	Roll No:		
U	UPES		
	VERSITY OF PETROLEUM AND ENERGY STUDIES Gemester Examination, May 2019		
Progr Cours Cours	Programme: B.Tech ECE and Electrical Course Name: Mathematics II Course Code: MATH 1013 No. of page/s:2 Semester – II Max. Marks : 100 Duration : 3 Hrs		
	SITY OF PETROLEUM AND ENERGY STUDIES or Examination, May 2019 B. Tech ECE and Electrical e: Mathematics II B. MAXTII 1013 E. MATHI 1013 E. MARTII 1013 E. MATHI 1013 E. MATHI 1013 E. MATHI 1013 E. MATHI 1013 E. MARTII 1013		
	Section A	Semester – II Max. Marks : 100 Duration : 3 Hrs grammable Scientific Calculator is allowed Section A empt all questions) MARKS <a< th=""></a<>	
	` ' ' '	Section A (Attempt all questions) MARKS transform of $f(x) = \begin{bmatrix} 1, x < a \\ 0, x > a \end{bmatrix}$ wing IVP using Euler's method with $h = 0.1$ for $x \in [11.4]$ given that $1 = 0.$ mate value of y when $x = 0.1$ with $h = 0.1$, if $y' - 2y = 3e^x$, $y(0) = 0$ using econd order method. [4] CO3 $y(0) \le x \le 1$, with $y(0) = x(1-x)$ and $y(0) = 0 = y(1)$, for all $y(0) = 0$. Use method with $y(0) = 0$ and $y(0) = 0$ method with $y(0) = $	
		<u>IAKK</u>	S
1.	Find the Fourier transform of $f(x) = \begin{cases} 1, x < a \\ 0, x > a \end{cases}$	[4]	CO5
2.	Solve the following IVP using Euler's method with $h=0.1$ for $x \in [11.4]$ given that $y = x + y + xy$, $y(1) = 0$.	[4]	CO3
3.	Find an approximate value of y when $x=0.1$ with $h=0.1$, if $y'-2y=3e^x$, $y(0)=0$ using Taylor's series second order method.	[4]	CO3
4.	Solve $u_t = \frac{1}{16} u_{xx}$, $0 \le x \le 1$, with $u(x, 0) = x(1-x)$ and $u(0, t) = 0 = u(1, t)$ for all $t > 0$. Use Bender-Schmidt method with $h = \frac{1}{4}$. Compute for two time steps.	[4]	CO3
5.	Construct an equivalent form $x = \phi(x)$ (where $\phi(x)$ is called an iterative function) for the equation $3x^4 + x^3 + 12x + 4 = 0$ such that $ \phi'(x) < 1$ in $x \in (-1,0)$.	[4]	CO2
6.	Write the second order equation $\frac{d^2y}{dx^2} + sinx\left(\frac{dy}{dx}\right) - \left(\frac{dy}{dx}\right)^2 + xy = e^x$ as an equivalent pair of first order equations and hence solve using Runge-Kutta method of fourth order for $x=0.2$. Initial conditions are $y(0)=1$, $y'(0)=1$. Consider the step length $h=0.2$.	[08]	CO3
7.	Solve $u_{xx}+u_{yy}=0$ numerically under the boundary conditions $u(x,0)=2x$, $u(0,y)=-y$, $u(x,1)=2x-1$, $u(1,y)=2-y$ with square mesh of width $u(x,0)=2x$, $u(0,y)=-y$, $u(x,1)=2x-1$, $u(1,y)=2-y$ with square mesh of width $u(x,0)=2x$.	[08]	CO4
8	Calculate the area bounded by the curve $y = x^2 + 4$ and the lines $y = -1$ $x = 1$ and $x = 4$ by		CO2

[80]

Trapezoidal rule, taking number of subintervals as 6.

9.	Evaluate L^{-1} is ing convolution theorem	[08]	CO5
	Show that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$		
	OR	[08]	CO1
	Solve the Lagrange's equation $a(x,y,z)p+b(x,y,z)q=c(x,y,z)$ where		
10.	$a(x,y,z) \equiv 2x^2 + y^2 + z^2 - 2yz - zx - xy;$		
	$b(x,y,z) \equiv x^2 + 2y^2 + z^2 - yz - 2zx - xy;$		
	$c(x,y,z) \equiv x^2 + y^2 + 2z^2 - yz - zx - 2xy; p = \frac{\partial z}{\partial x} \text{ and } q = \frac{\partial z}{\partial y}.$		
	SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice		
	Solve the heat equation $u_t = u_{xx}$, $0 \le x \le 1$, subject to the initial and boundary conditions $u(x,0) = \sin(\pi x)$, $0 \le x \le 1$, $u(0,t) = 0$, $u(1,t) = 0$, $t > 0$ using Crank-Nicolson method with	[10]	CO4
11. A	$h = \frac{1}{3}, k = \frac{1}{36}.$ Integrate for one time step.		
11.B	Find the inverse Laplace transform of $\frac{5s+3}{(s-1)(s^2+2s+5)}$.	[10]	CO5
	Solve $\frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + (4x^2 - 3)y = e^{x^2}$.		
12	OR		
12. A	Find a complete integral of $pxy + pq + qy = yz$ using Charpit's method where	[10]	CO1
	$p = \frac{\partial z}{\partial x} \text{ and } q = \frac{\partial z}{\partial y}.$		
	Solve the differential equation		
12 D	Solve the differential equation $y'' + y = t$, $y(0) = 1$, $y'(0) = -2$ by Laplace transform method. OR	[10]	COS
12.B	Evaluate $\int_{0}^{\infty} \frac{e^{-2t} \sinh t \sin t}{t} dt$ using Laplace transforms.	[10]	CO5

	Roll No:				
U	UPES				
End S Progr Cours Cours	VERSITY OF PETROLEUM AND ENERGY STUDIES Semester Examination, May 2019 ramme: B.Tech ECE and Electrical se Name: Mathematics II se Code: MATH 1013 f page/s:2 Semester – II Max. Marks : 100 Duration : 3 Hrs				
	Instructions: Use of non-programmable Scientific Calculator is allowed				
Section A (Attempt all questions) MARKS					
1.	Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, x \le a \\ 0, x > a \end{cases}$	[4]	CO5		
2.	Solve $y = x^2 - y^2$, with $x_0 = 2$, $y_0 = 1$ to find an approximate value of $y(2.4)$ using Euler's method with 0.1step length.	[4]	CO3		
3.	Using Taylor's series second order method, find y for $x=3.1$ given that $y=2xy+3y$, $y(3)=1$, $h=0.1$.	[4]	CO3		
4.	Solve $u_t = u_{xx}$, $0 \le x \le 1$, with $u(x,0) = \sin(2\pi x)$ and $u(0,t) = 0 = u(1,t)$ for all $t > 0$. Use Bender-Schmidt method with $h = \frac{1}{4}$. Compute for two time steps.	[4]	CO3		
5.	Construct an equivalent form $x = \phi(x)$ (where $\phi(x)$ is called an iterative function) for the equation $x^3 + x^2 - 1 = 0$ such that $ \phi'(x) < 1$ in $x \in (0,1)$.	[4]	CO2		
	SECTION B (All questions are compulsory, Q10 has internal choice)				
6.	Find the values of $y(2.2)$ and $y'(2.2)$ using Runge-Kutta method of fourth order by considering the step size $h=0.2$. Given that $x^2y''-e^x(y')^2+y=x^2e^x$ with $y(2)=3$, $y'(2)=0.8$.	[08]	CO3		

Find the solution of the Laplace's equation $u_{xx} + u_{yy} = 0$ in the region R, where R is a square of side 3 units. Boundary conditions are defined asu(0, y) = 0, u(3, y) = 3 + y,

u(x,0)=x, u(x,3)=2x. Assume step length as h=1.

[08]

CO4

7.

		1	1
8.	The area Ainside the closed curve $x^2 + y^2 = cosx$ is given by $A = 4 \int_0^\alpha \sqrt{cosx - x^2} dx \text{ where } \alpha \text{ is a positive root of the equation } cosx = x^2$ (i) Compute α correct to three decimal places using Newton-Raphson method (ii) Compute area A using Trapezoidal rule by taking number of subintervals as 4.	[08]	CO2
9.	Evaluate L^{-1} using convolution theorem	[08]	CO5
10.	Show that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$ OR Solve the Lagrange's equation $z(x+y) p + z(x-y)q = x^2 + y^2$ where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$.	[08]	CO1
SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)			
11. A	Solve the heat equation $u_t = u_{xx}$, $0 \le x \le 2$, subject to the initial and boundary conditions $u(x,0) = \sin(\pi x) + \sin(3\pi x)$, $0 \le x \le 2$, $u(0,t) = 0 = u(2,t)$ using Crank-Nicolson method with $\Delta x = h = \frac{2}{3}$, $\Delta t = k = \frac{1}{9}$. Integrate for one time step.	[10]	CO4
11.B	Find the inverse Laplace transform of $\frac{s}{s^4 + s^2 + 1}$.	[10]	CO5
12. A	Solve $\frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + (4x^2 - 1)y = -3e^{x^2} \sin(2x)$ OR Find a complete integral of $z^2 = pqxy$ using Charpit's method where $p = \frac{\partial z}{\partial x} \text{ and } q = \frac{\partial z}{\partial y}.$	[10]	CO1
12.B	Solve the differential equation $y'' - 3y' + 2y = e^{3t}$, $y(0) = 0$, $y'(0) = 0$ by Laplace transform method. OR Evaluate $\int_{0}^{\infty} e^{-t} t \sin^{2}(3t) dt$ using Laplace transforms.	[10]	CO5