CONFIDENTIAL

Name of Examination (Please tick, symbol is given)	:	MID			END	✓	SUPPLE
Name of the College (Please tick, symbol is given)	:	COES	√	•	CMES		COLS
Program/Course	:	B. Tech EE					
Semester	:	VIII					
Name of the Subject	:	Industrial Automation					
Subject Code	:	IMGT 302					
Name of Question Paper Setter	:	Dr. Amit Kumar Mondal					
Employee Code	:	40000907					
Mobile & Extension	:	9557355689					
Note: Please mention addition Table/Graph Sheet etc. else			-	-	-	iring exam	ination such as
	F	OR SR	E D]	E PAR	CMENT		
Date of Examination			:				
Time of Examination			:				
No. of Copies (for Print)			:				

Note: - Pl. start your question paper from next page

Roll No:	
-----------------	--

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, April, 2017

UPES
THE NATION BUILDERS UNIVERSITY

Program Name: B. Tech EE

Course Name: Industrial Automation

Course Code: IMGT 302

Semester – VIII

Max. Marks: 100

Duration: 3 Hrs

No. of page/s: 02

Note:

All questions are compulsory.

Assume data as per requirement.

Mention PLC's make, model, inputs and outputs.

Section A: 20 Marks

Section B: 10 X 4 = 40 Marks Section C: 20 X 2 = 40 Marks

SECTION-A

- 1. Can the PLC and SCADA system be expanded, without re-engineering, to handle future requirements? [5]
- 2. Do we have to configure alarms for all items of hardware?

[4]

- 3. Can we send alarms to a printer and file as well as display them on the screen? [2]
- 4. In derivative control action the output of the controller depends on the time rate of change of the actual errors. When the error is zero or a constant, the derivative controller output is zero......
- 5. Field output devices are connected to module of PLC for interfacing purpose. [1]
- 6. Retentive timer retains the accumulated value and measures cumulative time period, during which rung condition is true. (True/ False) [1]
- 7. Zener diode is used in.....
 - a) Rectifier
 - b) Regulator
 - c) Filter
 - d) Line Conditioner
- 8. shows the connection of input and output devices to PLC [1]
 - a) Block diagram
 - b) Wiring diagram
 - c) Flow diagram
 - d) System diagram
- 9. Selection of module depends on [1]
 - a) Power consumption
 - b) Number of I/O devices connected
 - c) Switching Speed
 - d) Cost
 - e) All of the above
- 10. In a PID controller, the offset has increased. The integral time constant has to be ____ so as to reduce offset:

- a) Reduced
- b) Increased
- c) Reduced to zero
- d) None of the above
- 11. When derivative action is included in a proportional controller, the proportional band:

[1]

- a) Increases
- b) Reduces
- c) Remains unchanged
- d) None of the above
- 12. In a proportional temperature controller, if the quantity under the heater increases the offset will:
 - a) Increase
 - b) Reduce
 - c) Remain uneffected
 - d) None of the above

SECTION-B

- 13. How can we provide for data integrity and system control in the event of hardware failure?
- 14. How can we prioritize alarms?
- 15. Explain in brief concept of sinking and sourcing output module.
- 16. List the characteristic of PI control action.

SECTION-C

- 17. In process plants, to move the conveyors to and fro, forward and reverse motion of 3-phase Induction motors is require. Develop a PLC program to achieve so.
 - Also, design its power circuit and control circuit diagram.
- 18. Develop a program that will latch on an output B 20 seconds after input A has been turned on. After A is pushed, there will be a 10 second delay until A can have any effect again. After A has been pushed 3 times, B will be turned off.

Roll No: -----

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, April, 2017

UPES
THE NATION BUILDERS UNIVERSITY

Program Name: B. Tech EE

Course Name: Industrial Automation

Course Code: IMGT 302

Semester – VIII

Max. Marks: 100

Duration: 3 Hrs

No. of page/s: 03

Note:

All questions are compulsory.

Assume data as per requirement.

Mention PLC's make, model, inputs and outputs.

Section A: 20 Marks

Section B: 10 X 4 = 40 Marks Section C: 20 X 2 = 40 Marks

SECTION-A

- 1. Can automation systems, like a DCS, communicate using industry standard Communication drivers like Modbus? [1]
- 2. Can we provide help about specific alarms that the operators can access easily? [2]
- 3. Can the SCADA system do multiple applications and use the same Historian? [2]
- 4. Solid state input devices with NPN transistors are called [1]
 - a) Sinking input device
 - b) Sourcing input device
 - c) Sourcing-Sinking input device
 - d) Analog device
- 5. Define the significance of the following in reference to PLC:

[10]

- i. Watchdog Timer
- ii. Program Scan
- iii. Chassis
- iv. Downloading
- v. Forcing of I/O's
- 6. In a PID controller, the overshoots has increased. The derivative time constant has to be ____ so as to reduce the overshoots: [1]
 - a) Increased
 - b) Reduced
 - c) Reduced to zero
 - d) None of the above
- 7. Which of the following system provides excellent transient and steady state response:

[1]

- a) Proportional action
- b) Proportional + Integral action
- c) Proportional + Differential action
- d) Proportional + Integral + Differential action

- 8. The integral control:
 - a) Increases the steady state error
 - b) Decreases the steady state error
 - c) Increases the noise and stability
 - d) Decreases the damping coefficient
- 9. Proportional band of the controller is expressed as:
 - a) Gain
 - b) Ratio
 - c) Percentage
 - d) Range of control variables

SECTION-B

- 10. List the characteristic of PD control action.
- 11. Differentiate between fixed type and modular type PLC's.
- 12. Explain Two position or ON-OFF control.
- 13. Define the variables in the system of below figure that constitute the process load.

[1]

[1]

SECTION-C

- 14. In process plants, reduced voltage start-up techniques are used for moving conveyors, In reference to same develop a PLC program to achieve star delta configuration.

 Also, design its power circuit and control circuit diagram.
- 15. An integral controller is used for speed control with a setpoint of 12 rpm within a range of 10 to 15 rpm. The controller output is 22% initially. The constant $K_I = -0.15\%$ controller output per second per percentage error. If the speed jumps to 13.5 rpm, calculate the controller output after 2s for a constant e_p .