);

this.setRequestedOrientation (Act ivityInfo.SCREEN ORIENTATION PORTRAIT):

' A
i 3

Page 36

highscore= getIntent().getExtras();getLong("highscore“);

gid=

sound
sound
sound
sound
buzzer
claps =
alarm =
beep

optl =
opt2 =
opt3 =
optd =
text =

optl.se
opt2.se
opt3.se
optd.se

getIntent().getExtras().getInt("qgid");

sl new SoundPool (10, AudioManager.STREAM MUSIC,0)
s2 = new SoundPool (10, AudioManager.STREAM_MUSIC,0)
s3 new SoundPool (10, AudioManager.STREAM_MUSIC,0)
s4 = new SoundPool (10, AudioManager.STREAM_MUSIC,0)
= soundsl.load(getBaseContext (), R.raw.bué;er, 1)
sounds2. load(getBaseContext (), R.raw.claps, 1);
sounds3.load(getBaseContext (), R.raw.alarm, 1);

soundsd.load (getBaseContext (), R.raw.beep, 1);

(CheckBox) findViewById(R.id.checkBoxl1);
(CheckBox) findViewById(R.id.checkBon);
{CheckBox) findViewById(R.id.checkBoxB);
(CheckBox) findViewById(R.id.checkBox4); .
(TextView) findViewById(R.id.timeElapsed);

tOnClickListener (this) ;
tOnClickListener (this) ;
tOnClickListener (this);
tOnClickListener (this);

addListenercheckBox1 () ;

addLi

addListenercheckBox3() ;

stenercheckBox2 () ;

addListenercheckBox4 () ;

}

public void
{

addListenercheckBoxl ()

optl = (CheckBox) findViewById(R.id.checkBox1);

optl.setOnClickListener (new OnClickListener ()

{

@Override
public void onClick(View v)

{

switch(v.getId())

{

}

if
{

case R.id.checkBoxl1:
givenans=l;
break;

case R.id.checkBox2:
givenans=2;
break;

case R.id.checkBox3:
givenans=3;
break;

case R.id.checkBox4:
givenans=4;
break; ‘

//is chkIos checkeg?

({{CheckBox) V) .isChecked() &g givenans==3)

-
4
-
’
.
’

.
’

Page 37

Toast.makeText (QuestionlActivity.this,
"wrong answere :)", Toast.LENGTH_ LONG) .show();

counter.cancel ();
sounds2.play(claps, 1.0f, 1.0£f, 0, 0, 1.0f);
Intent quiz = new Intent (getApplicationContext (),

Question2Activity.class);
quiz.addFlags (Intent.FLAG ACTIVITY CLEAR TOP);

quiz.putExtra("highscore”, highscore);
quiz.putExtra("gid", 2);
startActivity(quiz);
finish();
}
else

{

counter.cancel();
soundsl.play(buzzer, 1.0f, 1.0£f, 0, 0, 1.0f);
Intent quiz = new Intent(getApplicationContext(),
TryagainActivityl.class);
quiz.addFlags (Intent.FLAG ACTIVITY CLEAR TOP);
quiz.putExtra("highscore"”, highscore);
quiz.putExtra("qid", 1);
startActivity(quiz);
finish();

}):

public void addListenercheckBox2 ()
{

opt2 = (CheckBox) findviewById(R.id.checkBox2);

opt2.setOnClickListener(new OnClickListener()

{

@Override
public void onClick (View v)

{

switch(v.getId())
{
case R.id.checkBoxl:
givenans=1;
break;
case R.id.checkBox2:
givenans=2;
break;
R.id.checkBox3:
givenans=3;
break;
case R.id.checkBox4:
givenans=4;
break;

case

}
//is chklos checked?

if (((CheckBox) v).isChecked() && givenans==3)
{
Toast.makeText (QuestionlActivity.this,
"wrong answere :)", Toast.LENGTH_ LONG) .show();

Page 38

counter.cancel();
sounds2.play(claps, 1.0f, 1.0£, 0, 0, 1.0f);
Intent quiz = new Intent (getApplicationContext (),
Question2Activity.class);
quiz.addFlags (Intent.FLAG_ACTIVITY CLEAR TOP);
quiz.putExtra("highscore”, highsco;e); -
quiz.putExtra ("gid", 2);
startActivity(quiz);
finish{();
}
else
{
counter.cancel ()
soundsl.play(buzzer, 1.0f, 1.0£, 0, 0, 1.0f);
Intent quiz = new Intent(getApplicationContext (),
TryagainActivityl.class);
quiz.addFlags{Intent.FLAG ACTIVITY CLEAR TOP);
quiz.putExtra("highscore”, highscore);
quiz.putExtra("qid", 1);
startActivity(quiz);
finish():

public void addListenercheckBox3()
{

opt3 = (CheckBox) findvViewById(R.id.checkBox3);

opt3.setOnClickListener (new OnClickListener ()

{

@Override _
public void onClick(View V)

{
switch(v.getId())

{
case R.id.checkBoxl:

givenans=1l;
break;

case R.id.checkBox2:
givenans=2;
break;

case R.id.checkBox3:
givenans=3;
break;

case R.id.checkBox4:
givenans=4;
break;

}
if (((CheckBox) v).isChecked() && givenans==3)

{
Toast.makeText(QuestionlActivity.this,

"right answere :)", Toast.LENGTH LONG).show();

counter.cancel ()
sounds2.play(claps, 1.0f, 1.0f, 0, 0, 1.0f);

Page 39

Intent quiz = new Intent (getApplicationContext (),
Question2Activity.class);
quiz.addFlags (Intent.FLAG ACTIVITY CLEAR_TOP);
quiz.putExtra("highscore", highsco;e); -
quiz.putExtra("gid", 2);
startActivity(quiz);
finish():;
}
else
{
counter.cancel () ; .
soundsl.play(buzzer, 1.0f, 1.0£, 0, 0, 1.0f);
Intent quiz = new Intent(getApplicationContext(),
TryagainActivityl.class);
quiz.addFlags (Intent.FLAG_ACTIVITY CLEAR TOP);
quiz.putExtra("highscore", highscore);—
quiz.putExtra("qid", 1);
startActivity(quiz):
finish{();

public void addListenercheckBox4 ()
{

optd4d = (CheckBox) findViewById(R.id.checkBox4);

opt4.setOnClickListener (new OnClickListener ()

{

Qoverride
public void onClick(View V)

{
switch(v.getId())

{ case R.id.checkBoxl1:
givenans=1;
break:;

case R.id.checkBoxZ2:
givenans=2;
break;

R.id.checkBoxB:

givenans=3;
break;

se R.id.checkBox4:
givenans=4;
break;

case

ca

}
if (((CheckBox) v).isChecked() && givenans==3)
{ .
Toast.makeText (QuestionlActivity.this,
"wrong answere :)", Toast.LENGTH LONG).show();

counter.cancel();
sounds2.play(claps, 1.0f, 1.0f, 0, 0, 1.0f);

Page 40

Intent quiz = new Intent (getApplicationContext (),
Question2Activity.class);
quiz.addFlags (Intent.FLAG ACTIVITY CLEAR TOP);
. quiz.putExtra("highscore", highscore):; -
quiz.putExtra("qid", 2);
startActivity(quiz);
finish();
} ,
else
{
counter.cancel ();
soundsl.play(buzzer, 1.0£f, 1.0f, 0, 0, 1.0f);
Intent quiz = new Intent (getApplicationContext(),
TryagainActivityl.class);
quiz.addFlags(Intent.FLAG ACTIVITY CLEAR TOP);
quiz.putExtra("highscore”, highscore);
quiz.putExtra("qid", 1);
startActivity(quiz);
finish():;

1):

public boolean onKeyDown(int keyCode, KeyEvent event)

{
if (keyCode == KeyEvent.KEYCODE BACK && event.getRepeatCount() ==

0)
{
counter.cancel();
return super.onKeyDown (keyCode, event);
}
return super.onKeyDown(keyCode, event);
}
@override
public boolean onKeyUp(int keyCode, KeyEvent event)
if (keyCode == KeyEvent .KEYCODE BACK && event.getRepeatCount () ==
0)

{
counter.cancel(};
return super.onKeyUp(keyCode, event);

}

return super.onKeyUp(keyCode, event) ;

@Override
protected void onStop ()
{
counter.cancel ();
finish():
super.onStop () ;

Page 41

public class MyCount extends CountDownTimer

{
public MyCount (long millisInFuture, long countDownInterval)

{

super (millisInFuture, countDownInterval);

}

@Override

public void onFinish()

{
counter.cancel () ;
sounds3.play(alarm, 1.0£f, 1.0£, 0, 0, 1.0f);
Intent quiz = new Intent (getApplicationContext(),

AlarmActivityl.class);
quiz.addFlags (Intent.FLAG ACTIVITY CLEAR TOP);

quiz.putExtra("highscore", highscore);
quiz.putExtra("qid", 1);
startActivity(quiz);
finish():
}

@Ooverride
public void onTick(long millisUntilFinished)

{
Long sec=millisUntilFinished/1000;
text.setText (Long. toString(millisUntilFinished/1000));
Long time=(long) 21000/1000;
highscore=highscore + (time-sec);
if (sec<=5)

{
sounds4.play(beep, 1.0f, 1.0f, 0, 0, 1.0f);

text.setTextColor(Color.parseColor("#FFOOOO"));

@0verride
- public void onClick(View v) {
// TODO Auto-generated method stub

2-)Code for layout

<?xml version="1.0" encoding="utf-8"?>. ,
<ScrollView xmlns:android="http://schemas.android.com/apk/res/éndroid"
android:layout_width="fill parent”
android:layout_height="fill parent"
android:background="@drawable/img"
android:orientation="vertical"” >

Page 42

<LinearLayout
android:layout_width="fill parent"
android:layout_height="442dp"
android:orientation="vertical"
android:padding="10dip" >

<TextView

android:id="@+id/questionltext”

android:layout _width="fill parent"

android:layout_height="wrap_content”

android:padding="10dip"

android:text="Questionl -What is the name of the flashin
symbol on the computer screen that shows where the information you egter
will appear?"” .

android:textColor="#000000"

android:textSize="20dip"

. android:textStyle="bold" />

<ImageView
android:id="@+id/imageViewl"
android:layout_width="295dp"
android:layout height="100dp"
android:src="@drawable/motu” />

<CheckBox
android:id="@+id/checkBox1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:checked="false"
android:text="Chip"
android:textColor="#000000"
android:textStyle="bold" />

<CheckBox
android:id="@+id/checkBox2"

android:layout width="wrap_content”
android:layout height="wrap_ content”
android:checked="false"

} android:text="Circuit”

‘ android:textColor="#000000"
android:textStyle="bold" />

, <CheckBox)
] android:id="@+id/checkBox3"

android:layout_width="wrap_contentn
android:layout_height="wrap content"”
android:checked="false"
android:text="Cursor"”
android:textColoxr="#000000"
android:textStyle="bold" />

<CheckBox
android:id="@+id/checkBox4"
android:layout_width="wrap content"”

Page 43

android:layout_height="wrap content"
android:text="Bit"
android:textColor="#000000"
android:textStyle="bold" />

</LinearLayout>

</ScrollView>

CHAPTER 6 v . TESTING

6.1 What is testing?
A process of executing a program with the explicit intention of finding errors, that is making the
program fail. Testing is the process of detecting errors. Testing performs a very critical role for quality

assurance and for ensuring the reliability of software. The results of testing are used later on during

maintenance also.

6.2 Psychology of Testing

The aim of testing is often to demonstrate that a program works by showing that it has no erors. The
basic purpose of testing phase is to detect the errors that may be present in the program. Hence one
should not start testing it the intent of showing that a program works but the intent should be to show

that a program does not work. Testing is the process of executing a program with the intent of finding

errors.

6.3 Testing Objectives

» The main objective of testing is to uncover a host of errors, systematically and with minimum

Page 44

effort and time. Stating formally, we can say,

> Testing is a process of executing a program with the intent of finding an error.

> A successful test is one that uncovers an as yet discovered error.

> A good test case is one that has a high probability of finding error, if it exists.

> The tests are inadequate to detect possibly present errors.

> The software more or les confirms to the quality and reliable standards.

6.4 Software Testing:
It is the process of testing the functionality and correctness of a software by running it. A good test

case is the one that has a high probability of finding an as yet undiscovered error. A successful test is

one that uncovers an as yet undiscovered error. Software testing is usually performed for one of the two

reasons.
> Defect detection.

> Reliability estimation.

6.5 Black Box Testing:

| Page 45

Black box testing is based on the software’s specifications or requirements, without reference to its
internal workings

Black Box Testing is not a type of testing; it instead is a testing strategy, which does not need any
knowledge of internal design or code efc. As the name "black box" suggests, no knowledge of internal
logic or code structure is required. The types of testing under this strategy are totally based/focused on
the testing for requirements and functionality of the work product/software application. Black box testing
is sometimes also called as "Opaque Testing", “Functional/Behavioral Testing" and “Closed Box
Testing".

The base of the Black box testing strategy lies in the selection of appropriate data as per functionality
and testing it against the functional specifications in order to check for normal and abnormal behavior of
the system. Now a days, itis becoming common to route the Testing work to a third party as the
developer of the system knows too much of the internal logic and coding of the system, which makes it
unfit to test the application by the developer.

In order to implement Black Box Testing Strategy, the tester is needed to be thorough with the
requirement specifications of the system and as a user, should know, how the system should behave in

response to the particular action.

6.6 White Box Testing:

Page 46

White box testing is a security testing method that can be used to validate whether code
implementation follows intended design, to validate implemented security functionality, and to uncover
exploitable vulnerabilities White box testing is performed based on the knowledge of how the system is
implemented. White box testing includes analyzing data flow, control flow, information flow, coding
practices, and exception and error handling within the system, to test the intended and unintended
software behavior. White box testing can be performed to validate ;Nhether code implementation follows

intended design, to validate implemented security functionality, and to uncover exploitable

vulnerabilities.

White box testing requires access to the source code. Though white box. testing can be performed any
time in the life cycle after the code is developed, it is a good practice to perform white box testing during
the unit testing phase.

White box testing requires knowing what makes software secure or insecure, how to think like an
attacker, and how to use different testing tools and techniques. The first step in white box testing is to
comprehend and analyze source code, SO knowing what makes software secure is a fundamental
requirement. Second, to create tests that exploit software, a tester must think like an attacker. Third, to

perform testing effectively, testers need to know the different tools and techniques available for white

box testing. The three requirements do not work in isolation, but together.
A

Page 47

Knowing the internal working i.e., to test if all internal operations are performed according to program

structures and data structures. To test if all internals components have been adequately exercised.

6.7 Levels of Testing: |
In order to uncover the errors present in different phases we have the concept of levels of testing. The

basic levels of testing are

Client needs Acceptance Testing
Requirements System Testing
Design Integration Testing
Code . Unit Testing

6.8 Software Testing Strategies:

A strategy for software testing will begin in the following order.

> Unit Testing

i
(
|
I

> Integration Testing

> Validation Testing

> System Testing

Page 48

6.8.1 Unit'Testing:

It concentrates on each unit of the software as implemented in source code and is a white box

oriented. Using the component level design description as a guide, important control paths are tested to
uncover errors with in the boundary of the module. In the unit testing, the steps can be conducted in

parallel for multiple components. In my project | tested all the modules individually related to main

function codes and attacks also.

6.8.2 Integration Testing:

Here focus is on design and construction of the software architecture. Integration Testing is a

systematic technique for constructing the program structure while at the same time conducting tests to

uncover errors associated with interfacing. The objective is o take unit tested components and build a
program structure that has been dictated by design. The goal here is to see»if modules can be

; integrated properly, the emphasis being on testing interfaces between modules.

This testing activity can be considered as testing the design and hence the emphasis on testing module
interactions. In this project the main system is formed by integrating all the modules. When integrating
all the modules | have checked whether the integration effects working of any of the services by giving

different combinations of inputs with which the two services run perfectly before integration.

Page 49

4

6.8.3 Validation Testing:

In this, requirements established as part of software requirement analysis are validated against the
software that has been constructed i.e., validation succeeds when software functions in a manner that
can reasonably expected by the customer.

6.8.4 System Testing:

System testing of software or hardware is testing conducted on a complete, integrated system to
evaluate the system's compliance with its specified requirements. System testing falls within the scope
of black box testing, and as such, should require no knowledge of the inner design of the code or logic.

Here the entire software system is tested. The reference document for this process is the requirerﬁents

document, and the goal is to see if software meets its requirements.

6.9 TEST CASES:

A test case in software engineering is a set of conditions or variables under which a tester will

determine whether an application or software system meets specifications. The mechanism for

determining whether a software program or system has passed or failed such a test is known as a test

oracle.

In some settings an oracle could be a requirement or use case. It may take many test cases to

determine that a software program or system is functioning correctly. Test cases are often referred to

Page 50

as test scripts, particularly when written. Written test cases are usually collected info test suites.

6.9.1 What are positive and negative test cases?

» A posiive test case is when the test is designed to retum what is

expected according to the requirement.

> Negative test case is when the test is designed to determine the

response of the product outside of what is defined.

Page 51

- CHAPTER 7 OUTPUT SCREENS |

0 Sy T W =)

Page 53

" 5554sdkman2py D

4

APIDemos Barcodereade Browser Calculator

1

Calendar Custom Loca |

o

DevTools Downloads

g

Gestures Bu IFIGAME Messaging Music

F.

5 L@

People Phone Quizo

rees SmTET T T

ST MR AT TS AT T

S S TN

T e

Figure 2

Figure 2 shows the “Quizo” icon.

T S S R U

=== 8

Page 55

!;,"Lhﬂ

Fiqure 3

Figure 3 shows the first page of
the game which include start button,

scores and instructions and the logo Quizo.

Figure 4

Includes multiple choice

questions related to computers.

"Question1 -What is the name
of the flashing symbol on the
computer screen that shows
where the information you
enter will appear?

 Circuit

Cursor

 Bit

Figure 5

Includes multiple choice

questions related to computers.

"Question2- What is the name for
| any computer program that
 performs a specific task separate |
' from the computer operating
 system that runs programs?

l: Disk
l: Software

I:: ComputerSystem

E OperatingSystem

IR N

Figure 6

Includes multiple choice

questions related to computers.

Question4-
mechanism that holds, spins,

and reads the informationona |
 disk?

CDRom

Output Device

Fiqure 7

Includes multiple choice

questions related to computers.

Question5-Whatisthe
permanently installed

' mechanism inside the
computer that stores all data
' that is put into the computer,
| even after the computer is
 turned off?

| Peripheral

Output Device
'RAM

 Harddrive

ST

Figure 8
Includes multiple choice

questions related to computers

Question6- What'is an
information storage unit that
makes use of digitally coded
signals on a coated plastic
disk?

~ |FloppyDisk

Disk Drive

'Memory

a4l

Page 61

Figure 9

Includes multiple choice

questions related to computers

Question7-What is the primary
input device used to enter
information and instructions
into the computer?

-

S aRaTr

Mouse

i
[Keyboard
r_

mj Scanner

[pisk Drive

Figure 10

Includes multiple choice

questions related to computers

"Question8- What is the hand-
held device used as a pointing

 and/or drawing instrument? It

[is an input device that allows
you to move the cursor around
the screen. ‘

Byte

Mouse

|18

Character

| keyboard

elil |

Page 63

S Y

e e e

TR SO ST

ORI s e

SRR

A KRN DTS s i,

qp
I

Figqure 11

Includes multiple choice

questions related to computers

Question9-What isalarge -
collection of data stored ina
computer? You might use this
type of program to keep a
record of all the friends in your
address book.

| Operating System

\Document

fo \Database

Information Processing

T T A T I DA S YT IS AT 1)

e L e S

S=S

RO T

Page 64

CHAPTER 8 - FUTURE SCOPE

Currently the application only contains the technical questions without any level, the project can also be

extended to have different levels with questions related to different domain.

CHAPTERS CONCLUSION

Finally we concluded that the Quizo is an android game application developed on a new mobile

platform Android, and for the users who loves playing games, it also helps users to check their

knowledge related to computers.

‘CHAPTER10 o S o 'BIBUOGRAPHY
(1] Android Application Development

[2] Android & its application,http://www.android.com/

o APPENDIX
CHAPTER 11

Page 65

The following terms are used in these documents.

1..apk extension

The extension for an Android package file, which typically contains all of the files related to a single
Android application. The fileitself is a compressed collection of an AndroidManifest.xml file, application
code (.dex files), resource files, and other files. A project is compiled into a single .apk file.

2.dex exténsion

Android programs are compiled into .dex (Dalvik Executable) files, which are in t’ﬁm Zipped into a single
.apk file on the device. .dex files can be created by automatically translating compiled applications
written in the Java programming language.

3.Action

A description of something that an Intent sender wants done. An action is a string value assigned to
Intent. Action strings can be defined by Android or by a third-party developer. For example,

android.intent.action.VIEW for'a Web URL, or com.example.rumbler. SHAKE_PHONE for a custom

application to vibrate the phone.

Page 66

A single screen in an application, with supporting Java code, derived from the Activity class.

5.Adb

Android Debug Bridge, a command-line debugging application shipped with the SDK. It provides tools
to browse the device, coby tools on the device, and forward ports for debugging. See Using adb for
more information. |

6.Application

A collection of one or more activities, services, listeners, and intent receivers. An application has a

single manifest, and is compiled into a single .apk file on the device.

7.Content Provider

A class built on ContentProvider that handles content query strings of a specific format to return data in

a specific format. See Reading and writing data to a content provider for information on using content

providers.

8.Content URI

A type of URI. See the URl entry.

9.Dalvik

a
(7

Page 67

The’ name of Android's virtual machine. The Dalvik VM is an interpreter-only virtual machine that

executes files in the Dalvik Executable (.dex) format, a format that is optimized for éfﬂcient storage and
memory-mappable execution. The virtual machine is register-based, and it can run classes compiled by
a Java language compiler that have been transformed into its native format using the included “dx" tool.

The VM runs on top of Posix-compliant operating systems, which it relies on for underlying functionality

| (such as threading and low level memory management). The Dalvik core class library is intended to

provide a familiar development base for those used to programming with Java Standard Edition, but it is

geared specifically to the needs of a small mobile device.

10.DDMS

Dalvik Debug Monitor Service, a GUI debugging application shipped with the SDK. It provides screen

capture, log dump, and process examination capabilities. See Using the Dalvik Debug Monitor Server

to learn more about this program.

" 11.Drawable

A compiled visual resource that can be used as a background. title, or other part of the screen. Itis

compiled into an android.graphics.drawable subclass.

Page 68

12.Intent

A class (Intent) that contains several fields describing what a caller would like to do. The caller sends
this intent to Android's intent resolver, which looks through the intent filters of all application;s to find the
activity most suited to handle this intent. Intent fields include the desired action, a category, a data

string, the MIME type of the data, a handling class, and other restrictions.

13.Intent Filter
Activities and intent receivers include one or more filters in their manifest to describe what kinds of

infents or messages they can handle or want to receive. An intent filter lists a set of requirements, such
as data type, action requested, and URI format, that the Intent or message must fulfill. For activities,
Android searches for the activity with the most closely matching valid match between the Intent and the

activity filter. For messages, Android will forward a message to all receivers with matching intent filters.

14.Intent Receiver

An application class that listens for messages broadcast by calling Context.sendBroadcast (). For

example code, see Listening for and broadcasting global messages.

Page 69

[
4

18.Layout resource

An XML file that describes the layout of an Activity screen.

16.Manifest

An XML file associated with each Application that describes the various activies, intent filters, services,

and other items that it exposes. See AndroidManifest.xml File Details.

17. URIs

Android uses URI strings both for requesting data (e.g., a list of contacts) and for requesting actions

(e.g., opening a Web page in a browser). Both are valid URI strings, but have different values. Al

requests for data must start with the string “content.//". Action strings are valid URIs that can be

handled appropriately by applications on the device; for example, a URI starting with “http://" will be

handled by the browser.

Page 70

