ASSESSMENT OF BARRIERS TO THE DISSEMINATION OF DECENTRALIZED RENEWABLE ENERGY SYSTEMS IN UTTARAKHAND

BY

MOHAMMED YAQOOT

COLLEGE OF MANAGEMENT AND ECONOMICS STUDIES DEPARTMENT OF POWER AND INFRASTRUCTURE

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT OF THE DEGREE OF

DOCTOR OF PHILOSOPHY

ТО

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES DEHRADUN AUGUST, 2015

Under the Guidance of

Dr. Parag Diwan	Dr. T.C. Kandpal	Dr. Hiranmoy Roy
Chief Academic Officer	Professor	Assistant Professor (SG)
Laureate International	Centre for Energy	Department of Economics
Universities	Studies, IIT Delhi	and IB, UPES

ACKNOWLEDGEMENTS

It gives me great pleasure to express my deep sense of gratitude to my supervisors Dr. T. C. Kandpal, Dr. Parag Diwan and Dr. Hiranmoy Roy for their invaluable guidance and support during the course of the research work. I wish to express special gratitude to Dr. T. C. Kandpal for his precious time, thoughtful insights, meticulous and critical assessment during the doctoral research process. I am also grateful to Dr. Parag Diwan for his constant support and guidance during the endeavor.

I would also like to thank my seniors and colleagues namely Dr. Anirban Sengupta, Dr. Anil Kumar, Dr. Anshuman Gupta, Ravindra Yatagiri, Dr. Tarun Dhingra, Dr. Joji Rao, Atri Nautiyal, and Dr. Vipul Sharma for their constant motivation and support during the course of the study. I am also indebted to Abhishek Pandey, Chandan Sharma, Ashish Sharma, Ishan Pathak, Yashashwi Gyanpuri, Bidyut Bikash Das, Rohit Pratap Singh, Vipul Kumar, Dr. Swapnil Dubey and Dr. Chandrasekhar Rajoria for their valuable guidance and support during data collection.

I wish to express my gratitude to my parents Shri. M. A. Ansari and Smt. Shamshad Bano for their blessings and motivation. I am also thankful to Dr. Intekhab Alam and Nasreen Bano for their generous hospitality during my frequent study related visits to IIT Delhi. My special thanks to my wife Ms. Rajwant Kaur and daughter Sara Aslam for their constant support and care during the entire course of the research work.

DECLARATION

I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgment has been made in the text.

Mohammed Yaqoot ii

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

THESIS COMPLETION CERTIFICATE

This is to certify that the thesis entitled "Assessment of Barriers to the **Dissemination of Decentralized Renewable Energy Systems in Uttarakhand**" submitted by Mohammed Yaqoot to University of Petroleum and Energy Studies for the award of the degree of Doctor of Philosophy is a bona fide record of the research work carried out by him under our supervision and guidance. The content of the thesis, in full or parts have not been submitted to any other Institute or University for the award of any other degree or diploma.

Dr. Parag Diwan

Dr. T.C. Kandpal

Dr. Hiranmoy Roy

EXECUTIVE SUMMARY

This study is an attempt to assess the potential of utilization of decentralized renewable energy systems (DRESs) in the state of Uttarakhand in India. Demographic, socio-economic, resource availability and climatic characteristics of Uttarakhand has been considered to identify and evaluate the suitability of application of DRESs in the state.

As solar and biomass based DRESs are found to be suitable for various applications in the state, frameworks have been developed to estimate their potential in Uttarakhand. Also, past dissemination of solar and biomass based DRESs in Uttarakhand has been studied to assess their time-trend of diffusion in the state. Based on the understanding of 'Theory of Diffusion of Innovations', and the time-trend of diffusion of DRESs in Uttarakhand, the time periods required for the cumulative dissemination of DRESs to reach their estimated potential have been estimated. A survey of DRESs adopters and non-adopters has also been carried out in the study to assess the barriers to the dissemination of DRESs in the state as perceived by the potential and existing users. Considering the criticality of financial/economic barrier, an assessment of financial attractiveness of DRESs has also been carried out in the study.

Results of the study indicate that the state of Uttarakhand has large potential for domestic solar water heaters, solar lanterns and improved biomass cookstoves. Also, the state has substantial potential for solar home systems, solar cookers, solar dryers and family size biogas plants. The results also suggest relatively better suitability of soft loan provision for large scale dissemination of DRESs as it has bigger impact on improving the purchasing power of households compared to the provision of capital subsidy. Assessment of the time-trend of diffusion of DRESs in Uttarakhand has indicated inconsistency in the promotion of various DRESs (except domestic solar water heaters). Time-trend or reported diffusion indicate that only domestic solar water heaters have received persistent subsidy support in the state reflected by sustained growth in annual subsidy allocated for its promotion. Time-trend of dissemination of DRESs also reflect dependence of diffusion on subsidy. A preliminary analysis of the time-trend of dissemination of DRESs in Uttarakhand based on the logistic growth curve indicate that as per the prevailing trend, it would take substantially long time period (around 200 years for most DRESs) for the cumulative dissemination of DRESs to reach the respective estimated utilization potentials.

Survey based study of adopters and non-adopters of DRESs in Uttarakhand has indicated that the following barriers are affecting their dissemination in the state of Uttarakhand: high capital cost, lack of access to capital / loan, availability of cheaper alternative fuel, unavailability of trained manpower for installation and maintenance, lack of user training for maintenance, unavailability of retail shops, and unavailability of spares as the major barriers. Other relevant barriers are inappropriateness of technology, poor resource availability, lack of adequate awareness, and lack of socio-cultural acceptability. Lack of adequate awareness has been considered more critical by the non-adopters whereas adopters of DRESs that require regular maintenance services such as solar home systems and family size biogas plants consider unavailability of spare parts as more critical barriers. Survey of the status of adopted DRESs has indicated that a satisfied DRES adopter has recommended it to others and most (about 85%) of such recommendations have resulted in adoptions.

Assessment of financial attractiveness of DRESs has indicated that improved cookstoves, domestic solar water heaters, solar lanterns and solar home systems

are the most suitable DRESs for promotion in the state. These are found to be financially viable under almost all scenarios even without capital subsidy. In case of dish type solar cookers, solar PV pumps and solar dryers, community usage has been found to be more viable compared to their household level applications. Results of financial assessment reaffirm the need for providing a fair market to DRESs either by withdrawal of direct and indirect subsidies being given on conventional energy supply or by providing suitable incentives to one or more of the stakeholders involved in the diffusion of DRESs.

CONTENTS

1.	Characteristics of Uttarakhand and its Implications for	1
	Renewable Energy	
	1.1. State of Uttarakhand	1
	1.1.1. Introduction	1
	1.1.2. Topography and Climate	2
	1.1.3. Demography	3
	1.1.4. Economic Activities	9
	1.1.5. Energy Scenario	13
	1.1.5.1. Electricity	13
	1.1.5.2. Energy for Cooking and Lighting	13
	1.1.5.3. Pattern of Household Expenditure on Energy	22
	(Fuels and Light)	
	1.2. Renewable Energy Resource Availability in Uttarakhand	23
	1.2.1. Solar Radiation	23
	1.2.2. Wind	25
	1.2.3. Biomass	25
	1.2.4. Hydro	25
	1.3. Critical Areas for Development of Uttarakhand	26
	1.3.1. Energy	26
	1.3.2. Water	27
	1.3.3. Agriculture	27
	1.3.4. Tourism	28
	1.3.5. Roads	28
	1.4. Implications for Renewable Energy Applications in	28
	Uttarakhand	
	1.5. Potential and Diffusion of DRESs in Uttarakhand	32

	1.6. Business Problem	33
	1.7. Research Objective(s)	34
	1.8. Organisation of the Thesis	35
2.	Review of Barriers to the Dissemination of Decentralized	36
	Renewable Energy Systems	
	2.1. Introduction	36
	2.2. Identification and Classification of Barriers to the Diffusion of	37
	DRESs	
	2.2.1. Technical Barriers	37
	2.2.1.1. Resource Availability	39
	2.2.1.2. Technology – Design, Installation and	39
	Performance	
	2.2.1.3. Skill Requirement for Design and Development,	41
	Manufacturing, Installation, Operation and	
	Maintenance	
	2.2.1.4. Potential Remedial Measures	42
	2.2.2. Economic Barriers	43
	2.2.2.1. Cost	46
	2.2.2.2. Market	48
	2.2.2.1. Market Structure	48
	2.2.2.2. Fuel/Energy Pricing	49
	2.2.2.3. Incentives/Taxes/Duties	51
	2.2.2.4. Purchasing Power and Spending	52
	Priorities	
	2.2.2.5. Financial Issues	52
	2.2.2.6. Awareness and Risk Perception	53

2.2.2.3. Potential Remedial Measures	54
2.2.3. Institutional Barriers	59
2.2.3.1. Policy and Regulatory	60
2.2.3.2. Infrastructure	60
2.2.3.3. Administrative	63
2.2.3.4. Potential Remedial Measures	63
2.2.4. Socio-cultural Barriers	68
2.2.4.1. Societal Structure, Norms and Value System	68
2.2.4.2. Awareness and Risk Perception	70
2.2.4.3. Behavioral or Lifestyle Issues	71
2.2.4.4. Potential Remedial Measures	72
2.2.5. Environmental Barriers	74
2.2.5.1. Potential Remedial Measures	75
2.3. Concluding Remarks	76
2.3. Concluding Remarks Estimation of Potential of Decentralized Renewable Energy	76 78
Estimation of Potential of Decentralized Renewable Energy	
Estimation of Potential of Decentralized Renewable Energy Systems in Uttarakhand	78
Estimation of Potential of Decentralized Renewable Energy Systems in Uttarakhand 3.1. Introduction	78 78
Estimation of Potential of Decentralized Renewable Energy Systems in Uttarakhand 3.1. Introduction 3.2. Frameworks for Estimation of Potential of using DRESs in	78 78
 Estimation of Potential of Decentralized Renewable Energy Systems in Uttarakhand 3.1. Introduction 3.2. Frameworks for Estimation of Potential of using DRESs in Uttarakhand 	78 78 78
Estimation of Potential of Decentralized Renewable Energy Systems in Uttarakhand 3.1. Introduction 3.2. Frameworks for Estimation of Potential of using DRESs in Uttarakhand 3.2.1. Solar Energy based DRESs	78 78 78 78 79
Estimation of Potential of Decentralized Renewable Energy Systems in Uttarakhand 3.1. Introduction 3.2. Frameworks for Estimation of Potential of using DRESs in Uttarakhand 3.2.1. Solar Energy based DRESs 3.2.1.1. Domestic Solar Water Heaters	78 78 78 79 79
Estimation of Potential of Decentralized Renewable Energy Systems in Uttarakhand 3.1. Introduction 3.2. Frameworks for Estimation of Potential of using DRESs in Uttarakhand 3.2.1. Solar Energy based DRESs 3.2.1.1. Domestic Solar Water Heaters 3.2.1.2. Solar Home Systems	78 78 78 79 79 81
 Estimation of Potential of Decentralized Renewable Energy Systems in Uttarakhand 3.1. Introduction 3.2. Frameworks for Estimation of Potential of using DRESs in Uttarakhand 3.2.1. Solar Energy based DRESs 3.2.1.1. Domestic Solar Water Heaters 3.2.1.2. Solar Home Systems 3.2.1.3. Solar Lanterns 	 78 78 78 79 79 81 82
	 2.2.3. Institutional Barriers 2.2.3.1. Policy and Regulatory 2.2.3.2. Infrastructure 2.2.3.3. Administrative 2.2.3.4. Potential Remedial Measures 2.2.4. Socio-cultural Barriers 2.2.4.1. Societal Structure, Norms and Value System 2.2.4.2. Awareness and Risk Perception 2.2.4.3. Behavioral or Lifestyle Issues 2.2.4.4. Potential Remedial Measures 2.2.5. Environmental Barriers

3.

	3.2.2. Biomass based DRESs	87
	3.2.2.1. Family Size Biogas Plants	87
	3.2.2.2. Improved Biomass Cookstoves	89
	3.3. Results and Discussion	89
	3.3.1. Domestic Solar Water Heaters	89
	3.3.2. Solar Home Systems	92
	3.3.3. Solar Lanterns	94
	3.3.4. Dish Type Solar Cookers	95
	3.3.5. Solar Dryers	96
	3.3.6. Solar PV Pumps	96
	3.3.7. Family Size Biogas Plants	97
	3.3.8. Improved Biomass Cookstoves	99
	3.4. Concluding Remarks	100
4.	Theory of Diffusion of Innovation and Expected Trend of	102
4.	Theory of Diffusion of Innovation and Expected Trend of Dissemination of Decentralized Renewable Energy Systems in	102
4.	·	102
4.	Dissemination of Decentralized Renewable Energy Systems in	102 102
4.	Dissemination of Decentralized Renewable Energy Systems in Uttarakhand	
4.	Dissemination of Decentralized Renewable Energy Systems in Uttarakhand 4.1. Theory of Diffusion of Innovation	102
4.	Dissemination of Decentralized Renewable Energy Systems in Uttarakhand 4.1. Theory of Diffusion of Innovation 4.1.1. Innovation	102 102
4.	Dissemination of Decentralized Renewable Energy Systems in Uttarakhand 4.1. Theory of Diffusion of Innovation 4.1.1. Innovation 4.1.2. Communication Channels	102 102 104
4.	Dissemination of Decentralized Renewable Energy Systems in Uttarakhand 4.1. Theory of Diffusion of Innovation 4.1.1. Innovation 4.1.2. Communication Channels 4.1.3. Time	102 102 104 104
4.	Dissemination of Decentralized Renewable Energy Systems in Uttarakhand 4.1. Theory of Diffusion of Innovation 4.1.1. Innovation 4.1.2. Communication Channels 4.1.3. Time 4.1.4. Social System	102 102 104 104 111
4.	 Dissemination of Decentralized Renewable Energy Systems in Uttarakhand 4.1. Theory of Diffusion of Innovation 4.1.1. Innovation 4.1.2. Communication Channels 4.1.3. Time 4.1.4. Social System 4.2. Time-trend of Diffusion of DRESs in Uttarakhand 	102 102 104 104 111 112
4.	 Dissemination of Decentralized Renewable Energy Systems in Uttarakhand 4.1. Theory of Diffusion of Innovation 4.1.1. Innovation 4.1.2. Communication Channels 4.1.3. Time 4.1.4. Social System 4.2. Time-trend of Diffusion of DRESs in Uttarakhand 4.3. Technology Diffusion Models 	102 102 104 104 111 112 119

5.	Assessment of Barriers Faced by Decentralized Renewable	126
	Energy Systems Adopters and Non-Adopters in Uttarakhand	
	5.1. Introduction	126
	5.2. Sample Design for Survey	126
	5.3. Results of Survey	127
	5.4. Concluding Remarks	136
6.	Assessment of Financial Attractiveness of Decentralized	137
	Renewable Energy Systems in Uttarakhand	
	6.1. Introduction	137
	6.2. Methodology	137
	6.2.1. Expressions for Measures of Financial Performance	138
	6.2.1.1. Discounted Payback Period	138
	6.2.1.2. Net Present Value	139
	6.2.1.3. Internal Rate of Return	139
	6.2.1.4. Levelized Cost of Useful Energy	139
	6.2.2. DRES Specific Expressions for Estimation of Monetary	140
	Value of Annual Benefits	
	6.2.2.1. Domestic Solar Water Heater	140
	6.2.2.2. Family Size Biogas Plant	141
	6.2.2.3. Improved Biomass Cookstove	142
	6.2.2.4. Paraboloid (Dish) Type Solar Cooker	142
	6.2.2.5. Solar Lantern	143
	6.2.2.6. Solar Home System	144
	6.2.2.7. Solar PV Pump	144
	6.2.2.8. Solar Dryer	145
	6.3. Results and Discussion	146

6.3.1. Domestic Solar Water Heater	148
6.3.2. Family Size Biogas Plant	153
6.3.3. Improved Biomass Cookstove	155
6.3.4. Dish Type (Parabolic) Solar Cooker	157
6.3.5. Solar Lantern	160
6.3.6. Solar Home System	163
6.3.7. Solar PV Pump	164
6.3.8. Solar Dryer	167
6.4. Concluding Remarks	170
Conclusions and Recommendations	172
7.1. Conclusions	172
7.2. Limitations of the Study and Recommendations for Further	176
Work	
References	177
Appendices	198
Appendix I	198
Appendix II	199

7.

LIST OF FIGURES

Figure no.	Title	Page no.
Figure 1.1	Uttarakhand as a state in India	4
Figure 1.2	Location of Uttarakhand	5
Figure 1.3	Districts of Uttarakhand	6
Figure 1.4	Percentage of rural and urban population in Uttarakhand	8
Figure 1.5	Framing research objectives from research gaps	35
Figure 4.1	Adopter categorization on the basis of innovativeness	108
Figure 4.2	S-curve	110
Figure 4.3	Curve fitting for DSWHs	122
Figure 4.4	Curve fitting for FSBPs	122
Figure 4.5	Curve fitting for solar cookers	123
Figure 4.6	Curve fitting for solar lanterns	123
Figure 4.7	Curve fitting for solar home systems	124
Figure 5.1	Scree plot	131

LIST OF TABLES

Table no.	Title	Page no.
Table 1.1	District-wise population, number of households and	7
	villages in Uttarakhand	
Table 1.2	Population and decadal growth rate by residence	8
Table 1.3	Number of out-migrant per 1000 persons for Uttarakhand	9
	and average of all states in India	
Table 1.4	Gross State Domestic Product at factor cost by industry:	11
	2004-05 to 2012-13 at current prices 15 Feb 2013	
Table 1.5	Contribution of sector/sub-sector to Uttarakhand's Gross	12
	State Domestic Product at factor cost: 2004-05 to 2012-	
	13 at current prices 15 Feb 2013 (in %)	
Table 1.6	Electrification of households in Uttarakhand	14
Table 1.7	Energy consumption pattern: fuel used for cooking	16
Table 1.8	Energy consumption pattern: fuel used for cooking (in	18
	%)	
Table 1.9	Fuels used for lighting in Uttarakhand	20
Table 1.10	Percentage of households using various types of fuels for	21
	lighting	
Table 1.11	Monthly per capita quantity and monetary value of fuel	23
	consumption for Uttarakhand	
Table 1.12	Solar radiation data for districts of Uttarakhand	24
Table 1.13	Characteristics of Uttarakhand and implications for	29
	renewable energy applications in the state	
Table 1.14	Resource-DRES-Task matrix	33
Table 1.15	Potential and cumulative diffusion of DRESs in	34
	Uttarakhand	

Table no.	Title	Page no.
Table 2.1	Classification of barriers to the diffusion of DRESs	38
Table 2.2	Potential remedial measures suggested to overcome the	45
	sub-barriers of technical barrier	
Table 2.3	Potential remedial measures suggested to overcome the	55
	sub-barriers of economic barrier	
Table 2.4	Potential remedial measures suggested to overcome the	64
	sub-barriers of institutional barrier	
Table 2.5	Potential remedial measures suggested to overcome the	73
	sub-barriers of socio-cultural barrier	
Table 2.6	Potential remedial measures suggested to overcome the	76
	sub-barriers of environmental barrier	
Table 3.1	Estimation of number of households in Uttarakhand with	90
	perceived need for water heating	
Table 3.2	Input values and results for estimation of potential of 100	93
	LPD ETC type DSWH in Uttarakhand	
Table 3.3	Input values and results for estimation of potential of	94
	SHS in Uttarakhand	
Table 3.4	Input values and results for estimation of potential of	95
	solar lantern in Uttarakhand	
Table 3.5	Classification of villages according to population range	96
	and estimation of potential of solar dryer in Uttarakhand	
Table 3.6	Suitable households for the usage of family size biogas	98
	plants in Uttarakhand	
Table 3.7	Input values and results for estimation of potential of	99
	family size biogas plant (1 m ³) in Uttarakhand	

Table no.	Title	Page no.
Table 3.8	Input values and result for estimation of potential of	100
	improved biomass cookstoves in Uttarakhand	
Table 3.9	Summary of potential of DRESs in Uttarakhand	101
Table 4.1	Activities involved in various stages in the innovation-	106
	decision process	
Table 4.2	Diffusion pattern of solar water heaters and associated	115
	subsidy expenditure	
Table 4.3	Diffusion pattern of FSBPs and associated subsidy	116
	expenditure	
Table 4.4	Diffusion pattern of solar cookers and associated subsidy	117
	expenditure	
Table 4.5	Diffusion pattern of solar lanterns and associated subsidy	118
	expenditure	
Table 4.6	Diffusion pattern of solar home systems and associated	119
	subsidy expenditure	
Table 4.7	Estimated time duration by which cumulative diffusion	124
	of DRESs will reach their potential	
Table 5.1	Case processing summary	129
Table 5.2	Reliability statistics	129
Table 5.3	KMO and Barlett's Test	129
Table 5.4	Total variance explained (Extraction method: Principal	130
	component analysis)	
Table 5.5	Rotated component matrix	132
Table 5.6	Criticality of barriers to adoption in the opinion of	134
	adopters and non-adopters	

Table no.	Title	Page no.
Table 5.7	Status of adopted DRESs and opinion and role of adopters	135
Table 6.1	General input parameters for financial analysis of DRESs in Uttarakhand	146
Table 6.2	Input values for financial analysis of 100 liters per day (LPD) DSWH	148
Table 6.3	Measures of financial performance of DSWH with subsidized fuel and rebate in electricity bill	150
Table 6.4	Measures of financial performance of DSWH with unsubsidized fuel and rebate in electricity bill	151
Table 6.5	Breakeven values of CUF (in fraction) for DSWH with/without rebate	152
Table 6.6	Breakeven values of fuel price for DSWH with/without rebate	152
Table 6.7	Input values for financial analysis of 2 m ³ FSBP	153
Table 6.8	Measures of financial performance of FSBP (2 m^3)	154
Table 6.9	Breakeven values of number of days in a year during which FSBP satisfies full cooking need of the household and fuel price for replaced fuel	155
Table 6.10	Input values for financial analysis of improved biomass cookstove (natural draft type)	156
Table 6.11	Measures of financial performance of improved biomass cookstoves	157
Table 6.12	Breakeven values for fuelwood price and number of days of improved biomass cookstove operation per year	157

Table no.	Title	Page no.
Table 6.13	Input values for financial analysis of household and	158
	community type solar cooker	
Table 6.14	Measures of financial performance of solar cooker	159
Table 6.15	Breakeven values of number of meals cooked by solar	160
	cooker in a year and breakeven values of fuel price for	
	replaced fuel	
Table 6.16	Input values for financial analysis of solar lantern	161
Table 6.17	Measures of financial performance of solar lantern	162
Table 6.18	Breakeven values of number of days of solar lantern	162
	usage per year and breakeven values of fuel price for	
	replaced fuel	
Table 6.19	Input values for financial analysis of solar home system	163
	(Model II, 37 W _p)	
Table 6.20	Measures of financial performance of solar home system	164
Table 6.21	Breakeven values of number of days of solar home	164
	system usage per year	
Table 6.22	Input values for financial analysis of 1800 $W_{\rm p}$	165
	submersible solar PV pump for community use	
Table 6.23	Measures of financial performance of solar PV pump	166
Table 6.24	Breakeven values of number of days of solar PV pump	166
	usage per year, number of persons in a village, and fuel	
	price for replaced fuel	
Table 6.25	Input values for financial analysis of solar dryer	167
	(household and community type)	

Table no.	Title	Page no.
Table 6.26	Measures of financial performance of solar dryer	169
Table 6.27	Breakeven values of number of loadings per year (with	170
	drying time of 8 hours required per loading for chilli) and	
	breakeven values of fuel price for replaced fuel	
Table 7.1	Summary of potential of DRESs in Uttarakhand	173

NOMENCLATURE

A _{sc}	Average number of community type solar cookers installed per
	school
AC	Total annual cost of DRES usage
AC _C	Annualized capital cost
AHS _(r)	Average household size in rural Uttarakhand
AP _{vpri}	Average population of villages of Uttarakhand that are in the i^{th}
	population range category
AUE	Annual useful energy delivered by DRES
a, b	Coefficients in equations representing various technology
	diffusion models
В	Annual benefit accrued to the DRES user as a result of fuel
	savings
BPL	Below poverty line
С	Annual operation and maintenance cost associated with DRES
	usage
c _{pw}	Specific heat of water
C_0	Capital cost of DRES
CUF	Capacity utilization factor
CUF _{DSWH}	Annual capacity utilization factor of DSWH
CV_f	Calorific value of fuel replaced by DRES
d	Discount rate
DNI	Direct normal irradiance
DPP	Discounted payback period
DRES	Decentralized renewable energy system
DSWH	Domestic solar water heater
ETC	Evacuated tube collector

f	Annual operation and maintenance cost as a fraction of the
	capital cost of DRES
$f_{a(r)}$	Fraction of households having access to solar radiation in rural
	areas of Uttarakhand
f _{a(u)}	Fraction of households having access to solar radiation in urban
	areas of Uttarakhand
$f_{bch(r)}$	Fraction of households in rural areas of Uttarakhand using
	biomass for cooking
$f_{bch(u)}$	Fraction of households in urban areas of Uttarakhand using
	biomass for cooking
\mathbf{f}_{bp}	Fraction of annual useful energy required for domestic cooking
	met with biogas
$f_{h(r)}$	Fraction of households in rural areas of Uttarakhand
$f_{h\left(u\right) }$	Fraction of households in urban areas of Uttarakhand
$f_{hdswh(r)}$	Fraction of households situated in locations suitable for domestic
	solar water heater usage in rural areas of Uttarakhand
$f_{hdswh(u)}$	Fraction of households situated in locations suitable for domestic
	solar water heater usage in urban areas of Uttarakhand
f_{ic}	Fraction of annual useful energy required for domestic cooking
	met with improved biomass cookstove
$f_{idh(r)} \\$	Fraction of suitable households that may not have adequate cow
	dung due to inefficient collection
$f_{l(r)}$	Fraction of rural households in Uttarakhand that have adequate
	land for biogas plant installation adjacent to their house
\mathbf{f}_{pa}	Fraction of households having the propensity to adopt a DRES

f _{ppbp(r)}	Fraction of rural households in Uttarakhand having the					
	purchasing power to adopt a family size biogas plant					
$f_{ppdswh(r)}$	Fraction of households having the purchasing power to adopt a					
	domestic solar water heater in rural areas of Uttarakhand					
$f_{ppdswh(u)}$	Fraction of households having the purchasing power to adopt					
	domestic solar water heater in urban areas of Uttarakhand					
f _{ppic(r)}	Fraction of households having the purchasing power to adopt					
	improved cookstove in rural areas of Uttarakhand					
$f_{ppic(u)}$	Fraction of households having the purchasing power to adopt					
	improved cookstove in urban areas of Uttarakhand					
$f_{ppshs(r)}$	Fraction of rural households in Uttarakhand having the					
	purchasing power to adopt an SHS					
f _{ppsl(r)}	Fraction of households in rural areas of Uttarakhand having the					
	purchasing power to adopt a solar lantern					
$f_{ppsl(u)}$	Fraction of households in urban areas of Uttarakhand having the					
	purchasing power to adopt a solar lantern					
$f_{sh(r)}$	Fraction of households suitable for biogas plant in rural					
	Uttarakhand					
$\mathbf{f}_{\mathrm{shs}}$	Fraction of annual lighting energy demand met by an SHS					
\mathbf{f}_{sl}	Fraction of annual lighting energy demand met with solar lantern					
$f_{sl(r)}$	Fraction of electrified rural households of Uttarakhand that may					
	prefer solar lantern for outdoor lighting					
\mathbf{f}_{sp}	Fraction of annual water pumping energy requirement met by					
	solar PV pump					
\mathbf{f}_{spn}	Fraction of households whose perceived needs are fulfilled by					
	improved biomass cookstoves					

$f_{ueh(r)}$	Fraction of un-electrified households in rural Uttarakhand
$f_{ueh(u)}$	Fraction of un-electrified households in urban Uttarakhand
FPC	Flat plate collector
FSBP	Family size biogas plant
g	Acceleration due to gravity
GHI	Global horizontal irradiance
GSDP	Gross state domestic product
h	Head for water pumping
\mathbf{h}_{fg}	Enthalpy of evaporation of water at drying temperature
IRR	Internal rate of return
KVIC	Khadi and Village Industries Commission
LCUE	Levelized cost of useful energy
LPD	Liters per day
М	Estimated potential of a technology in a region
M_{DSWH}	Daily water heating capacity of DSWH
M_{f}	Final moisture content (in fraction) of crop on wet basis
M_{i}	Initial moisture content (in fraction) of crop on wet basis
M_{sd}	Capacity of solar dryer (mass of crop dried on wet basis)
MNRE	Ministry of New and Renewable Energy
MPCE	Monthly per capita expenditure
n	Useful life of DRES
n _{hrld}	No. of hours of lighting per day
n _l	No. of lamps replaced by an SHS
n _{ly}	No. of loadings per year
n _{mc}	Average no. of persons for whom meal is cooked

n _{mcy}	No. of meals cooked by solar cooker per year
n _{ph}	No. of persons per household
n _{pv}	No. of persons in village
N_h	No. of households in Uttarakhand
N _{smdms}	No. of schools covered under mid-day meal scheme in
	Uttarakhand
N _{uev}	No. of un-electrified villages in Uttarakhand
N _{vpri}	No. of villages in Uttarakhand in the i th population range
	category
NASA	National Aeronautics and Space Administration
NPV	Net present value
NSSO	National Sample Survey Office
N(t)	Cumulative dissemination/adoptions of a technology upto t th year
P _{bp}	Potential of family size biogas plant in Uttarakhand
\mathbf{P}_{dswh}	Potential of domestic solar water heater in Uttarakhand
\mathbf{P}_{f}	Unit price of fuel replaced by DRES
P _{ic}	Potential of improved cookstove in Uttarakhand
P _{pvp}	Potential of solar PV pump in Uttarakhand
P _{sc}	Potential of community type solar cookers in Uttarakhand
P _{sd}	Potential of community type solar dryer in Uttarakhand
P _{shs}	Potential of solar home system in Uttarakhand
P _{sl}	Potential of solar lantern in Uttarakhand
R	Annual rebate (if any) to the DRES user
S	Specific heat of wet crop
SFC	Specific fuel consumption of the lighting appliance replaced by
	solar lighting device

SHS	Solar home system
SWH	Solar water heater
t	time period
T _a	Ambient temperature
T _d	Drying temperature
T_1	Inlet temperature of water in DSWH
T_2	Outlet temperature of water in DSWH
UER _{mp}	Useful energy required per meal per person
UER _{pd}	Useful cooking energy requirement per person per day
UREDA	Uttarakhand Renewable Energy Development Agency
\mathbf{V}_{wpd}	Volume of water required per person per day for various
	domestic activities
$ ho_w$	Density of water
η_{fu}	Efficiency of fuel utilization of the fuel replaced by DRES
η_{ic}	Efficiency of improved biomass cookstove
η_{tc}	Efficiency of traditional biomass cookstove

CHAPTER 1

CHARACTERISTICS OF UTTARAKHAND AND ITS IMPLICATIONS FOR RENEWABLE ENERGY

1.1. State of Uttarakhand

1.1.1. Introduction

Uttarakhand, formerly Uttaranchal, is a state in the Central Himalayan Region of India. On 9th November 2000, Uttarakhand was carved out of the state of Uttar Pradesh as 27th state of the Republic of India (GoU, n.d.). Geographically, Uttarakhand is situated in the northern part of India extending between 28° 43' to 31° 27' N latitude and 77° 34' to 81° 02' E longitude (Figures 1.1-1.2) (DES, 2014). The state has international boundaries with China (Tibet) in the north and Nepal in the east. In west and south, it is surrounded by Indian states of Himachal Pradesh and Uttar Pradesh respectively (Figure 1.3). It is largely a hilly state located at the foothills of the Himalayan mountain ranges. The state is rich in natural resources especially water and forests with many glaciers, rivers, dense forests and snow-clad mountain peaks. Due to its geography and strategic location, it has been provided special category status which entitles the state to special financial package from the Union Government of India (DIPP, 2003).

As per Census of India 2011, the state of Uttarakhand has a population of 1,01,16,752 (ORGCC, n.d.) with a total geographical area of 53,483 sq.km (DES, 2014). The state has 13 districts that are divided between two divisions namely Garhwal and Kumaon (Figure 1.3). Garhwal Division consists of Dehradun, Haridwar, Tehri Garhwal, Uttarkashi, Chamoli, Pauri Garhwal (commonly known as Garhwal) and Rudraprayag. Almora, Bageshwar, Champawat, Nainital, Pithoragarh and Udham Singh Nagar districts constitute Kumaon Division. Of these 13 districts, Dehradun and Nainital are foothill

districts whereas Haridwar and Udham Singh Nagar have large areas in plains. The remaining 9 districts are classified as hill districts of Uttarakhand (Singh and Singh, n.d.; APF, n.d.; ENVIS, n.d.). The state has 16793 villages and 7555 gram panchayats (village level local governing bodies) (DES, 2014).

1.1.2. Topography and Climate

The topography of Uttarakhand is characterized by hilly terrain, deep valleys, high peaks, swift streams and rivulets, rapid soil erosion, frequent landslides and widely scattered habitation (Planning Commission, 2009). Regions in the state of Uttarakhand exhibit altitudinal variation ranging from 210-7817 m above mean sea level (GoU, 2011). Out of the total geographical area of 53,483 sq.km, about 85% area (i.e., 46,035 sq.km) has hilly terrain (DES, 2014). With respect to ground slope, all the 9 hill districts of Uttarakhand are reported to have large areas of land having steep slopes with slope angle $\geq 20\%$ (MoEF, n.d.). It is only the foothill districts of Dehradun and Nainital and the plain districts of Udham Singh Nagar and Hardwar which have land in plains with manageable slope (slope angle < 5%) (APF, n.d.). Two major rivers of India, Ganga and Yamuna emerge from the glaciers of Uttarakhand, and are fed by glacial melts and streams in the region. The high Himalayan ranges and glaciers form most of the northern parts of the state while the lower reaches are densely forested. The state is rich in vegetation with a forest cover of 34,651 sq.km (approximately 65% of the geographical area) (DES, 2014). The natural vegetation is mixed broad-level forest with oak and pine predominating. Hilly areas that form 85% of the state are characterized by loose soil and steep slopes that are highly susceptible to soil erosion during rains (MoEF, n.d.).

The state of Uttarakhand stretches from the foot hills in the south to the snow-clad peaks of Himadri outlining Indo-Tibetan boundary. Being situated centrally in the long sweep of Himalaya, Uttarakhand represents a transitional zone between the per-humid eastern and the dry to sub-humid western Himalaya (WMD, n.d.).

Climate wise, the state exhibits two distinct climatic regions: the predominant hilly terrain and the small plain region. Uttarakhand's climate varies greatly due to change in altitude and proximity towards Himalayas. The climatic condition of the plain areas of the state is tropical. Uttarakhand experiences three major seasons, namely, summers, winters, and monsoons (NP, n.d.). Summers are relatively hot and winters are cold with temperatures reaching sub-zero levels. The minimum and maximum temperatures recorded are -4.6 °C at Mukteshwar and 43.1 °C at Dehradun respectively (DES, 2014). With increased coverage of meteorological observatories, the maximum and minimum temperatures can further intensify. Uttarakhand receives an average rainfall varying from 920 mm in Srinagar to 2500 mm in Nainital (GoU, 2011). However, spatial distribution of the rainfall varies with generally higher rainfall in low mountainous regions like Nainital and Dehradun. Rainfall gradually decreases with increased elevation. Approximately 3/4th of the total rainfall is received during monsoon season (June-September) and remaining 1/4th occurs in the other seasons due to the western disturbances (GoU, 2011).

1.1.3. Demography

Uttarakhand is predominantly a rural society with 69% of its population residing in rural areas and only 31% living in urban areas (Table 1.1) (ORGCC, n.d.). Population and household distribution and number of villages in rural and urban areas of the districts of Uttarakhand are depicted in Table 1.1. Apart from foothill districts of Dehradun and Nainital and plain districts of Udham Singh Nagar and Hardwar, all other nine districts of the state have large part (about 85% or more) of its population in rural areas. Dehradun is the only district of the state to have urban population higher than the rural population. Average household size in Uttarakhand is 5 and it is the same in urban and rural areas. The rural areas of the state have 16,793 villages in total (ORGCC, n.d.). Rural Uttarakhand is predominantly hilly and doesn't support large scale agriculture (Mittal et al., 2008). In rural areas of the state, people generally practice subsistence agriculture. Scarcity of employment opportunities coupled with weak infrastructure in rural areas is fuelling rural to urban migration of

Figure 1.1: Uttarakhand as a state in India (MoI, n.d.)

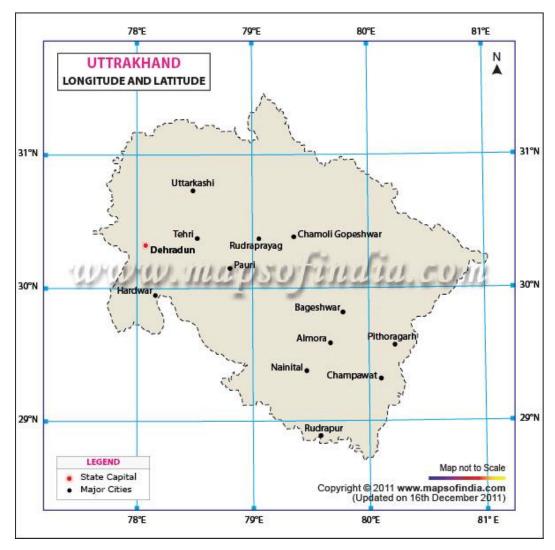


Figure 1.2: Location of Uttarakhand (MoI, n.d.)

people especially young men (Mittal et al., 2008). Hence, rural to urban migration is one of the critical challenges being faced by the state (Planning Commission, 2009). Table 1.2 presents the percentage decadal growth recoded in rural and urban areas of various districts of Uttarakhand during 2001-11. From the table, it is evident that during 2001-11, urban areas of most of the districts have registered higher decadal growth rates compared to rural areas. Uttarkashi and Champawat are the only two districts which have reported higher decadal growth rate of population in rural areas. The decadal growth rates in rural areas of Rudraprayag

Figure 1.3: Districts of Uttarakhand (MoI, n.d.)

and Tehri Garhwal districts are almost negligible whereas the growth rates are relatively very high in its urban counterparts. Garhwal and Almora exhibit negative decadal growth rates in rural areas whereas the growth rates in its urban parts are positive and comparatively very high. Lower, negligible and negative decadal growth rates in rural areas depict the phenomenon of rural to urban migration. Because of the migration, the share of rural population of the state has decreased from 74.33% in 2001 to 69.45% in 2011 (Figure 1.4) (ORGCC, n.d.). Table 1.3 depicts the migration statistics of Uttarakhand released by National

Sample Survey Office (NSSO), India. The number of male out-migrants per 1000 persons for the rural areas of Uttarakhand is significantly higher than the

Uttarakhand/			Population		% of	No. of households			No. of	
Districts				ро	pulation				villages	
	Total	Rural	Urban	Rural	Urban	Total	Rural	Urban		
Uttarakhand	10116752	7025583	3091169	69	31	1997068	1404845	592223	16793	
Uttarkashi	329686	305469	24217	93	07	66558	61149	5409	707	
Chamoli	391114	332026	59088	85	15	85765	72744	13021	1246	
Rudraprayag	236857	226939	9918	96	04	53492	51064	2428	688	
Tehri Garhwal	616409	546354	70055	89	11	133494	116988	16506	1862	
Dehradun	1698560	749000	949560	44	56	322700	137051	185649	748	
Garhwal	686527	573847	112680	84	16	161688	137102	24586	3473	
Pithoragarh	485993	416430	69563	86	14	111542	95130	16412	1675	
Bageshwar	259840	250749	9091	97	03	57712	55748	1964	947	
Almora	621927	559595	62332	90	10	139257	126476	12781	2289	
Champawat	259315	220970	38345	85	15	52356	44386	7970	717	
Nainital	955128	583237	371891	61	39	187108	112670	74438	1141	
Udham Singh Nagar	1648367	1061841	586526	64	36	300052	194695	105357	688	
Hardwar	1927029	1199126	727903	62	38	325344	199642	125702	612	

Table 1.1: District-wise population, number of households and villages in Uttarakhand (ORGCC, n.d.)

average for rural areas of India (NSSO, 2010). For rural males, almost 85% (844 out of 1000 persons) of the out-migration has been a result of out-migration due to employment related activities whereas for females it is primarily due to marriage (NSSO, 2010). With increased migration of young men to urban areas for employment, more and more women in rural households of Uttarakhand are taking on the mantle of operational head of the household (Mittal et al., 2008).

India/Uttarakhand/	Poj	pulation in 20	11	Percentage decadal growth (persons)			
Districts				2001-2011			
	Total	Rural	Urban	Total	Rural	Urban	
India	1210193422	833087662	377105760	17.64	12.18	31.80	
Uttarakhand	10116752	7025583	3091169	19.17	11.34	41.86	
Uttarkashi	329686	305469	24217	11.75	12.27	5.67	
Chamoli	391114	332026	59088	5.60	3.87	16.54	
Rudraprayag	236857	226939	9918	4.14	0.99	263.03	
Tehri Garhwal	616409	546354	70055	1.93	0.27	17.06	
Dehradun	1698560	749000	949560	32.48	24.13	39.90	
Garhwal	686527	573847	112680	-1.51	-5.49	25.37	
Pithoragarh	485993	416430	69563	5.13	3.47	16.26	
Bageshwar	259840	250749	9091	5.13	4.76	16.51	
Almora	621927	559595	62332	-1.73	-3.24	14.36	
Champawat	259315	220970	38345	15.49	15.83	13.52	
Nainital	955128	583237	371891	25.20	18.10	38.22	
Udham Singh Nagar	1648367	1061841	586526	33.40	27.53	45.53	
Hardwar	1927029	1199126	727903	33.16	19.80	63.11	

Table 1.2: Population and decadal growth rate by residence (ORGCC, n.d.)

Percentage of Rural and Urban Population , Uttarakhand (2001 and 2011)

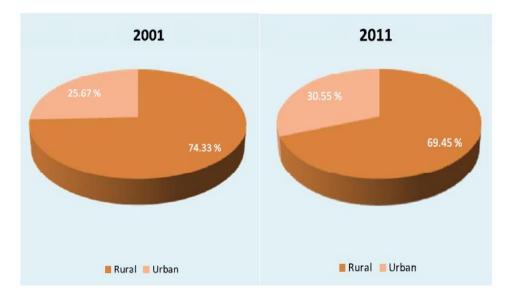


Figure 1.4: Percentage of rural and urban population in Uttarakhand (ORGCC, n.d.)

Table 1.3: Number of out-migrant per 1000 persons for Uttarakhand and average of all states in

India (NSSO, 2010)

Gender	Uttara	khand	India		
	Rural Urban		Rural	Urban	
Male	166	63	92	51	
Female	207	106	166	110	

1.1.4. Economic Activities

The economic activities of the state of Uttarakhand are divided into three sectors – primary, secondary and tertiary. The sub-sectors under these three sectors are presented in Table 1.4. For livelihood, the state's population is largely dependent on primary sector. Sub-sectors of primary sector namely agriculture and allied activities (forestry, logging and fishing) provide livelihood to more than 70 per cent of the population of Uttarakhand (Planning Commission, 2009; WMD, n.d.). Though agriculture is one of the primary sources of livelihood, only 14% of the land area of the state is under cultivation as 85% of the state's land is hilly (Planning Commission, 2009; WMD, n.d.). Agriculture in Uttarakhand is largely rainfed and land holdings are small (AD, n.d.). Lack of institutional arrangements supporting pre and post harvesting activities results in low yields. This ultimately leads to subsistence agriculture with low and unstable income for the farmers (WMD, n.d.).

The trend of Uttarakhand's Gross State Domestic Product (GSDP) estimates suggests that Agriculture, Manufacturing, Construction and Trade, Hotels and Restaurants used to be the major contributing sectors (Table 1.5). During 1999-2000, agriculture used to be the major contributor to Uttarakhand's GSDP contributing 26.15% of the total share (Table 1.5). However, since 1999-2000, there has been continuous decrease in its share and it contributed only 9% during 2012-03. As per data for the year 2012-13, the share of primary, secondary and tertiary sectors in GSDP of Uttarakhand are 14%, 34% and 52% respectively.

Within tertiary sector, tourism related sub-sector named Trade, Hotels and Restaurants is the major contributor with a share of 23% in the GSDP of the state (Table 1.5) (DES, 2013).

Apart from agriculture and tourism, employment with the state government is the source of income to a population of 1,45,630 (DES, 2014). In addition to this, a significant population of Uttarakhand is employed in various defense establishments. Also, about 5,00,000 registered pensioners are receiving pension in the state from central/state government under various schemes (DES, 2014). Unsuitability of the state for large scale agriculture or other employment generating activities has resulted in wide spread poverty in the state. Uttarakhand has 36.5% of its population under the category of Below Poverty Line (BPL). Hilly areas are more affected by poverty that is reflected by a BPL population of 44% whereas the plain areas of the state have a BPL population of 19% (WMD, n.d.).

S.No.	Sector/Sub-sector	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13
1	Agriculture	411370	420567	491405	507118	595515	734753	758791	847375	943617
2	Forestry&Logging	139751	163641	185764	199950	227127	256115	315402	362398	415364
3	Fishing	919	1053	1234	1275	1479	2158	2753	3562	4428
Agricu	lture and Allied	552040	585261	678403	708343	824121	993026	1076946	1213335	1363409
4	Mining&Quarrying	29894	44591	50747	57538	45058	57784	73108	93615	103406
Sub-to:	tal of Primary Sector	581934	629852	729150	765881	860179	1050810	1150054	1306950	1466815
5	Manufacturing	315559	483122	648360	983629	1271801	1610496	1859660	2045355	2293208
6	Construction	315686	368159	470989	460222	478218	587487	677562	792351	943193
7	Electricity, Gas and Water Supply	38445	41329	75221	155880	175158	217402	312985	350090	451949
Sub-to:	tal of Secondary Sector	669690	892610	1194570	1599731	1925177	2415385	2850207	3187796	3688350
8	Transport, Storage & Communication	162784	192291	239102	293876	351386	452672	543297	639353	774165
9	Trade, Hotels & Restaurants	419564	551390	682256	920771	1195955	1633282	1975396	2194607	2486233
10	Banking & Insurance	93663	105378	124822	146611	179305	204636	259281	311518	376373
11	Real Estate, Ownership of Dwellings & Business Services	159893	178583	199883	238414	278405	336533	407807	470572	555761
12	Public Administration	133372	153922	176435	252589	369289	472270	531608	582843	684347
13	Other Services	257667	292727	333324	367691	433780	508046	574145	622533	722781
Sub-to:	tal of Tertiary Sector	1226943	1474291	1755822	2219952	2808120	3607439	4291534	4821426	5599660
Gross	State Domestic Product (GSDP)	2478567	2996753	3679542	4585564	5602476	7073634	8291795	9316172	10754825
State P	opulation (in thousands)	9014	9160	9305	9451	9597	9742	9885	10027	10167
Per Ca	pita GSDP (₹)	27497	32716	39544	48519	58377	72610	83883	92911	105782

Table 1.4: Gross State Domestic Product at factor cost by industry: 2004-05 to 2012-13 at current prices 15 Feb 2013 (₹ Lacs) (DES, 2013)

S.No.	Sector/Sub-sector	2004-05	2005-06	2006-07	2007-08	2008-09	2009-10	2010-11	2011-12	2012-13
1	Agriculture	17	14	13	11	11	10	09	09	09
2	Forestry&Logging	06	05	05	04	04	04	04	04	04
3	Fishing*	00	00	00	00	00	00	00	00	00
Agricu	ture and Allied	22	20	18	15	15	14	13	13	13
4	Mining&Quarrying	01	01	01	01	01	01	01	01	01
Sub-tot	al of Primary Sector	23	21	20	17	15	15	14	14	14
5	Manufacturing	13	16	18	21	23	23	22	22	21
6	Construction	13	12	13	10	09	08	08	09	09
7	Electricity, Gas and Water Supply	02	01	2	03	03	03	04	04	04
Sub-tot	al of Secondary Sector	27	30	32	35	34	34	34	34	34
8	Transport, Storage & Communication	07	06	06	06	06	06	07	07	07
9	Trade, Hotels & Restaurants	17	18	19	20	21	23	24	24	23
10	Banking & Insurance	04	04	03	03	03	03	03	03	03
11	Real Estate, Ownership of Dwellings & Business Services	06	06	05	05	05	05	05	05	05
12	Public Administration	05	05	05	06	07	07	06	06	06
13	Other Services	10	10	09	08	08	07	07	07	07
Sub-tot	al of Tertiary Sector	50	49	48	48	50	51	52	52	52
Gross S	State Domestic Product (GSDP)	100	100	100	100	100	100	100	100	100

Table 1.5: Contribution of sector/sub-sector to Uttarakhand's Gross State Domestic Product at factor cost: 2004-05 to 2012-13 at current prices 15 Feb 2013 (in %) (DES, 2013)

* The contribution of fishing is very small and thus approximately equal to zero.

1.1.5. Energy Scenario

1.1.5.1. Electricity

In comparison to urban areas, rural areas have less access to electricity in Uttarakhand (Table 1.6). 17% of the rural households in Uttarakhand lack access to electricity. In rural areas of Uttarkashi, Almora, Champawat and Hardwar, more than 20% of households lack access to electricity (ORGCC, n.d.). As per the latest data, there are 107 un-electrified villages in Uttarakhand (CEA, 2015). As per Uttarakhand Power Corporation Limited, the un-electrified villages are surrounded by dense forests, steep hills or are snowbound. Forests, steep hills and snowbound areas make grid electrification difficult and unviable (Chaudhuri, 2007; Nouni et al., 2008).

In addition to poor access to electricity in rural Uttarakhand, the state is also facing acute power shortage. During last year, monthly averaged daily energy (electricity) shortages in the state ranged from 8% - 46% with an annual mean of 30% (UPCL, 2015). The state is addressing the energy shortage by purchasing energy through power trading (bilateral agreements and power exchange) and rostering (UPCL, 2015). Thus, it can be inferred that the state does not have the power generation capacity to support further expansion of access to electricity.

1.1.5.2. Energy for Cooking and Lighting

As per Census of India 2011, more than 90% of the households in Uttarakhand utilize fire wood and LPG as major fuel for cooking (Tables 1.7-1.8) (ORGCC, n.d.). Almost half (48.68%) of the households in the state are using biomass as a fuel for cooking. In rural households of the state, the share of biomass in cooking further increases to 63.29%. This may be attributed to easy availability of biomass or agricultural residues at zero private cost from nearby forests or agricultural farms to rural households in Uttarakhand. Apart from biomass, LPG is also used widely for cooking in the state with 44.23% households dependent on LPG. The

percentage of LPG using households in urban areas is 79.42% and for rural areas it is 29.40%. Among various renewable energy technologies, only biogas is being used for cooking by a very small fraction (0.47%) of households in the state. It is only in the rural areas of Nainital and Udham Singh Nagar where biogas is

State/District	No. of hou	iseholds		No. of elec	ctrified hous	seholds	%	of el	ectrified
							househ	olds	
	Total	Rural	Urban	Total	Rural	Urban	Total	Rural	Urban
Uttarakhand	1997068	1404845	592223	1738175	1166756	571419	87	83	96
Uttarkashi	66558	61149	5409	52621	47319	5302	79	77	98
Chamoli	85765	72744	13021	71524	58791	12733	83	81	98
Rudraprayag	53492	51064	2428	49182	46794	2388	92	92	98
Tehri Garhwal	133494	116988	16506	117239	100992	16247	88	86	98
Dehradun	322700	137051	185649	310726	129466	181260	96	94	98
Garhwal	161688	137102	24586	143963	119829	24134	89	87	98
Pithoragarh	111542	95130	16412	95421	79202	16219	86	83	99
Bageshwar	57712	55748	1964	47083	45172	1911	82	81	97
Almora	139257	126476	12781	109876	97337	12539	79	77	98
Champawat	52356	44386	7970	37725	30333	7392	72	68	93
Nainital	187108	112670	74438	169001	96746	72255	90	86	97
Udham Singh	300052	194695	105357	254802	156658	98144	85	80	93
Nagar									
Hardwar	325344	199642	125702	279012	158117	120895	86	79	96

Table 1.6: Electrification of households in Uttarakhand (ORGCC, n.d.)

utilized in more than 1% households. The best case of use of biogas is of rural Nainital where 4.27% of the households depend on biogas for cooking (ORGCC, n.d.).

For lighting, electricity is the main energy source being utilized in Uttarakhand households followed by kerosene with shares of 87.04% and 11.08% households respectively (Tables 1.9-1.10). The share of kerosene usage is higher in rural households with 14.53% rural households using it for lighting. Among renewable energy technologies for lighting, only solar energy usage is being reported. 1.22%

households of Uttarakhand are reported to be using solar lighting devices. In rural and urban areas of Uttarakhand, solar lighting is being used by 1.69% and 0.08% households respectively. In rural areas of Chamoli and Champawat, solar energy utilization for lighting score high with more than 5% of the households utilizing solar lighting (ORGCC, n.d.).

State/District	Type	No. of			N	o. of households	s using vario	us types of fue	el for cooking			
	of	households	Fire-	Crop	Cow	Coal/Lignite	Kerosene	LPG/PNG	Electricity	Biogas	Any	No
	area		wood	residue	dung						other	cooking
Uttarakhand	Total	1997068	972074	25430	63188	1211	35676	883286	806	9460	699	5238
	Rural	1404845	889073	21402	54979	801	12954	412972	584	8866	365	2849
	Urban	592223	83001	4028	8209	410	22722	470314	222	594	334	2389
Uttarkashi	Total	66558	43190	499	39	6	1167	21374	83	8	28	164
	Rural	61149	42979	485	35	5	843	16582	83	7	28	102
	Urban	5409	211	14	4	1	324	4792	0	1	0	62
Chamoli	Total	85765	55291	829	38	26	1384	27853	12	16	7	309
	Rural	72744	54017	790	33	25	737	16971	9	13	6	143
	Urban	13021	1274	39	5	1	647	10882	3	3	1	166
Rudraprayag	Total	53492	32047	736	30	16	678	19859	16	20	3	87
	Rural	51064	31881	735	29	16	354	17957	16	19	1	56
	Urban	2428	166	1	1	0	324	1902	0	1	2	31
Tehri Garhwal	Total	133494	78821	1093	77	41	1970	50929	147	47	11	358
	Rural	116988	78281	1064	75	33	791	36468	49	45	6	176
	Urban	16506	540	29	2	8	1179	14461	98	2	5	182
Dehradun	Total	322700	71123	1693	787	154	13322	233705	96	635	131	1054
	Rural	137051	59064	1027	401	78	3035	72422	60	521	30	413
	Urban	185649	12059	666	386	76	10287	161283	36	114	101	641
Garhwal	Total	161688	87128	1112	116	44	2072	70551	37	224	40	364
	Rural	137102	85141	1042	96	37	1362	48887	33	207	38	259
	Urban	24586	1987	70	20	7	710	21664	4	17	2	105
Pithoragarh	Total	111542	62721	873	83	29	2041	45365	20	143	16	251
	Rural	95130	62493	848	77	28	1103	30228	20	132	11	190
	Urban	16412	228	25	6	1	938	15137	0	11	5	61
Bageshwar	Total	57712	42658	709	75	32	717	13352	13	66	6	84
	Rural	55748	42520	702	74	32	566	11691	13	66	5	79
	Urban	1964	138	7	1	0	151	1661	0	0	1	5
Almora	Total	139257	95560	1344	100	84	1583	40199	27	69	37	254
	Rural	126476	95046	1318	95	82	1087	28534	27	68	32	187
	Urban	12781	514	26	5	2	496	11665	0	1	5	67
Champawat	Total	52356	32382	521	71	12	385	18785	11	106	11	72
-	Rural	44386	30533	380	71	8	199	13057	10	79	11	38

Table 1.7: Energy consumption pattern: fuel used for cooking (ORGCC, n.d.)

State/District	Type	No. of			N	o. of households	s using vario	us types of fue	el for cooking			
	of	households	Fire-	Crop	Cow	Coal/Lignite	Kerosene	LPG/PNG	Electricity	Biogas	Any	No
	area		wood	residue	dung						other	cooking
	Urban	7970	1849	141	0	4	186	5728	1	27	0	34
Nainital	Total	187108	76000	1360	302	74	4679	99021	55	4924	100	593
	Rural	112670	65764	993	212	42	1233	39229	44	4807	60	286
	Urban	74438	10236	367	90	32	3446	59792	11	117	40	307
Udhamsingh	Total	300052	164558	6805	5056	408	2807	116576	127	2841	162	712
Nagar	Rural	194695	131503	5303	4394	236	1015	48951	102	2697	73	421
	Urban	105357	33055	1502	662	172	1792	67625	25	144	89	291
Hardwar	Total	325344	130595	7856	56414	285	2871	125717	162	361	147	936
	Rural	199642	109851	6715	49387	179	629	31995	118	205	64	499
	Urban	125702	20744	1141	7027	106	2242	93722	44	156	83	437

Table 1.7: Energy consumption pattern: fuel used for cooking (ORGCC, n.d.) (continued...)

State/District	Туре	No. of			Per	rcentage of hous	eholds using	various types	of fuel for coo	king		
	of	households	Fire-	Crop	Cow	Coal/Lignite	Kerosene	LPG/PNG	Electricity	Biogas	Any	No
	area		wood	residue	dung	_				_	other	cooking
Uttarakhand	Total	1997068	48.68	1.27	3.16	0.06	1.79	44.23	0.04	0.47	0.04	0.26
	Rural	1404845	63.29	1.52	3.91	0.06	0.92	29.40	0.04	0.63	0.03	0.20
	Urban	592223	14.02	0.68	1.39	0.07	3.84	79.42	0.04	0.10	0.06	0.40
Uttarkashi	Total	66558	64.89	0.75	0.06	0.01	1.75	32.11	0.12	0.01	0.04	0.25
	Rural	61149	70.29	0.79	0.06	0.01	1.38	27.12	0.14	0.01	0.05	0.17
	Urban	5409	3.90	0.26	0.07	0.02	5.99	88.59	0.00	0.02	0.00	1.15
Chamoli	Total	85765	64.47	0.97	0.04	0.03	1.61	32.48	0.01	0.02	0.01	0.36
	Rural	72744	74.26	1.09	0.05	0.03	1.01	23.33	0.01	0.02	0.01	0.20
	Urban	13021	9.78	0.30	0.04	0.01	4.97	83.57	0.02	0.02	0.01	1.27
Rudraprayag	Total	53492	59.91	1.38	0.06	0.03	1.27	37.13	0.03	0.04	0.01	0.16
	Rural	51064	62.43	1.44	0.06	0.03	0.69	35.17	0.03	0.04	0.00	0.11
	Urban	2428	6.84	0.04	0.04	0.00	13.34	78.34	0.00	0.04	0.08	1.28
Tehri	Total	133494	59.04	0.82	0.06	0.03	1.48	38.15	0.11	0.04	0.01	0.27
Garhwal	Rural	116988	66.91	0.91	0.06	0.03	0.68	31.17	0.04	0.04	0.01	0.15
	Urban	16506	3.27	0.18	0.01	0.05	7.14	87.61	0.59	0.01	0.03	1.10
Dehradun	Total	322700	22.04	0.52	0.24	0.05	4.13	72.42	0.03	0.20	0.04	0.33
	Rural	137051	43.10	0.75	0.29	0.06	2.21	52.84	0.04	0.38	0.02	0.30
	Urban	185649	6.50	0.36	0.21	0.04	5.54	86.88	0.02	0.06	0.05	0.35
Garhwal	Total	161688	53.89	0.69	0.07	0.03	1.28	43.63	0.02	0.14	0.02	0.23
	Rural	137102	62.10	0.76	0.07	0.03	0.99	35.66	0.02	0.15	0.03	0.19
	Urban	24586	8.08	0.28	0.08	0.03	2.89	88.12	0.02	0.07	0.01	0.43
Pithoragarh	Total	111542	56.23	0.78	0.07	0.03	1.83	40.67	0.02	0.13	0.01	0.23
	Rural	95130	65.69	0.89	0.08	0.03	1.16	31.78	0.02	0.14	0.01	0.20
	Urban	16412	1.39	0.15	0.04	0.01	5.72	92.23	0.00	0.07	0.03	0.37
Bageshwar	Total	57712	73.92	1.23	0.13	0.06	1.24	23.14	0.02	0.11	0.01	0.15
	Rural	55748	76.27	1.26	0.13	0.06	1.02	20.97	0.02	0.12	0.01	0.14
	Urban	1964	7.03	0.36	0.05	0.00	7.69	84.57	0.00	0.00	0.05	0.25
Almora	Total	139257	68.62	0.97	0.07	0.06	1.14	28.87	0.02	0.05	0.03	0.18
	Rural	126476	75.15	1.04	0.08	0.06	0.86	22.56	0.02	0.05	0.03	0.15
	Urban	12781	4.02	0.20	0.04	0.02	3.88	91.27	0.00	0.01	0.04	0.52
Champawat	Total	52356	61.85	1.00	0.14	0.02	0.74	35.88	0.02	0.20	0.02	0.14

Table 1.8: Energy consumption pattern: fuel used for cooking (in %) (ORGCC, n.d.)

State/District	Туре	No. of			Pe	rcentage of hous	eholds using	various types	of fuel for coo	king		
	of	households	Fire-	Crop	Cow	Coal/Lignite	Kerosene	LPG/PNG	Electricity	Biogas	Any	No
	area		wood	residue	dung						other	cooking
	Rural	44386	68.79	0.86	0.16	0.02	0.45	29.42	0.02	0.18	0.02	0.09
	Urban	7970	23.20	1.77	0.00	0.05	2.33	71.87	0.01	0.34	0.00	0.43
Nainital	Total	187108	40.62	0.73	0.16	0.04	2.50	52.92	0.03	2.63	0.05	0.32
	Rural	112670	58.37	0.88	0.19	0.04	1.09	34.82	0.04	4.27	0.05	0.25
	Urban	74438	13.75	0.49	0.12	0.04	4.63	80.32	0.01	0.16	0.05	0.41
Udhamsingh	Total	300052	54.84	2.27	1.69	0.14	0.94	38.85	0.04	0.95	0.05	0.24
Nagar	Rural	194695	67.54	2.72	2.26	0.12	0.52	25.14	0.05	1.39	0.04	0.22
	Urban	105357	31.37	1.43	0.63	0.16	1.70	64.19	0.02	0.14	0.08	0.28
Hardwar	Total	325344	40.14	2.41	17.34	0.09	0.88	38.64	0.05	0.11	0.05	0.29
	Rural	199642	55.02	3.36	24.74	0.09	0.32	16.03	0.06	0.10	0.03	0.25
	Urban	125702	16.50	0.91	5.59	0.08	1.78	74.56	0.04	0.12	0.07	0.35

Table 1.8: Energy consumption pattern: fuel used for cooking (in %) (ORGCC, n.d.) (continued...)

State /	Type of	No. of	N	o. of househo	lds by mai	n source o	of lighting	
District	area	households	Electricity	Kerosene	Solar	Other	Any	No
					energy	oil	other	lighting
Uttarakhand	Total	1997068	1738175	221206	24267	3158	3880	6382
	Rural	1404845	1166756	204149	23789	2691	2750	4710
	Urban	592223	571419	17057	478	467	1130	1672
Uttarkashi	Total	66558	52621	11848	1691	134	103	161
	Rural	61149	47319	11758	1688	129	102	153
	Urban	5409	5302	90	3	5	1	8
Chamoli	Total	85765	71524	9396	4145	192	201	307
	Rural	72744	58791	9142	4138	168	201	304
	Urban	13021	12733	254	7	24	0	3
Rudraprayag	Total	53492	49182	3811	278	47	18	156
	Rural	51064	46794	3774	278	46	17	155
	Urban	2428	2388	37	0	1	1	1
Tehri	Total	133494	117239	12552	2995	210	104	394
Garhwal	Rural	116988	100992	12329	2989	201	91	386
	Urban	16506	16247	223	6	9	13	8
Dehradun	Total	322700	310726	10036	349	330	628	631
	Rural	137051	129466	6410	292	195	379	309
	Urban	185649	181260	3626	57	135	249	322
Garhwal	Total	161688	143963	14695	2249	238	91	452
	Rural	137102	119829	14331	2212	234	85	411
	Urban	24586	24134	364	37	4	6	41
Pithoragarh	Total	111542	95421	12957	2781	109	87	187
	Rural	95130	79202	12802	2770	101	77	178
	Urban	16412	16219	155	11	8	10	9
Bageshwar	Total	57712	47083	9062	1028	149	110	280
	Rural	55748	45172	9020	1027	145	110	274
	Urban	1964	1911	42	1	4	0	6
Almora	Total	139257	109876	25175	3545	263	64	334
	Rural	126476	97337	24978	3536	249	59	317
	Urban	12781	12539	197	9	14	5	17
Champawat	Total	52356	37725	11948	2293	108	94	188
	Rural	44386	30333	11460	2286	84	80	143

Table 1.9: Fuels used for lighting in Uttarakhand (ORGCC, n.d.)

State /	Type of	No. of	N	o. of househo	lds by mai	n source c	of lighting	
District	area	households	Electricity	Kerosene	Solar	Other	Any	No
					energy	oil	other	lighting
	Urban	7970	7392	488	7	24	14	45
Nainital	Total	187108	169001	15242	1827	265	220	553
	Rural	112670	96746	13409	1801	192	115	407
	Urban	74438	72255	1833	26	73	105	146
Udhamsingh	Total	300052	254802	41967	648	487	666	1482
Nagar	Rural	194695	156658	36023	397	393	330	894
	Urban	105357	98144	5944	251	94	336	588
Hardwar	Total	325344	279012	42517	438	626	1494	1257
	Rural	199642	158117	38713	375	554	1104	779
	Urban	125702	120895	3804	63	72	390	478

Table 1.9: Fuels used for lighting in Uttarakhand (ORGCC, n.d.) (continued...)

Table 1.10: Percentage of households using various types of fuels for lighting (ORGCC, n.d.)

State /	Туре	No. of	Perc	centage of ho	useholds b	y main sou	urce of light	ting
District	of	households	Electricity	Kerosene	Solar	Other	Any	No
	area				energy	oil	other	lighting
Uttarakhand	Total	1997068	87.04	11.08	1.22	0.16	0.19	0.32
	Rural	1404845	83.05	14.53	1.69	0.19	0.20	0.34
	Urban	592223	96.49	2.88	0.08	0.08	0.19	0.28
Uttarkashi	Total	66558	79.06	17.80	2.54	0.20	0.15	0.24
	Rural	61149	77.38	19.23	2.76	0.21	0.17	0.25
	Urban	5409	98.02	1.66	0.06	0.09	0.02	0.15
Chamoli	Total	85765	83.40	10.96	4.83	0.22	0.23	0.36
	Rural	72744	80.82	12.57	5.69	0.23	0.28	0.42
	Urban	13021	97.79	1.95	0.05	0.18	0.00	0.02
Rudraprayag	Total	53492	91.94	7.12	0.52	0.09	0.03	0.29
	Rural	51064	91.64	7.39	0.54	0.09	0.03	0.30
	Urban	2428	98.35	1.52	0.00	0.04	0.04	0.04
Tehri	Total	133494	87.82	9.40	2.24	0.16	0.08	0.30
Garhwal	Rural	116988	86.33	10.54	2.55	0.17	0.08	0.33
	Urban	16506	98.43	1.35	0.04	0.05	0.08	0.05
Dehradun	Total	322700	96.29	3.11	0.11	0.10	0.19	0.20
	Rural	137051	94.47	4.68	0.21	0.14	0.28	0.23

State /	Type	No. of	Perc	centage of ho	useholds b	y main soi	urce of light	ting
District	of	households	Electricity	Kerosene	Solar	Other	Any	No
	area				energy	oil	other	lighting
	Urban	185649	97.64	1.95	0.03	0.07	0.13	0.17
Garhwal	Total	161688	89.04	9.09	1.39	0.15	0.06	0.28
	Rural	137102	87.40	10.45	1.61	0.17	0.06	0.30
	Urban	24586	98.16	1.48	0.15	0.02	0.02	0.17
Pithoragarh	Total	111542	85.55	11.62	2.49	0.10	0.08	0.17
	Rural	95130	83.26	13.46	2.91	0.11	0.08	0.19
	Urban	16412	98.82	0.94	0.07	0.05	0.06	0.05
Bageshwar	Total	57712	81.58	15.70	1.78	0.26	0.19	0.49
	Rural	55748	81.03	16.18	1.84	0.26	0.20	0.49
	Urban	1964	97.30	2.14	0.05	0.20	0.00	0.31
Almora	Total	139257	78.90	18.08	2.55	0.19	0.05	0.24
	Rural	126476	76.96	19.75	2.80	0.20	0.05	0.25
	Urban	12781	98.11	1.54	0.07	0.11	0.04	0.13
Champawat	Total	52356	72.05	22.82	4.38	0.21	0.18	0.36
	Rural	44386	68.34	25.82	5.15	0.19	0.18	0.32
	Urban	7970	92.75	6.12	0.09	0.30	0.18	0.56
Nainital	Total	187108	90.32	8.15	0.98	0.14	0.12	0.30
	Rural	112670	85.87	11.90	1.60	0.17	0.10	0.36
	Urban	74438	97.07	2.46	0.03	0.10	0.14	0.20
Udhamsingh	Total	300052	84.92	13.99	0.22	0.16	0.22	0.49
Nagar	Rural	194695	80.46	18.50	0.20	0.20	0.17	0.46
	Urban	105357	93.15	5.64	0.24	0.09	0.32	0.56
Hardwar	Total	325344	85.76	13.07	0.13	0.19	0.46	0.39
	Rural	199642	79.20	19.39	0.19	0.28	0.55	0.39
	Urban	125702	96.18	3.03	0.05	0.06	0.31	0.38

Table 1.10: Percentage of households using various types of fuels for lighting (ORGCC, n.d.) (continued..)

1.1.5.3. Pattern of Household Expenditure on Energy (Fuels and Light)

Households incur expenditure on fuel consumption for domestic needs such as cooking, lighting, etc. As per a survey conducted by NSSO, \gtrless 130.58/- and \gtrless 140.50/- are the monthly per capita expenditure on fuel and light in rural and urban areas of Uttarakhand respectively (Table 1.11) (NSSO, 2014). In rural areas

of the state, majority of expenditure on fuel and light is on firewood and chips followed by electricity. However, in urban areas, expenditure on LPG and electricity has the majority share in the amount spent on fuel and light. This indicates large scale biomass usage for cooking in rural areas of Uttarakhand as pointed by Census of India 2011.

Item description		Quantit	у	Valu	e (₹)
	Unit	Rural	Urban	Rural	Urban
Coke	kg	0.004	0.000	0.01	0.00
Firewood and chips	kg	36.959	6.451	56.88	14.02
Electricity	kWh	13.733	21.553	32.35	51.20
Dung cake	NA	-	-	2.08	1.29
Kerosene – PDS	litre	0.451	0.201	7.01	3.09
Kerosene – Other sources	litre	0.009	0.030	0.19	0.76
Matches	box	1.995	1.585	2.00	1.59
Coal	kg	0.007	0.012	0.01	0.01
LPG	kg	0.878	2.252	25.30	63.48
Charcoal	kg	0.000	0.006	0.00	0.03
Candle	no.	0.773	0.787	1.88	2.56
Gobar gas	NA	-	-	0.04	0.00
Petrol (excluding conveyance)	litre	0.001	0.000	0.05	0.00
Diesel (excluding conveyance)	litre	0.000	0.010	0.00	0.33
Other fuel	NA	-	-	2.78	2.15
Total for Fuel and Light	NA	NA	NA	130.58	140.50

Table 1.11: Monthly per capita quantity and monetary value of fuel consumption for Uttarakhand (NSSO, 2014)

- indicates very small values

1.2. Renewable Energy Resource Availability in Uttarakhand

1.2.1. Solar Radiation

Most of the locations in the state of Uttarakhand receive sufficient solar radiation throughout the year (Ramachandra et al., 2011). Based on the latitude and longitude of the districts of Uttarakhand obtained from GP (n.d.), solar resource

data has been obtained from Ministry of New and Renewable Energy (MNRE) and National Aeronautics and Space Administration (NASA) databases (MNRE, n.d.; NASA, n.d.). Solar resource data presented in Table 1.12 indicates that almost all districts of Uttarakhand receive annually averaged daily Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) ≥ 5 kWh/m²/day. Areas having annual average daily value of solar radiation (GHI/DNI) of 5.00 kWh/m²/day or more are considered suitable for solar applications (Ramachandra et al., 2011). Thus, it can be inferred that all districts of Uttarakhand are suitable for solar energy applications.

	MNRE	data	NASA	data
	$(kWh/m^2/day)$		$(kWh/m^2/day)$	
Districts	GHI	DNI	GHI	DNI
Uttarkashi	5.21	5.43	5.32	6.68
Chamoli	5.27	5.37	5.04	5.99
Rudraprayag	5.32	5.62	5.32	6.64
Tehri Garhwal	5.34	5.62	5.32	6.65
Dehradun	5.15	5.01	5.32	6.64
Garhwal	5.27	5.49	5.40	6.71
Pithoragarh	5.41	5.98	5.35	6.69
Bageshwar	5.35	5.93	5.36	6.67
Almora	5.36	5.98	5.36	6.65
Champawat	5.23	5.64	5.35	6.67
Nainital	5.06	5.02	5.36	6.63
Udham Singh Nagar	5.24	4.66	5.32	6.44
Hardwar	5.27	4.90	5.40	6.71

Table 1.12: Solar radiation data for districts of Uttarakhand (MNRE, n.d.; NASA, n.d.)

1.2.2. Wind

Although few of the localized pockets in Uttarakhand have significant wind resource at high altitudes, the state generally has minimal wind resource with average wind speeds around typical turbine cut-in speed of 3 m/s (Lundquist et al., 2014). Wind speed data obtained from NASA database also reflects low annual average wind speeds (about 4 m/s) for all districts of Uttarakhand (NASA, n.d.). Thus, wind energy applications may not be suitable for the state of Uttarakhand.

1.2.3. Biomass

The state of Uttarakhand is rich in vegetation with a forest cover of 34,651 sq.km (approximately 65% of total geographical area) (DES, 2014). Sub-sectors of primary sector namely agriculture and allied activities (forestry, logging and fishing) provide livelihood to more than 70 per cent of the population of Uttarakhand (Planning Commission, 2009; WMD, n.d.). Households involved in agricultural activities generally rear livestock for agricultural work and milk. In rural Uttarakhand, it is reported that there are 2066 cattles and 734 buffaloes per 1000 households (NSSO, 2006). Also, as per estimates, Uttarakhand has surplus biomass (agro, forest and wasteland biomass) availability of about 3700 KT/year (CGPL, n.d.). Hence, biomass based applications may be appropriate for the state of Uttarakhand.

1.2.4. Hydro

Uttarakhand has a number of perennial streams that can be tapped through small hydro power projects (GoU, 2008). As per MNRE estimates, small hydro power has a potential of about 1708 MW in the state (MNRE, 2014). Thus, small hydro applications may be utilized to satisfy energy demand in the state of Uttarakhand.

1.3. Critical Areas for Development of Uttarakhand

In Uttarakhand, the hill region districts (9 out of total 13 districts) are less developed in terms of infrastructure, i.e., electricity, roads and water supply. As a result, majority of the rural population in the hills either survive on subsistence agriculture or migrates to other parts of the country for employment (GoU, 2011). The state of Uttarakhand is rich in flora and fauna and other natural resources such as solar radiation, hydro and biomass. All these point towards tremendous potential for sustainable growth and development in the state. Thus, sustainable development has been a key element in the state's growth strategy (TERI, 2008). Water, agriculture, forestry and energy are important elements of the state's strategy for future growth (WMD, n.d.; TERI, 2008). In addition, tourism is also very important for the growth of the state as it is a major (23%) contributor to the economy of Uttarakhand (DES, 2013). The following sections discuss the critical areas for development of the state: energy, water, agriculture, tourism and road.

1.3.1. Energy

As discussed in section 1.1.5.1., the state is facing challenges in the electricity sector. Apart from about 17% un-electrified households in rural areas [Ref: Census of India 2011], the state is also experiencing electricity shortages of about 30% (UPCL, 2015). As reported, about 107 villages in Uttarakhand are yet to be electrified (CEA, 2015). In Uttarakhand, the un-electrified villages are generally surrounded by dense forests, steep hills or snow that make grid electrification difficult and unviable (UPCL, 2014; Chaudhuri, 2007; Nouni et al., 2008).

Cooking pattern in the state of Uttarakhand reflect large scale usage of biomass as a fuel. About 48.68% of the households in the state are using biomass as a fuel for cooking whereas in rural households the share of biomass is about 63.29% (ORGCC, n.d.). Lighting pattern of the state indicate that electricity is the main energy source being utilized in Uttarakhand households followed by kerosene (ORGCC, n.d.). The share of kerosene usage is higher in rural households with 14.53% rural households using it for lighting (ORGCC, n.d.).

1.3.2. Water

Uttarakhand is a hill state with about 85% of its geographic area as hilly and has no appreciable groundwater potential. It is the plain areas of the state (about 15% of the area of the state comprising 5263 km²) where groundwater is developed (CGWB, 2013). Though Uttarakhand receives good rainfall during monsoons, due to hilly terrain of the state, water flows to the plain areas (Chauhan, 2010). Water scarcity is a major challenge for Uttarakhand and some areas of the state faces acute scarcity of drinking water (WBI and DEA, 2013). As per DES (2014), there is scarcity of drinking water in 02 villages and 7745 hamlets of the state. As per another report, 11 of the 13 districts in Uttarakhand face regular water shortage, particularly of drinking water (Chauhan, 2010). Sources of water in the mountains are usually at considerable distance from habitations and women spend 2-4 hours a day collecting and carrying water to and fro (Chauhan, 2010). As per WBI and DEA (2013), about 3-4 hours of time and labour is spent in collecting and carrying water by women in the areas facing water scarcity.

1.3.3. Agriculture

About 70% of the population is engaged in primary sector of Uttarakhand economy i.e. agriculture and allied activities (WMD, n.d.). Large areas under forest cover (65% of total geographical area) and 85% of the state's land as hilly result in utilization of only 14.02% of total land of the state for cultivation (WMD, n.d.; AD, n.d.). Small landholding (average landholding is around 0.68 ha in the hills and 1.77 ha in plains) and dependence on rain water for irrigation (about 55% of the cultivated land is rainfed) lead to poor agricultural productivity (WMD, n.d.; AD, n.d.). The subsistence nature of agriculture leads to low and

unstable incomes resulting in poverty and subsequent out-migration of male members from rural areas in search of employment (WMD, n.d.).

1.3.4. Tourism

Tourism (trade, hotels and restaurants) is one of the major economic activities of the state as it contributes 23% to the economy of Uttarakhand (DES, 2013). The state is known for its hill stations, pilgrimage, wild life (sanctuaries and national parks) and adventure sites. Some of its popular tourist destinations are: Gangotri, Yamunotri, Kedarnath, Badrinath, Mussoorie, Hardwar, Rishikesh, Lansdowne, Dhanaulti, Chamba, Auli, Pauri, Chopta, Chakrata, Nainital, Kausani, Almora, Ranikhet, Binsar, Mukteshwar, Jageshwar, Corbett Park and Bhimtal (UTDB, n.d.). In spite of so many tourist locations, only few locations such are popular among the tourists as others lack infrastructure facilities. For up-gradation of such locations, improvement in local infrastructure facilities (electricity, accommodation, roads and water supply) has been recommended (MoT, 2012).

1.3.5. Roads

About 40% of the villages in Uttarakhand are not connected by roads. In the state, 76% roads are maintained by Public Works Department and only 59% of them are all-weather surface roads (Planning Commission, 2009). In monsoon season, the road connectivity may deteriorate further making rural areas inaccessible.

1.4. Implications for Renewable Energy Applications in Uttarakhand

In earlier sections, characteristics and challenges of the state of Uttarakhand have been briefly presented. The characteristics may be used to infer about the utilization of renewable energy in the state. Table 1.13 presents the characteristics of Uttarakhand and its implications for renewable energy applications in Uttarakhand.

Characteristics of Uttarakhand	Implications
 17% of the rural households are unelectrified (ORGCC, n.d.) 20% unelectrified rural households in Uttarkashi, Almora, Champawat and Hardwar (ORGCC, n.d.). 107 un-electrified villages in Uttarakhand (CEA, 2015). 	Challenges regarding access to electricity in rural areas
• Monthly averaged daily energy (electricity) shortages ranging from 8% - 46% with an annual mean of 30% (UPCL, 2015).	 Power shortage in Uttarakhand Dependent on import of power through power exchanges and rostering.
• The state has a geographical area of 53,483 sq.km and about 65% of it is forest area (DES, 2014).	 Protected forests, steep hills and snowbound areas make construction of large power projects and grid electrification difficult and unviable.
 Region is predominantly hilly (85% of geographical area) with steep slopes (slope angle ≥ 20%) and widely scattered habitation (DES, 2014; MoEF, n.d.). 	 Because of scattered villages and lesser number of households per village, the villages may not have adequate demand for power to justify grid extension. Decentralized renewable energy systems (DRESs) may be used for electrification of rural areas.
 About 70% of the population is engaged in agriculture (WMD, n.d.). Small landholdings, subsistence agriculture, mainly rainfed agriculture due to scarcity of water (WMD, n.d.; AD, n.d.; WBI and DEA, 2013). Heavy rainfall during rainy season (1631 mm) but rainwater flows to plain areas because of hilly terrain (DES, 2014; Chauhan, 2010). 	 Scarcity of water (for irrigation and drinking) Scope for water harvesting

Table 1.13: Characteristics of Uttarakhand and implications for renewable energy applications in the state (continued	i)

Characteristics of Uttarakhand	Implications
• A number of perennial water streams in the state (GoU, 2008)	 Scope for small hydro power plants. However, sparsely populated and scattered villages may not justify SHP as it may involve power distribution.
• Average solar radiation availability (both GHI and DNI) in almost all districts of	• The state is suitable for solar energy applications.
 Uttarakhand is ≥5.00 kWh/m²/day (MNRE, n.d.; NASA, n.d.). Wind resource in Uttarakhand is not suitable for wind power generation (Lundquist et al., 2014). The state has 65% forest cover with predominantly rural population dependent on subsistence agriculture and availability of livestock at households is common (DES, 2014; ORGCC, n.d.; WMD, n.d.). 	 Wind energy systems not suitable for the state. Point towards availability of biomass and thus biomass based devices may be used
 Monthly mean minimum temperatures are < 20°C in hill districts for almost all months (NASA, n.d.). 	 Need for space and water heating. Solar water heaters may be used for water heating.
• The share of kerosene usage for lighting in rural households of the state is 14.53% (ORGCC, n.d.).	 Solar lighting options may replace kerosene usage for lighting.
• 1.22% of households in the state are using solar lighting devices (ORGCC, n.d.).	
• In rural areas of Chamoli and Champawat, solar lighting devices are used by more than 5% of households (ORGCC, n.d.).	
• Also, About 48.68% of the households in the state are using biomass as a fuel for cooking. In rural households of the state, the share is 63.29% (ORGCC, n.d.).	Scope for improved biomass cookstoves

Table 1.13: Characteristics of Uttarakhand and implications for renewable energy applications in the state (continued.)
--	---

Characteristics of Uttarakhand	Implications
 Agriculture, tourism, central and state government employment, and pensions are major sources of income (Planning Commission, 2009; DES, 2013). 36.5% of the population in the state is BPL and the share increases to 44% in the hill districts (DES, 2014). Monthly per capita expenditure on fuel and light (excluding conveyance) in rural and urban households of Uttarakhand are Rs 130.58 and Rs 140.50 respectively (NSSO, 2014). 	
 Large scale rural to urban migration in the state (ORGCC, n.d.; WMD, n.d.). The state is known for its hill stations, pilgrimage, wild life and adventure sites but only few locations are popular among tourists as others lack infrastructural facilities i.e. roads, energy and water supply (UTDB, n.d.; MoT, 2012). 	 Need for employment generation and development in rural areas Need for improvement in access and availability of energy (including electricity), roads and water supply.

From Table 1.13, it can be inferred that employment generation (especially in rural areas), improvement in access to energy, roads and water supply are the major challenging tasks before the state of Uttarakhand. Energy (including electricity) as a common input factor to almost all economic or development activities, is critical to the development of Uttarakhand. As inferences drawn in Table 1.13 suggest unsuitability of centralized energy options in several areas of Uttarakhand, solar and biomass based decentralized renewable energy systems (DRESs) emerge as appropriate options for improving the access to energy of households in the state.

1.5. Potential and Diffusion of DRESs in Uttarakhand

Prima-facie, characteristics of Uttarakhand indicate significant potential for DRESs (solar and biomass based) in the state. Different types of DRESs can be used for fulfilling appropriate energy demand. Table 1.14 presents resource-DRES-task matrix indicating the tasks that can be fulfilled by DRESs. The DRESs that have been disseminated in Uttarakhand include solar water heater, family size biogas plant, solar cooker, solar lantern, solar home system, solar dryer, solar pump and improved cookstove. Table 1.15 presents the reported potential and cumulative diffusion of DRESs in the state.

It is evident from Table 1.15 that for most of the DRESs, estimates of the potential is unavailable. In case of family size biogas plants, only 16535 plants have been installed against an estimated potential of 83000 indicating a wide gap between potential and diffusion (MNRE, 2014a). Similarly, only 3118 solar cookers have been installed (with an average of 3 cookers per school) under mid-day meal scheme whereas there are 17978 schools under the scheme in Uttarakhand (UREDA, 2011; UREDA, 2012; MHRD, 2013). Similar trend may be expected in the case of diffusion of other DRESs in Uttarakhand. Such wide gaps may be attributed to the barriers that impede the diffusion of DRESs. Hence, there is a need to assess and identify the barriers to the dissemination of DRES in

the state of Uttarakhand. Also, it is desired to estimate the utilization potential of DRESs and analyze the trend of diffusion of DRESs in the state of Uttarakhand.

1.6. Business Problem

From earlier sections, it can be inferred that despite having significant potential, dissemination of DRESs in Uttarakhand has been sluggish pointing toward existence of barriers. These barriers are hindering accelerated diffusion of DRESs in Uttarakhand resulting in opportunity losses for sustainable development.

Resource	DRES	Task(s) performed
Solar	Domestic solar water heating system	Water heating
	Solar home system	Electricity generation
	Solar lantern	Lighting
	Solar cooker (household/community)	Cooking
	Solar dryer (household/community)	Drying
	Space heating system	Space heating
	Solar PV pump	Water pumping
	Solar fence	Fencing
Biomass	Family size biogas plant	Cooking, lighting,
	Biogas engine	Electricity generation, mechanical
		work
	Improved cook-stove	Cooking
	Biomass gasifier	Electricity generation
Wind	Aero-generator	Electricity generation
	Wind-mill	Mechanical work
Hydro	Micro-hydel	Electricity generation
	Water-mill	Mechanical work

Table 1.14: Resource-DRES-Task matrix

Table 1.15: Potential and cumulative diffusion of DRESs in Uttarakhand (MNRE, 2014a;

DRES	Unit	Diffusion reported till 31.03.2014	Remarks
Solar water heater	liters per day	1814500	
Family size biogas plant	no.	16535	Except an estimated
Solar cookers (under mid-day meal scheme)	no.	3118	potential of 83000 for family size biogas plants,
Solar lanterns	no.	66964	estimates are unavailable for the potential of DRES
Solar home systems	no.	58830	in Uttarakhand.
Solar dryer, solar pump, improved cookstove	no.	Data unavailable	

UREDA, n.d., 2005, 2007, 2011a, 2012a)

1.7. Research Objective(s)

Discussions in earlier sections have indicated the following issues or research gaps:

- i. Unavailability of estimates for potential of DRESs in Uttarakhand
- Unavailability of information on barriers to the dissemination of DRESs in Uttarakhand

The above research gaps have been the motivation for this study. Based on the research gaps, appropriate research questions and research objectives have been framed. Figure presents the flow diagram representing the framing of objectives of the study from research gaps. The following are the research objectives of the study:

- i. To estimate the potential of utilization of DRESs in Uttarakhand with the factors affecting its value internalized in the approach used for estimation
- ii. To assess the time-trend of dissemination of DRESs in Uttarakand and to estimate the time required for the cumulative dissemination to reach their estimated utilization potential
- To identify and assess the barriers impeding the dissemination of DRESs in Uttarakhand

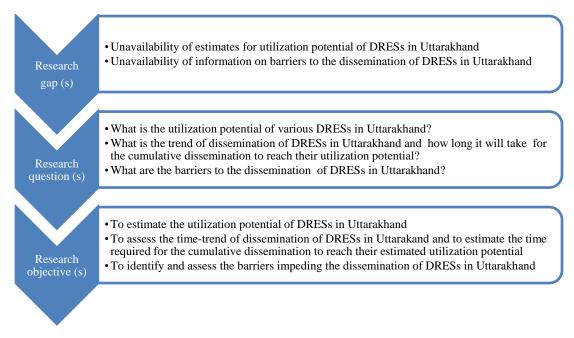


Figure 1.5: Framing research objectives from research gaps

1.8. Organization of the Thesis

The work presented in the thesis has been arranged in the following seven chapters:

- i. Chapter 1: Characteristics of Uttarakhand and its implications for renewable energy
- ii. Chapter 2: Review of barriers to the dissemination of DRESs
- iii. Chapter 3: Estimation of potential of DRESs in Uttarakhand
- iv. Chapter 4: Diffusion of innovation and time-trend of diffusion of DRESs in Uttarakhand
- v. Chapter 5: Assessment of barriers faced by DRES adopters and nonadopters in Uttarakhand
- vi. Chapter 6: Assessment of financial attractiveness of DRESs in Uttarakhand
- vii. Chapter 7: Conclusions and recommendations

CHAPTER 2

REVIEW OF BARRIERS TO THE DISSEMINATION OF DECENTRALIZED RENEWABLE ENERGY SYSTEMS

2.1. Introduction

In view of energy security and climate change concerns, governments and policymakers are promoting increased dissemination¹ of renewable energy technologies. Increased share of renewable energy in the overall energy mix of countries would help the cause of sustainable development. Renewable energy systems are broadly classified into two categories: i) grid-connected (centralized) renewable energy system; ii) decentralized (off-grid) renewable energy system (DRES). DRESs such as solar lantern, solar home system, family size biogas plants, improved cook stoves, etc. have been disseminated worldwide for improving access to energy of the rural households. DRES is also an appropriate option for electrification of remote households located in difficult terrains (islands and hills) that may not be technically and financially feasible through grid extension (Nouni et al., 2008; Chaudhuri, 2007). Large scale diffusion and utilization of relatively newer technologies such as DRES face barriers. These barriers may put DRES at technical, economic, regulatory or institutional disadvantage in comparison to conventional energy systems (Beck and Martinot, 2004). Sometimes, the barriers may have inter-linkages that can have cascading impact on the diffusion of DRES. For example, lack of skills for installation and after sales services is a technical barrier that is a result of inadequate training institutions which is an institutional barrier. Thus, in order to address skill related technical barrier, it is necessary to set up relevant institutions. Hence, to

¹ Some authors restrict the term 'diffusion' to the spontaneous unplanned spread of ideas or innovation and use the concept of 'dissemination' for diffusion that is directed and managed. However, several studies have used them interchangeably (Rogers, 2003). In this study, these terms have been used interchangeably.

accelerate the diffusion of DRES, it is vital to understand the barriers and their inter-linkages. This would enable the policymakers and the implementing agencies to formulate plans and implement them in a more effective manner.

Based on an extensive review of published literature on barriers and relevant aspects, this study is a modest attempt to identify the barriers to the diffusion of DRESs and classify them based on their characteristics. It also suggests remedial measures to overcome them for enhanced diffusion of DRESs.

2.2. Identification and Classification of Barriers to the Diffusion of DRESs

A barrier to the diffusion of DRES may be defined as a factor that negatively affects its adoption and subsequent utilization, hampering its widespread diffusion (Jarach, 1989). Barriers to DRESs may often include technical, economic, institutional, socio-cultural or environmental aspects. In this study, barriers pertinent to DRESs have been identified through a literature review of published articles. In addition, relevant research papers have been referred to appreciate the impact of barriers on the diffusion of various DRESs across different geographic regions of the world. Based on the literature review, the identified barriers have been classified under five broad categories depending on the characteristics of the barrier - technical, economic, institutional, socio-cultural and environmental (Table 2.1). The following sections present a discussion on the categories and subcategories of barriers along with recommended remedial measures to accelerate the diffusion of DRESs.

2.2.1. Technical Barriers

Technical or technological barriers to DRES generally include barriers associated with resource, technology and skill attributes of the system that limit full utilization of its theoretical potential (Mondal et al., 2010). Technical barrier has been widely reported as a critical barrier affecting diffusion of DRES (Jarach, 1989; Quadir et al., 1995; Rijal, 1986; Roessner, 1984; Agarwal, 1983;

Bakthavatsalam, 1999; Green, 1999; Jagadeesh, 2000; Oliver and Jackson, 1999; Barnett, 1990; Rijal, 1999; Bhatia, 1990; Painuly, 2001; Mirza et al. 2003; Pokharel, 2003; Reddy and Painuly, 2004; Green, 2004; Foxon et al., 2005; Pohekar et al., 2005; Patlitzianas et al., 2006; Owen, 2006; Pohekar and Ramachandran, 2006; Philibert, 2006; GNESD, 2007; Stangeland, 2007; Sahir and Qureshi, 2008; Srinivasan, 2008; Mirza et al., 2009; Nalan et al., 2009; Oikonomou et al., Hiremath et al., 2009; Purohit, 2009; Bhattacharya and Jana, 2009; Doukas et al., 2009; Pegels, 2010; Rao and Kishore, 2010; Wang and Chen, 2010; Martin and Rice, 2012; Krupa, 2012; Ahlborg and Hammar, 2011; Liu et al., 2013; Zhang et al., 2012; Allen et al., 2008). Technical barriers include subbarriers pertaining to the following: a) resource availability; b) technology – design, installation and performance; c) skill requirement for design and development, manufacturing, installation, operation and maintenance. A brief summary of the published literature reporting different aspects of technical barriers affecting the adoption of DRES is presented in the following paragraphs.

Barrier	Sub-barriers
Technical	Resource availability, technology - design, installation and performance, skill
	requirement for design and development, manufacturing, installation, operation
	and maintenance
Economic	Cost, market structure, energy pricing, incentives, purchasing power and
	spending priorities, financial issues, awareness and risk perception
Institutional	Policy and regulatory, infrastructure (institutions for research, design and after
	sales services), administrative
Socio-cultural	Societal structure, norms and value system, awareness and risk perception,
	behavioral or lifestyle issues
Environmental	Resources (land and water), pollution, aesthetics

Table 2.1: Classification of barriers to the diffusion of DRESs

2.2.1.1. Resource Availability

Renewable energy resources (particularly solar and wind) are intermittent and/or variable in nature. Other renewable energy sources such as biomass and hydro may be inadequate at times to support capacity utilization of respective technologies at economical levels. Because of this intermittency and/or inadequacy, resource availability has been cited widely as an important barrier (Green, 1999; Bhatia, 1990; Pokharel, 2003; Pohekar et al., 2005; Philibert, 2006; Nalan et al., 2009; Oikonomou et al., 2009; Martin and Rice, 2012; Krupa, 2012; Ahlborg and Hammar, 2011; Chandrasekar and Kandpal, 2007; Trainer, 1984; Joseph and Burton, 1990; Fthenakis et al., 2009; Adams et al., 2011; Kennedy and Basu, 2013). For example, Chandrasekar and Kandpal (2007) have concluded that lack of resource availability is an important barrier to the diffusion of DRES such as family size biogas plant, box type solar cooker, domestic solar water heater, and solar photovoltaic lantern in India. In Turkey, uncertainty with respect to solar resource availability is reported to be hampering the adoption of solar water heaters (Nalan et al., 2009). Similarly, resource availability issues such as seasonal fluctuation of wind have been reported as barriers to diffusion of wind installations in Dodecanese islands (Greece) (Oikonomou et al., 2009).

2.2.1.2. Technology – Design, Installation and Performance

Generally, solar, wind and biomass powered renewable energy technologies suffer from lower energy flux as compared to fossil fuel fired technologies (Nalan et al., 2009). Additionally, intermittent nature of renewable energy sources necessitates usage of energy storage devices to improve the energy dispatch ability of concerned RETs and this puts them at a disadvantage (Nalan et al., 2009; Oikonomou et al., 2009; Rao and Kishore, 2010; Martin and Rice, 2012; Trainer, 1984).

Several studies have cited inappropriateness of technology or poor design as a significant technical barrier to the adoption of DRES (Quadir et al., 1995; Pohekar et al., 2005; Zhang et al., 2012; Chandrasekar and Kandpal, 2007; Adams et al., 2011; Prasertsan and Sajjakulnukit, 2006; Rijal, 1986a; Junfeng et al., 2002; Zyadin et al., 2014; Srinivasan, 2006). For example, it has been reported that failures due to application of too complex designs in early projects, lack of standardization and poor reliability are significant barriers to wind energy development in Tamil Nadu and Andhra Pradesh, India (Jagadeesh, 2000). Likewise, with poor design as a technical barrier, wind turbines have had limited success in Tanzania (Kassenga, 1997). In case of dissemination of improved biomass cookstoves, Agarwal (1983) has listed inadequate satisfaction of perceived needs such as space heating, inflexibility of the stove with respect to number and size of pots, and need of careful maintenance as primary barriers. Roessner (1984) has cited faulty design and improper installation of residential solar water heaters as the barriers to their diffusion in USA.

Installation and maintenance issues with respect to DRESs have also been highlighted as barriers in several studies (Jarach, 1989; Green, 2004; Sidiras and Koukios, 2004). For example, frequent need for repair and maintenance of biogas plants and variation of biogas production with factors such as ambient temperature have reportedly been detrimental to its adoption in Nepal (Rijal, 1986). Likewise, need for regular cleaning of photovoltaic panels has been cited as a barrier to the performance of solar pumps located at arid zone in India (Pande et al., 2003).

Reliability of DRES has also been an issue of concern for its potential adopters. Lack of standards and codes and certification for DRESs and consequent poor quality/reliability of these systems are important technical barriers to its diffusion (Oliver and Jackson, 1999; Painuly, 2001; GNESD, 2007; Mirza et al., 2009; Zhang et al., 2012; Prasertsan and Sajjakulnukit, 2006; Kinab and Elkhoury, 2012; Kennedy and Basu, 2013a; Radulovic, 2005; Margolis and Zuboy, 2006; Ohunakin et al., 2014; Adhikari et al., 2008). As per Bhattacharya and Jana (2009), absence of quality control, non-functionality and low capacity utilization are the barriers affecting improved cook stoves, family size biogas plants and small hydropower plants in India respectively. Also, low efficiency or quality of some renewable energy technologies and its insignificant utilization has been detrimental to its diffusion (Lidula et al., 2007). For example, solar dryers are reportedly facing the problem of low capacity utilization in India (Kumar and Kandpal, 2005). Low reliability of solar buildings in Kenya and the dependence of building designers on foreign designs have also been cited as barriers to diffusion of solar buildings in the country (Njuguna, 1997). On similar lines, Dorf (1984) has mentioned of the poor reliability and shorter expected life as the barriers to market development of solar water heating and space heating systems in USA. Also, past failures and poor reliability of DRESs such as solar thermal systems are reportedly discouraging its adoption among masses (Philibert, 2006).

2.2.1.3. Skill Requirement for Design and Development, Manufacturing, Installation, Operation and Maintenance

Availability of skilled manpower is critical to the successful dissemination of renewable energy technologies (Joseph and Burton, 1990). Lack of availability of skilled manpower for design and development, manufacturing, installation, operation and maintenance services has been often cited as a barrier to the diffusion of DRES (Mondal et al., 2010; Quadir et al., 1995; Roessner, 1984; Painuly, 2001; Foxon et al., 2005; Patlitzianas et al., 2006; Philibert, 2006; GNESD, 2007; Mirza et al., 2009; Martin and Rice, 2012; Krupa, 2012; Ahlborg and Hammar, 2011; Liu et al., 2013; Zhang et al., 2012; Zyadin et al., 2014; Kassenga, 1997; Kennedy and Basu, 2013a; Margolis and Zuboy, 2006; Ohunakin et al., 2014; Adhikari et al., 2008; Lidula et al., 2007; Al-Badi et al., 2009; Mezher et al., 2012; Balcombe et al., 2013; McCormick and Kaberger,

2007; Negro et al., 2012; Huacuz, 2001; Ruble and El-Khoury, 2013; Martinot, 1998). Beck and Martinot (2004) have discussed the negative impact of dearth of skilled manpower for installation, operation and maintenance on the diffusion of DRES. Similarly, lack of experience and awareness in technology and management of DRES has reportedly acted as barriers to its diffusion in ASEAN (Lidula et al., 2007). Lack of trained technicians has been reportedly hindering the growth of wind installations in Turkey (Nalan et al., 2009). For diffusion of DRES in Lebanon, non-existence of local manufacturers has been reported as a barrier (Kinab and Elkhoury, 2012). Green (1999) has deliberated that, in cross cultural technology transfer of sustainable energy systems it is important to address knowledge and skill barriers. Communication and training barriers due to language difference between field staff and local people have reportedly resulted in poor transfer of skills leading to the failure of solar battery charging programmes in Northern Thailand (Green, 2004). In addition, lack of knowledge of renewable energy technology operation and management has also been listed as a barrier by few studies (Bhatia, 1990; Doukas et al., 2009; Singh and Sooch, 2004).

2.2.1.4. Potential Remedial Measures

Several remedial measures have been suggested by researchers to overcome technical barriers to the diffusion of DRESs. Table 2.2 presents some of the suggested remedial measures to overcome technical barriers. In addition, appropriate responsibility centres that are expected to support and/or implement the suggested remedial measures are also listed in Table 2.2. It may be noted from Table 2.2 that research and development (R&D) institutions and academic institutions (universities and colleges) have major roles to play in overcoming technical barriers. Thus, such institutions need to be supported by both government and private sector to promote DRESs.

Apart from the frequently cited general remedial measures listed in Table 2.2, there are few other case-specific measures that have been recommended to overcome technical barriers. To overcome intermittency problem, Fthenakis et al. (2009) has recommended integrating photovoltaic with compressed air energy storage and increasing the thermal storage capability in concentrated solar power. Utilization of solar dryers at community level has been recommended to offset the problem of low capacity utilization associated with solar dryers (Kumar and Kandpal, 2005). Extensive testing of solar photovoltaic pump under similar climatic conditions has been advocated to ensure their reliability for drip irrigation in arid zones (Pande et al., 2003).

It may be noted that most of the remedial measures suggested to overcome technical barriers to the diffusion of DRESs point towards the establishment of appropriate institutional set-ups for: a) resource assessment, b) research and development, c) capacity building, and d) quality control and standardization.

2.2.2. Economic Barriers

Diffusion of DRESs face economic and/or financial barriers (Jarach, 1989; Mondal et al., 2010; Quadir et al., 1995; Agarwal, 1983; Green, 1999; Jagadeesh, 2000; Oliver and Jackson, 1999; Rijal, 1999; Painuly, 2001; Pokharel, 2003; Reddy and Painuly, 2004; Green, 2004; Foxon et al., 2005; Pohekar and Ramachandran, 2006; Philibert, 2006; GNESD, 2007; Stangeland, 2007; Sahir and Qureshi, 2008; Mirza et al., 2009; Nalan et al., 2009; Oikonomou et al., 2009; Hiremath et al., 2009; Purohit, 2009; Doukas et al., 2009; Rao and Kishore, 2010; Wang and Chen, 2010; Chandrasekar and Kandpal, 2007; Adams et al., 2011; Kennedy and Basu, 2013; Al-Badi et al., 2009; McCormick and Kaberger, 2007; Martinot, 1998; Al-Badi et al., 2011; Rosch and Kaltschmitt, 1999). As per Chandrasekar and Kandpal (2007), financial and economic viability and awareness barriers are important economic barriers affecting the promotion of family size biogas plants, improved biomass cookstoves, box type solar cookers,

domestic solar water heaters and solar photovoltaic lanterns. Several other research papers have discussed the following economic barriers - subsidies for competing conventional fuels, high initial capital cost, difficulty of fuel price risk assessment, high transaction costs of renewable energy projects, non-inclusion of environmental externalities in the cost of conventional energy, lack of access to capital and inadequate information (Beck and Martinot, 2004; Painuly, 2001; Patlitzianas et al., 2006; Owen, 2006; Mirza et al., 2009; Nalan et al., 2009; Mezher et al., 2012). Another study has listed high investment cost, long payback period, lack of purchasing power, uncertainty about benefits and availability of cheaper alternative fuels as economic barriers affecting the diffusion of family size biogas plants and solar cookers (Quadir et al., 1995). As per Mwirigi et al. (2009), high initial investment cost, negative image caused by failed biogas plants, limited private sector participation, lack of money and lack of awareness are the economic barriers hindering the adoption of biogas plants by farmers in Kenya. Lack of private sector investments due to profit uncertainties has also been reported as a critical economic barrier (Zyadin et al., 2014). It has also been argued that availability of highly subsidized conventional energy as well as inadequate fiscal incentives to DRES users are preventing the diffusion of DRESs in Oman (Al-Badi et al., 2009; Al-Badi et al., 2011). Economic barriers can be cost related or market related and further discussion in this section is presented under these two categories.

Sub-barrier	Remedial	Responsibility	Relevant reference(s)
	measure(s)	center(s)	
Resource	Accurate resource	Institutions for	Mondal et al., 2010; Quadir et al.,
availability	assessment	resource	1995; Jagadeesh, 2000; Liu et al.,
		assessment	2013; Chandrasekar and Kandpal,
			2007; Kinab and Elkhoury, 2012;
			Perlack et al., 1990.
Technology -	Research and	R&D	Mondal et al., 2010; Quadir et al.,
design,	Development	institutions	1995; Jagadeesh, 2000;
installation and	(R&D)		Mirza et al., 2003; Foxon et al.,
performance			2005; Philibert, 2006; Martin and
			Rice, 2012; Junfeng et al., 2002;
			Zyadin et al., 2014; Kinab and
			Elkhoury, 2012; Al-Badi et al.,
			2009; Perlack et al., 1990.
	International	R&D	Mirza et al., 2003; Patlitzianas et al.,
	cooperation	institutions,	2006; Mirza et al., 2009;
		government	Bhattacharya and Jana, 2009;
		organizations,	Pegels, 2010; Liu et al., 2013;
		academic	Kassenga, 1997; Lidula et al., 2007;
		institutions	Martinot, 1998.
	Indigenization of	R&D	Mondal et al., 2010; Quadir et al.,
	technology by	institutions	1995; Agarwal, 1983; Green, 1999;
	studying local		Jagadeesh, 2000; Barnett, 1990;
	conditions and		Pohekar, 2005; Mirza et al., 2009;
	involving all		Rijal, 1986a; Perlack et al., 1990.
	stakeholders during		
	product		
	development		
	Training for skill	R&D	Mondal et al., 2010; Painuly, 2001;
	related to product	institutions,	Mirza et al., 2003; Foxon et al.,
	development	academic	2005; Philibert, 2006; GNESD,
		institutions	2007; Mirza et al., 2009; Martin and
			Rice, 2012; Al-Badi et al., 2009;

Table 2.2: Potential remedial measures suggested to overcome the sub-barriers of technical barrier

Sub-barrier	(continued) <i>Remedial</i>	Responsibility	<i>Relevant reference(s)</i>
Sub-Durrier		× *	Kelevani rejerence(s)
	measure(s)	center(s)	
			Martinot, 1998; Perlack et al., 1990.
	Introduction of	R&D	Mondal et al., 2010; Painuly, 2001;
	standards and	institutions,	Pokharel, 2003; GNESD, 2007;
	regulations during	quality	Mirza et al., 2009; Junfeng et al.,
	product	assurance and	2002; Sidiras and Koukios, 2004;
	development	quality control	Ohunakin et al., 2014; Dorf, 1984;
		institutions	Ruble and El-Khoury, 2013;
			Wamukonya, 2007.
	Deployment of	R&D	Barnett, 1990; Nalan et al., 2009.
	mature, reliable,	institutions	
	easy to maintain and		
	long lasting		
	technologies		
Skill	Education and	R&D	Beck and Martinot, 2004; Pokharel,
requirement for	training	institutions,	2003; Green, 2004; Krupa, 2012;
design and		NGOs,	Zhang et al., 2012; Prasertsan and
development,		academic	Sajjakulnukit, 2006; Junfeng et al.,
manufacturing,		institutions	2002; Zyadin et al., 2014; Kinab
installation,			and Elkhoury, 2012; Kennedy and
operation and			Basu, 2013a; Radulovic, 2005;
maintenance			Ohunakin et al., 2014; Adhikari et
			al., 2008; Njuguna, 1997;
			McCormick and Kaberger, 2007;
			Negro et al., 2012; Perlack et al.,
			1990; Wamukonya, 2007.
			1990; wamukonya, 2007.

Table 2.2: Potential remedial measures suggested to overcome the sub-barriers of technical barrier (continued...)

2.2.2.1. Cost

DRES often suffer from high upfront cost (Beck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Quadir et al., 1995; Rijal, 1986; Green, 1999; Bhatia, 1990; Painuly, 2001; Mirza et al., 2003; Pokharel, 2003; Foxon et al., 2005; Patlitzianas et al., 2006; Philibert, 2006; GNESD, 2007; Mirza et al., 2009; Nalan

et al., 2009; Bhattacharya and Jana, 2009; Doukas et al., 2009; Pegels, 2010; Rao and Kishore, 2010; Martin and Rice, 2012; Ahlborg and Hammar, 2011; Trainer, 1984; Joseph and Burton, 1990; Fthenakis et al., 2009; Kennedy and Basu, 2013; Prasertsan and Sajjakulnukit, 2006; Junfeng et al., 2002; Zyadin et al., 2014; Sidiras and Koukios, 2004; Kinab and Elkhoury, 2012; Margolis and Zuboy, 2006; Ohunakin et al., 2014; Adhikari et al., 2008; Lidula et al., 2007; Njuguna, 1997; Dorf, 1984; Mezher et al., 2012; Balcombe et al., 2013; Huacuz, 2001; Ruble and El-Khoury, 2013; Perlack et al., 1990; Mwirigi et al., 2009; Michalena and Angeon, 2009; Mills and Schleich, 2009; Sagie et al., 2001; Boyle, 1994; Arjunan et al., 2009; Jager-Waldau, 2007; Martinot, 1999; Finney et al., 2012). For example, it has been reported that cooking technologies based on biogas and solar energy have high initial cost that has limited their diffusion (Pohekar et al., 2005). Kassenga (1997) has mentioned that the cost of biogas plants is unaffordable for majority of poor people in rural areas. Similarly, high cost of solar water heaters in India has been pointed as a barrier to their diffusion (Bhattacharya and Jana, 2009). High cost has also been reported as a major barrier to the diffusion of solar PV systems (Oliver and Jackson, 1999; Pokharel, 2003; Purohit, 2009; Dorf, 1984; Wamukonya, 2007; Purohit and Michaelowa, 2008; Pillai and Banerjee, 2009; Muntasser et al., 2000). For example, as per experiences of a renewable energy company named Grameen Shakti in Bangladesh, high cost of solar PV module has been the main barrier to Bangladesh's PV program (Barua, 2001).

In case of biomass gasifiers, high fuel cost, operation and maintenance costs, and taxes and insurance costs have been reported as barriers (Jarach, 1989). Additional burden on villagers due to operation and maintenance cost of PV battery charging stations for village electrification in Thailand has been cited as a barrier (Green, 2004). High operation and maintenance cost due to lack of technically skilled personnel has also been cited as a barrier for the diffusion of DRESs in Nigeria (Ohunakin et al., 2014). Similarly, few other studies have also

reported high maintenance cost as a barrier (Zhang et al., 2012; Kennedy and Basu, 2013; Balcombe et al., 2013).

Often, smaller size of DRES projects lead to high transaction costs (cost incurred in various approvals, regulatory and administrative procedures) and the same has been reported as a barrier (Beck and martinet, 2004; Jagadeesh, 2000; Painuly, 2001; Patlitzianas et al., 2006; Owen, 2006; Mirza et al., 2009; Wang and Chen, 2010; Ahlborg and Hammar, 2011; Junfeng et al., 2002; Ohunakin et al., 2014; Mezher et al., 2012; Muntasser et al., 2000). For example, in Mexico, DRES projects have faced high project development cost as a barrier since these projects are typically smaller in size compared to its conventional counterparts (Huacuz, 2001). Similarly, high transaction cost has been cited by Srinivasan (Srinivasan, 2008) as a barrier to the utilization of domestic biogas plants. Solar PV systems are also reportedly suffering from high transaction costs in terms of sales, installation, etc., due to lack of conducive and enabling investment policies and a small market size (Muntasser et al., 2000). In addition, lack of awareness among customers and dealing with multiple stakeholders increases transaction costs for solar PV system projects (Radulovic, 2005). For bioenergy in United Kingdom, uncertain development and operation cost has been reported as a significant barrier (Adams et al., 2011).

2.2.2.2. Market

In comparison to conventional technologies, DRES has been facing economic

barriers due to existing market structure and its policies that favor conventional energy technologies through subsidies and other incentives.

2.2.2.2.1. Market Structure

Lack of competitiveness of DRES in comparison to conventional energy technologies in current market scenario is an important barrier (Jarach, 1989). Also, current market is reportedly biased against DRES and favors established

technologies such as large scale fossil fired power plants (van der Gaast et al., 2009). Market related barriers have been highlighted by various studies (Jagadeesh, 2000; Painuly, 2001; Reddy and Painuly, 2004; Owen, 2006; Stangeland, 2007; Mirza et al., 2009; Oikonomou et al., 2009; Pegels, 2010; Ahlborg and Hammar, 2011; Adams et al., 2011; Junfeng et al., 2002; Zyadin et al., 2014; Mezher et al., 2012; Negro et al., 2012; Martinot, 1998; Perlack et al., 1990; Wamukonya, 2007). Lack of competition, trade barriers and inadequate information are the factors responsible for market barriers with respect to diffusion of DRES (Verbruggen et al., 2010). For example, state ownership of energy related enterprises has reportedly created market barriers in Thailand for the diffusion of DRES (Adhikari et al., 2008). Similarly, distortions in energy market are reported as one of the significant barriers to diffusion of DRES in India (Bakthavatsalam, 1999). Distortions in energy market are a result of policies that favor conventional technologies through various incentives (subsidies, tax rebates, etc) and discourage DRES utilization through trade barriers and noninternalization of externalities (Painuly, 2001). Small size of DRES market and subsequent lack of economies of scale has also been cited as an economic barrier (Mondal et al., 2010; Roessner, 1984; Painuly, 2001). In addition, Pillai and Banerjee (2009) have reported that 100% accelerated depreciation in the first year, capital subsidies and tax incentives for wind installations created market distortions in India that led to siting of wind turbines at sites with poor wind resource leading to project failures.

2.2.2.2.2. Fuel/Energy Pricing

Pricing and affordability issues reportedly reflect as financial barriers to the adoption of DRES (Pokharel, 2003). High cost of electricity from DRES for rural electrification is considered as an impediment to the diffusion of DRES (Liu et al., 2013; Puri, 2006). Failure to take into account all cost and benefits (particularly environment and health related) associated with both conventional

energy and renewable energy is another barrier (Margolis and Zuboy, 2006). In addition, subsidies to fossil fuels and non-internalization of externalities in the energy cost are significant barriers impeding the diffusion of DRES (Beck and Martinot, 2004; Painuly, 2001; Patlitzianas et al., 2006; Philibert, 2006; Mirza et al., 2009; Oikonomou et al., 2009; Mezher et al., 2012; Huacuz, 2001; Boyle, 1994]. Owen (2006) has cited uncompetitive market price of renewable energy due to its lack of economies of scale and price distortion as a result of subsidies to its competitors (conventional energy sources) as barriers to its diffusion.

Subsidized conventional energy sources create market distortions favoring conventional energy sources (Bhatia, 1990; Ohunakin et al., 2014; Lidula et al., 2007; McCormick and Kaberger, 2007; Ruble and El-Khoury, 2013; Perlack et al., 1990; Martinot, 1999). For example, subsidies to oil and gas have been considered as a barrier to active solar systems for water or space heating in USA (Roessner, 1984; Dorf, 1984). Likewise, subsidies for conventional electricity sources have created a distorted market for solar PV discouraging its usage (Oliver and Jackson, 1999; Muntasser et al., 2000). In the state of Punjab in India, solar PV pumps have been unfairly put against pumps that operate on free electricity or subsidized diesel (Radulovic, 2005).

Non-inclusion of externalities in the cost of energy from fossil fuels is reported to have created imperfect market hindering the diffusion of DRES on large scale (Stangeland, 2007; McCormick and Kaberger, 2007; Sagie et al., 2001). Consequent availability of cheaper but less sustainable fossil fuel derived energy options has put renewable energy at disadvantage (Doukas et al., 2009). For example, abundance of fossil fuels and cheap electricity has been considered as a significant barrier to renewable energy in Australia (Martin and Rice, 2012). Likewise, easy availability of fuelwood at zero private cost has been cited as a barrier to the utilization of biogas in Nepal (Rijal, 1986).

Reportedly, non-monetary benefits such as time savings or reduction in consumption of freely available firewood are not motivating the potential user enough to adopt DRES such as a family type biogas plant (Barnett, 1990). Also, non-monetary benefits may not be considered for adoption of improved cook stoves in developing countries, especially where adoption decisions are taken by men whereas cooking is performed by women (Agarwal, 1983). Moreover, it is not easy to estimate future price of fossil fuels due to change in domestic and international prices. The difficulty of fuel price risk assessment (due to risk associated with fluctuation of future fossil fuel prices) has also been considered as a barrier to the development of DRES (Beck and Martinot, 2004; Mezher et al., 2012).

2.2.2.3. Incentives/Taxes/Duties

Government may support the diffusion of DRESs through incentives such as capital subidy, soft loan, carbon credit, etc. Also, reduction or waiver of taxes and duties on DRESs and associated projects may help the dissemination of DRESs. However, DRESs often receive inadequate incentives to promote its adoption among its potential users. Inadequate incentives to DRES users have been considered as a barrier to its diffusion (Oliver and Jackson, 1999; Liu et al., 2013; Adhikari et al., 2008; Lidula et al., 2007; Al-Badi et al., 2011). In Australia, dearth of incentives for renewable energy has been cited as a barrier (Martin and Rice, 2012). Similarly, lack of incentives to wind installations in Greece has been cited as a major barrier to its diffusion (Oikonomou et al., 2009). Conventional power generation technologies have been reaping the benefits of tariff support, tax holidays and other conducive policies since decades and this gives them significant edge over solar PV in the absence of conducive renewable energy policies in developing countries (Muntasser et al., 2000). Painuly (2001) has cited taxes on DRES as barriers that lead to market distortions. In addition, distortions in tariff policies on imported equipments are reportedly retarding the

growth of DRES (Perlack et al., 1990). For example, import duty on solar PV systems has further worsened its competitiveness (Radulovic, 2005).

2.2.2.2.4. Purchasing Power and Spending Priorities

Poor purchasing power of potential users has been a significant hurdle to the diffusion of biogas, biomass and solar energy based cooking systems (Quadir et al., 1995; Pohekar et al., 2005). Poverty or affordability has been reported as a barrier to the promotion of DRES (Ahlborg and Hammar, 2011; Adhikari et al; 2008). Diffusion of solar water heating systems is also reported to be adversely affected by lack of purchasing power of potential households (Srinivasan, 2006; Ruble and El-Khoury, 2013). Similarly, low purchasing power of households due to poverty has been preventing usage of solar home systems in un-electrified areas of rural Bangladesh (Barua, 2001) and other countries (Radulovic, 2005). Other spending priority of households in Greece is also reported as a barrier to the diffusion of solar domestic hot water system in the country (Sidiras and Koukios, 2004).

2.2.2.2.5. Financial Issues

Lack of access to credit facilities has been widely reported as a critical barrier to the diffusion of DRESs (Beck and Martinot, 2004; Mondal et al., 2010; Quadir et al., 1995; Bhatia, 1990; Painuly, 2001; Patlitzianas et al., 2006; Owen, 2006; Mirza et al., 2009; Nalan et al., 2009; Doukas et al., 2009; Pegels, 2010; Martin and Rice, 2012; Krupa, 2012; Ahlborg and Hammar, 2011; Junfeng et al., 2002; Zyadin, 2014; Radulovic, 2005; Margolis and Zuboy, 2006; Lidula et al., 2007; Mezher et al., 2012; Ruble and El-Khoury, 2013; Martinot, 1998; Mwirigi et al., 2009). For example, limited access to financial resources and high cost of finance are preventing commercialization of DRES in India (Bakthavatsalam, 1999). Similarly, difficulties with financing and insuring biomass based projects in Europe have been reported as a barrier to their successful diffusion in the region

(Rosch and Kaltschmitt, 1999). As many of the potential users of improved cook stoves in rural areas of developing countries are very poor, need for access to subsidized credit has been stressed (Agarwal, 1983). Limited access to affordable credit facilities is also reported as a barrier to solar PV diffusion as it prevents entry of private sector in the industry (Oliver and Jackson, 1999; Muntasser et al., 2000). Lack of long-term financing and high interest rate for capital are important barriers to the diffusion of DRESs (Martinot, 1999; Painuly, 2001; Dorf, 1984). Lack of investment protection has also been cited as a barrier (Doukas et al., 2009). Moreover, lack of supportive investment climate in a country is also reported as a barrier as it may affect the growth of DRES industry in the country (Adhikari et al., 2008). Quadir et al. (1995) has cited long economic payback period as a barrier to the dissemination of biogas plants and solar cookers. Long payback period of DRES projects has also been cited as a barrier by several other studies (Painuly, 2001; Mirza et al., 2009; Zhang et al., 2012; Sidiras and Koukios, 2004; Kennedy and Basu, 2013a; Dorf, 1984; Finney et al., 2012).

2.2.2.2.6. Awareness and Risk Perception

Awareness among various stakeholders is a very important requirement for effective functioning of a market or economy. Lack of information has been cited in many studies as a barrier to the diffusion of DRES (Painuly, 2001; Owen, 2006; Srinivasan, 2008; Mirza et al., 2009; Martin and Rice, 2012; Allen et al., 2008; Kennedy and Basu, 2013; Kennedy and Basu, 2013a; Ohunakin et al., 2014; Balcombe et al., 2013; Ruble and El-Khoury, 2013; Rebane and Barham, 2011). For example, in the case of family size biogas plants in Kenya, lack of information is rated one of the most critical barrier affecting their adoption among the farmers (Mwirigi et al., 2009). On similar lines, Foxon et al. (2005) have mentioned that innovation systems for renewable energy technologies in United Kingdom are suffering due to lack of exchange of information among various stakeholders.

Perception of financial or investment risk is another challenge to the diffusion of DRESs (Owen, 2006; Mirza et al., 2009; Adams et al., 2011; Prasertsan and Sajjakulnukit, 2006; McCormick and Kaberger, 2007; Perlack et al., 1990; Martinot, 1999; Finney et al., 2012). In developing countries, public has general perception that new technologies such as DRESs are costlier compared to its conventional counterparts (van der Gaast et al., 2009). Increased risk perception regarding the performance and durability of DRESs results in higher desired rate of return on investment leading to less capital availability for DRES projects (Beck and Martinot, 2004).

2.2.2.3. Potential Remedial Measures

Generally, most of the renewable energy policies attempt to address economic barriers (Beck and Martinot, 2004). Table 2.3 presents some of the suggested remedial measures to overcome the sub-barriers under economic barrier category. As indicated in Table 2.3, role of institutions including DRES related policymaking and implementation agency, R&D institutions, banks, NGOs and academic institutions is critical to surmount cost and market barriers. Besides supporting R&D for cost reduction, efforts should be made towards the development of a conducive market for DRESs through appropriate policy measures.

In addition to the generic broad based remedial measures listed in Table 2.3, there are few other case-specific measures that have been reportedly suggested to overcome economic barriers to DRESs. For promotion of alternative energy projects in developing countries, it has been recommended that the projects be designed to have low cost and short payback periods. Through a discussion on commercialization of solar technology in USA, Roessner (1984) has recommended matching of government's commercialization strategy with the stage of evolution of the industry. Need for long-term fiscal incentives has also been stressed (Martin and Rice, 2012). Also, rationalization of subsidies has been

recommended as large state subsidies in Thailand towards solar battery charging programmes for 15 years have reportedly destroyed market for private companies (Green, 2004). Developing PV schemes that prevents subsidy leakages to wealthy farmers has been recommended to improve diffusion of PV in Indian agricultural sector (Radulovic, 2005). Moreover, appropriate financial funding depending upon the relative maturity of solar water heating industry has also been recommended (Srinivasan, 2006). Local credit schemes need to be set up

Sub-barrier	Remedial measure (s)	Responsibility	Relevant reference(s)
		center(s)	
Cost	Incentives to DRES	DRES related	Beck and Martinot, 2004; Jarach,
	users or consumers	policymaking	1989; Rijal, 1986; Oliver and
	(subsidy, tax rebate)	and	Jackson, 1999; Bhatia, 1990;
		implementation	Painuly, 2001; Mirza et al., 2003;
		agency	Reddy and Painuly, 2004; Owen,
			2006; Philibert, 2006; GNESD,
			2007; Stangeland, 2007;
			Oikonomou et al., 2009; Martin
			and Rice, 2012; Krupa, 2012;
			Ahlborg and Hammar, 2011; Liu et
			al., 2013; Zhang et al., 2012;
			Chandrasekar and Kandpal, 2007;
			Joseph and Burton, 1990; Adams
			et al., 2011; Kassenga, 1997;
			Sidiras and Koukios, 2004; Kinab
			and Elkhoury, 2012; Ohunakin et
			al., 2014; Njuguna, 1997; Dorf,
			1984; Al-Badi et al., 2009; Mezher
			et al., 2012; Balcombe et al., 2013;
			Ruble and El-Khoury, 2013;
			Perlack et al., 1990; Wamukonya,
			2007; Al-Badi et al., 2011; Mills

Table 2.3: Potential remedial measures suggested to overcome the sub-barriers of economic barrier

Sub-barrier Remedial measure (s) center(s) Responsibility center(s) Relevant reference(s) and Schleich, 2009; Boyle, 1994; Jager-Waldau, 2007; Purohit and Michaelowa, 2008; Muntasser et al., 2000; Verbruggen et al., 2010 and Schleich, 2009; Boyle, 1994; Jager-Waldau, 2007; Purohit and Michaelowa, 2008; Muntasser et al., 2000; Verbruggen et al., 2010 R&D for cost reduction R&D institutions Rijal, 1986; Jagadeesh, 2000; Liu et al., 2013; Fthenakis et al., 2009; Boyle, 1994; Pillai and Banerjee, 2009 Funds for R&D on DRES DRES related policymaking and and enercy Jagadeesh, 2000; Mirza et al., 2003; Zyadin et al., 2014; Kinab and Elkhoury, 2012; Lidula et al., 2007; Ruble and El-Khoury, 2013; Boyle, 1994 Reduction in transaction effect) DRES related gency agency Junfeng et al., 2002; Boyle, 1994; Verbruggen et al., 2010 Market Innovative financing grants, revolving fund, fee for service delivery model) DRES related policymaking agency, banks, energy service companies Beck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Mirza et al., 2001; Mirza et al., 2003; Reddy and Painuly, 2001; Mirza et al., 2003; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle, 1994		rrier (continued)	Dognough 11:	Delay ant notonon a -(-)
Market Innovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model) DRES schemes (soft loans, grants, revolving fund, fee for service delivery model) DRE	Sub-barrier	Remedial measure (s)		Relevant reference(s)
Market Innovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model) DRES policymaking and agency Jager-Waldau, 2007; Purohit and Michaelowa, 2008; Muntasser et al., 2000; Verbruggen et al., 2010 R&D for cost reduction R&D institutions reduction R&D institutions reduction Rijal, 1986; Jagadeesh, 2000; Liu et al., 2013; Fthenakis et al., 2009; Boyle, 1994; Pillai and Banerjee, 2009 Funds for R&D on DRES DRES related policymaking and agency Jagadeesh, 2000; Mirza et al., 2007; Ruble and El-Khoury, 2013; Boyle, 1994 Reduction in transaction cost (learning by doing effect) DRES related implementation agency and other relevant government agencies Junfeng et al., 2002; Boyle, 1994; Verbruggen et al., 2010 Market Innovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model) DRES related and implementation agency, banks, energy service companies Beck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Mirza et al., 2001; Mirza et al., 2001; Mirza et al., 2001; Mirza et al., 2003; Kennedy and Basu, 2013; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,			center(s)	
Michaelowa, 2008; Muntasser et al., 2010; Verbruggen et al., 2010 R&D for cost reduction R&D institutions Rijal, 1986; Jagadeesh, 2000; Liu et al., 2013; Pthenakis et al., 2009; Boyle, 1994; Pillai and Banerjee, 2009 Funds for R&D on DRES DRES related policymaking and implementation agency Jagadeesh, 2000; Mirza et al., 2003; Zyadin et al., 2014; Kinab and Elkhoury, 2012; Lidula et al., 2007; Ruble and El-Khoury, 2013; Boyle, 1994 Reduction in transaction effect) DRES related implementation agency and other relevant government agencies Junfeng et al., 2002; Boyle, 1994; Verbruggen et al., 2010 Market Innovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model) DRES related and implementation agency, banks, energy service companies Beck and Martinot, 2004; Jarach, Jagadeesh, 2000; Oliver and Jackson, 1999; Bhatia, 1990; Wariza et al., 2001; Mirza et al., 2001; Mirza et al., 2003; Chandrasekar and Kandpal, 2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2001; Mirza et al				and Schleich, 2009; Boyle, 1994;
R&D for cost reductionR&D institutionsRijal, 1986; Jagadeesh, 2000; Liu et al., 2013; Fthenakis et al., 2009; Boyle, 1994; Pillai and Banerjee, 2009Funds for R&D on DRESDRES related policymaking and and and Elkhoury, 2012; Lidula et al., 2007; Ruble and El-Khoury, 2013; Boyle, 1994Reduction in transaction cost (learning by doing effect)DRES related agency and other relevant government agenciesMarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRES related and and and and agency banks, energy service companiesBeck and Martinot, 2004; Jarach, Jagadeesh, 2000; Oliver and Jagadeesh, 2000; Oliver and Jagadeesh, 2000; Oliver and Jackson, 1999; Bhatia, 1990; model)MarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRES related policymaking and agency, banks, energy service companiesBeck and Martinot, 2004; Jarach, Jagadeesh, 2000; Oliver and Jackson, 1999; Bhatia, 1990; Mariza et al., 2001; Mariza et al., 2003; GinesD, 2007; Mirza et al., 2003; Kennedy and Basu, 2013; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,				Jager-Waldau, 2007; Purohit and
R&D for cost reduction R&D institutions Rijal, 1986; Jagadeesh, 2000; Liu et al., 2013; Fthenakis et al., 2009; Boyle, 1994; Pillai and Banerjee, 2009 Funds for R&D on DRES DRES related policymaking and implementation agency Jagadeesh, 2000; Mirza et al., 2003; Zyadin et al., 2014; Kinab and Elkhoury, 2012; Lidula et al., 2007; Ruble and El-Khoury, 2013; Boyle, 1994 Reduction in transaction effect) DRES related gency and other relevant government agencies Junfeng et al., 2002; Boyle, 1994; Verbruggen et al., 2010 Market Innovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model) DRES related policymaking and implementation agency, banks, energy service companies Beck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Mirza et al., 2001; Mirza et al., 2003; Reddy and Painuly, 2004; Owen, 2006; GNESD, 2007; Mirza et al., 2002; Kennedy and Basu, 2013; Lidula et al., 2007; Junfeng et al., 2002; Kennedy and Basu, 2013; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,				Michaelowa, 2008; Muntasser et
reductionet al., 2013; Fthenakis et al., 2009; Boyle, 1994; Pillai and Banerjee, 2009Funds for R&D on DRESDRES related policymaking and and implementation agencyJagadeesh, 2000; Mirza et al., 2003; Zyadin et al., 2014; Kinab and Elkhoury, 2012; Lidula et al., 2007; Ruble and El-Khoury, 2013; Boyle, 1994Reduction in transaction cost (learning by doing effect)DRES related implementation agency and other relevant government agenciesJunfeng et al., 2002; Boyle, 1994; Verbruggen et al., 2010MarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRES related implementation agency, banks, energy service companiesBeck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Jagadeesh, 2000; Oliver and Jackson, 1999; Bhatia, 1990; Painuly, 2001; Mirza et al., 2003; Reddy and Painuly, 2004; Owen, 2006; GNESD, 2007; Mirza et al., 2007; Junfeng et al., 2002; Kennedy and Basu, 2013; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,				al., 2000; Verbruggen et al., 2010
Funds for R&D on DRESDRESBoyle, 1994; Pillai and Banerjee, 2009Funds for R&D on DRESDRESDRESlagadeesh, 2000; Mirza et al., 2003; Zyadin et al., 2014; Kinab and Elkhoury, 2012; Lidula et al., 2007; Ruble and El-Khoury, 2013; Boyle, 1994Reduction in transaction cost (learning by doing effect)DRESrelated implementation agency and other relevant government agenciesJunfeng et al., 2002; Boyle, 1994; Verbruggen et al., 2010MarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRESrelated implementation agency, banks, energy service companiesBeck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Jagadeesh, 2000; Oliver and Jackson, 1999; Bhatia, 1990; Painuly, 2001; Mirza et al., 2003; Redy and Painuly, 2004; Owen, 2006; GNESD, 2007; Mirza et al., 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,		R&D for cost	R&D institutions	Rijal, 1986; Jagadeesh, 2000; Liu
Funds for R&D on DRESDRESrelated policymaking and and implementation agencyJagadeesh, 2000; Mirza et al., 2003; Zyadin et al., 2014; Kinab and Elkhoury, 2012; Lidula et al., 2007; Ruble and El-Khoury, 2013; Boyle, 1994Reduction in transaction cost (learning by doing effect)DRESrelated implementation agency and other relevant government agenciesJunfeng et al., 2002; Boyle, 1994; Verbruggen et al., 2010MarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRESrelated implementation agency, banks, energy service companiesBeck and Martinot, 2004; Jarach, Jagadeesh, 2000; Oliver and jackson, 1999; Bhatia, 1990; Painuly, 2001; Mirza et al., 2003; Reddy and Painuly, 2004; Owen, 2006; GNESD, 2007; Mirza et al., 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2001; Boyle, 2007; Sagie et al., 2001; Boyle,		reduction		et al., 2013; Fthenakis et al., 2009;
Funds for R&D on DRESDRESrelated policymaking and and egencyJagadeesh, 2000; Mirza et al., 2003; Zyadin et al., 2014; Kinab and Elkhoury, 2012; Lidula et al., implementation agencyReduction in transaction cost (learning by doing effect)DRESrelated implementation agency and other relevant government agenciesJunfeng et al., 2002; Boyle, 1994; Verbruggen et al., 2010MarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRESrelated implementation agency, banks, energy service companiesBeck and Martinot, 2004; Jarach, Jagadeesh, 2000; Oliver and implementation Jagadeesh, 2000; Oliver and implementation Jackson, 1999; Bhatia, 1990; Mondal et al., 2013; energy service companiesJagadeesh, 2000; Oliver and jagadeesh, 2000; Oliver and jagadeesh, 2000; Oliver and jackson, 1999; Bhatia, 1990; Mardal et al., 2003; Painuly, 2001; Mirza et al., 2003; Kennedy and Basu, 2013a; Lidula et al., 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2007; Sagie et al., 2001; Boyle,				Boyle, 1994; Pillai and Banerjee,
DRESpolicymaking and implementation agency2003; Zyadin et al., 2014; Kinab and Elkhoury, 2012; Lidula et al., 2007; Ruble and El-Khoury, 2013; Boyle, 1994Reduction in transaction cost (learning by doing effect)DRES related implementation agency and other relevant government agenciesJunfeng et al., 2002; Boyle, 1994; Verbruggen et al., 2010MarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRES related policymaking and implementation agency, banks, energy service companiesBeck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Painuly, 2001; Mirza et al., 2003; Painuly, 2001; Mirza et al., 2003; Painuly, 2001; Mirza et al., 2003; Painuly, 2001; Mirza et al., 2003; Kennedy and Basu, 2013a; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,				2009
and implementation agencyand Elkhoury, 2012; Lidula et al., 2007; Ruble and El-Khoury, 2013; Boyle, 1994Reduction in transaction cost (learning by doing effect)DRES related implementation agency and other relevant government agenciesJunfeng et al., 2002; Boyle, 1994; Verbruggen et al., 2010MarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRES related implementation agency, banks, energy service companiesBeck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Diver and Jackson, 1999; Bhatia, 1990; Painuly, 2001; Mirza et al., 2003; Reddy and Painuly, 2004; Owen, 2006; GNESD, 2007; Mirza et al., 2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,		Funds for R&D on	DRES related	Jagadeesh, 2000; Mirza et al.,
Implementation agency2007; Ruble and El-Khoury, 2013; Boyle, 1994Reduction in transaction cost (learning by doing effect)DRES related implementation agency and other relevant government agenciesJunfeng et al., 2002; Boyle, 1994; Verbruggen et al., 2010MarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRES related policymakingBeck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Jagadeesh, 2000; Oliver and Jagadeesh, 2000; Oliver and jolicymakingMarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)Beck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Jagadeesh, 2000; Oliver and jagadeesh, 2000; Oliver and jagency, banks, energy service companiesBeckdy and Painuly, 2004; Owen, 2006; GNESD, 2007; Mirza et al., 2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kennedy and Basu, 2013; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,		DRES	policymaking	2003; Zyadin et al., 2014; Kinab
Reduction in transaction cost (learning by doing effect)DRES related implementation agency and other relevant government agenciesJunfeng et al., 2002; Boyle, 1994; Verbruggen et al., 2010MarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRES related policymaking and agency, banks, energy service companiesBeck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Jagadeesh, 2000; Oliver and Jackson, 1999; Bhatia, 1990; Reddy and Painuly, 2004; Owen, 2006; GNESD, 2007; Mirza et al., 2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2001; Boyle,			and	and Elkhoury, 2012; Lidula et al.,
Reduction in transaction cost (learning by doing effect)DRES implementation agency and other relevant government agenciesJunfeng et al., 2002; Boyle, 1994; Verbruggen et al., 2010MarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRES related policymaking agency, banks, energy service companiesBeck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Jagadeesh, 2000; Oliver and Jackson, 1999; Bhatia, 1990; model)model)agency, banks, energy service companiesPainuly, 2001; Mirza et al., 2003; Bother at al., 2007; Junfeng et al., 2002; Kennedy and Basu, 2013; Lidula et al., 2007; Sagie et al., 2001; Boyle,			implementation	2007; Ruble and El-Khoury, 2013;
cost (learning by doing effect)implementation agency and other relevant government agenciesVerbruggen et al., 2010MarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRES related policymaking and implementation agency, banks, energy service companiesBeck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Jagadeesh, 2000; Oliver and Jackson, 1999; Bhatia, 1990; Painuly, 2001; Mirza et al., 2003; Reddy and Painuly, 2004; Owen, 2006; GNESD, 2007; Mirza et al., 2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2001; Boyle,			agency	Boyle, 1994
effect) agency and other relevant government agencies DRES related Beck and Martinot, 2004; Jarach, schemes (soft loans, grants, revolving fund, fee for service delivery model) agency, banks, energy service companies 2006; GNESD, 2007; Mirza et al., 2002; Kennedy and Basu, 2013; 2007; Junfeng et al., 2002; Kennedy and Basu, 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,		Reduction in transaction	DRES related	Junfeng et al., 2002; Boyle, 1994;
MarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRES related policymaking andBeck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Jagadeesh, 2000; Oliver and Jackson, 1999; Bhatia, 1990; model)model)and implementation agency, banks, energy service companiesJackson, 1999; Bhatia, 1990; Nordal et al., 2003; Painuly, 2001; Mirza et al., 2003; Companies2006; GNESD, 2007; Mirza et al., 2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2001; Boyle, 2007; Sagie et al., 2001; Boyle,		cost (learning by doing	implementation	Verbruggen et al., 2010
government agenciesgovernment agenciesMarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRES related policymaking andBeck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Jagadeesh, 2000; Oliver and Jackson, 1999; Bhatia, 1990; model)MarketInnovative financing grants, revolving fund, fee for service delivery model)Jagadeesh, 2000; Oliver and Jackson, 1999; Bhatia, 1990; agency, banks, Painuly, 2001; Mirza et al., 2003; energy service companiesPainuly, 2001; Mirza et al., 2003; Outer, 2006; GNESD, 2007; Mirza et al., 2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,		effect)	agency and other	
MarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service delivery model)DRES related policymakingBeck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; algadeesh, 2000; Oliver and Jackson, 1999; Bhatia, 1990; Nainuly, 2001; Mirza et al., 2003; energy service companiesBeck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Mirza et al., 2000; Oliver and implementation 2006; GNESD, 2007; Mirza et al., 2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,			relevant	
MarketInnovative financing schemes (soft loans, grants, revolving fund, fee for service deliveryDRES policymaking andBeck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Jagadeesh, 2000; Oliver and Jackson, 1999; Bhatia, 1990; model)model)agency, banks, energy service companiesPainuly, 2001; Mirza et al., 2003; Painuly, 2001; Mirza et al., 2003; Mordal et al., 2003; Painuly, 2004; Owen, 2006; GNESD, 2007; Mirza et al., 2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,			government	
schemes (soft loans, grants, revolving fund, fee for service delivery model) policymaking and implementation agency, banks, energy service companies policymaking implementation agency, banks, energy service companies policymaking implementation agency, banks, energy service companies policymaking implementation agency, banks, energy service policymaking implementation agency, banks, policymaking implementation agency, banks, policymaking			agencies	
grants, revolving fund, fee for service delivery model)and implementation agency, banks, energy service companiesJagadeesh, 2000; Oliver and Jackson, 1999; Bhatia, 1990; Painuly, 2001; Mirza et al., 2003; Reddy and Painuly, 2004; Owen, 2006; GNESD, 2007; Mirza et al., 2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,	Market	Innovative financing	DRES related	Beck and Martinot, 2004; Jarach,
fee for service delivery model) implementation agency, banks, energy service companies Reddy and Painuly, 2004; Owen, 2006; GNESD, 2007; Mirza et al., 2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,		schemes (soft loans,	policymaking	1989; Mondal et al., 2010;
model) agency, banks, energy service companies Painuly, 2001; Mirza et al., 2003; Reddy and Painuly, 2004; Owen, 2006; GNESD, 2007; Mirza et al., 2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,		grants, revolving fund,	and	Jagadeesh, 2000; Oliver and
energy service companies Reddy and Painuly, 2004; Owen, 2006; GNESD, 2007; Mirza et al., 2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,		fee for service delivery	implementation	Jackson, 1999; Bhatia, 1990;
companies 2006; GNESD, 2007; Mirza et al., 2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,		model)	agency, banks,	Painuly, 2001; Mirza et al., 2003;
2009; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,			energy service	Reddy and Painuly, 2004; Owen,
2007; Junfeng et al., 2002; Kennedy and Basu, 2013a; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,			companies	2006; GNESD, 2007; Mirza et al.,
Kennedy and Basu, 2013a; Lidula et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,				2009; Chandrasekar and Kandpal,
et al., 2007; Balcombe et al., 2013; Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,				2007; Junfeng et al., 2002;
Perlack et al., 1990; Wamukonya, 2007; Sagie et al., 2001; Boyle,				Kennedy and Basu, 2013a; Lidula
2007; Sagie et al., 2001; Boyle,				et al., 2007; Balcombe et al., 2013;
				Perlack et al., 1990; Wamukonya,
1994				2007; Sagie et al., 2001; Boyle,
				1994

Table 2.3: Potential remedial measures suggested to overcome the sub-barriers of economic barrier (continued...)

Sub-barrier	Remedial measure (s)	Responsibility	<i>Relevant reference(s)</i>
		center(s)	v v r
	Micro-credit facilities	Banks, NGOs,	Mondal et al., 2010; Srinivasan,
		energy service	2008; Kennedy and Basu, 2013a;
		companies	Ohunakin et al., 2014;
		companies	Wamukonya, 2007; Verbruggen et
			al., 2010
	Internalization of	Policymaking	Reddy and Painuly, 2004; Owen,
	externalities in	agencies related	2006; Stangeland, 2007;
	cost of energy	to energy sector	Srinivasan, 2008; Mirza et al.,
		to energy sector	2009; Oikonomou et al., 2009; Liu
			et al., 2013; Joseph and Burton,
			1990; Junfeng et al., 2002; Zyadin
			et al., 2014; Kennedy and Basu,
			2013a; Mezher et al., 2012;
			McCormick and Kaberger, 2007;
			Sagie et al., 2001; Boyle, 1994
	Withdrawal of	Policymaking	Bhatia, 1990; pokharel, 2003;
	subsidies to fossil	agencies related	Owen, 2006; Mirza et al., 2009;
	fuels	to energy sector	Krupa, 2012; Joseph and Burton,
			1990; Zyadin et al., 2014; Dorf,
			1984; Mezher et al., 2012; Puri,
			2006
	Quotas for DRES	DRES related	Philibert, 2006; Wamukonya, 2007
	usage	policymaking	
		agency	
	Incentives (subsidies,	DRES related	Bhatia, 1990; Mirza et al., 2003;
	tax break, reduced	policymaking	Foxon et al., 2005; Philibert, 2006;
	import duty) to private	agency	Ahlborg and Hammar, 2011; Allen
	sector or entrepreneurs		et al., 2008; Adams et al., 2011;
	(acting as manufacturers/		Junfeng et al., 2002; Ohunakin et
	project developers/		al., 2014; Adhikari et al., 2008;
	distributors/retailers)		Dorf, 1984; Al-Badi et al., 2009;
			Muntasser et al., 2000
	Market intermediation	Relevant	Pegels, 2010; Balcombe et al.,

Table 2.3: Potential remedial measures suggested to overcome the sub-barriers of economic barrier (continued...)

Sub-barrier	Remedial measure (s)	Responsibility center(s)	Relevant reference(s)
	by government	government agency	2013; Martinot, 1998; Martinot, 1999
	Awareness or information	DRES related implementation	Beck and Martinot, 2004; Painuly, 2001; Pokharel, 2003; Reddy and
	dissemination	agency, NGOs,	Painuly, 2004; Owen, 2006;
	programme	academic institutions	GNESD, 2007; Mirza et al., 2009; Martin and Rice, 2012; Krupa,
			2012; Joseph and Burton, 1990;
			Prasertsan and Sajjakulnukit, 2006; Zyadin et al., 2014; Kassenga,
			1997; Sidiras and Koukios, 2004; Dorf, 1984; Ruble and El-Khoury,
			2013; Perlack et al., 1990; Sagie et
			al., 2001; Charters, 2001

Table 2.3: Potential remedial measures suggested to overcome the sub-barriers of economic barrier (continued...)

in rural areas to overcome cost barrier of DRES (Green, 1999). Soft loan schemes of Grameen Shakti in Bangladesh have been found to be very successful in overcoming affordability barriers associated with solar PV systems and its replication in other areas has been recommended (Barua, 2001). Creation of self-help groups among farmers to raise revolving funds for construction of biogas plants is also reported as a viable option for promotion of DRES in Kenya (Mwirigi et al., 2009).

As suggested above, overcoming economic barriers to DRES would need institutional support from government and DRES related policymaking and implementation agency for: a) setting up R&D institutions for cost reduction, b) market facilitation to DRES through various incentives, c) developing a fair energy pricing regime with internalization of externalities, and d) delivery of microfinance facilities to poor households for DRES adoption.

2.2.3. Institutional Barriers

A large number of studies have reported the relevance of institutional barriers in preventing diffusion of DRES (Jarach, 1989; Quadir et al., 1995; Roessner, 1984; Green, 1999; Jagadeesh, 2000; Oliver and Jackson, 1999; Rijal, 1999; Painuly, 2001; Mirza et al., 2003; Pokharel, 2003; Reddy and Painuly, 2004; Foxon et al., 2005; Philibert, 2006; GNESD, 2007; Mirza et al., 2009; Nalan et al., 2009; Oikonomou et al., 2009; Doukas et al., 2009; Pegels, 2010; Martin and Rice, 2012; Ahlborg and Hammar, 2011; Zhang et al., 2012; Chandrasekar and Kandpal, 2007; Prasertsan and Sajjakulnukit, 2006; Kinab and Elkhoury, 2012; Njuguna, 1997; Al-Badi et al., 2009; Mezher et al., 2012; McCormick and Kaberger, 2007; Negro et al., 2012; Martinot, 1998; Al-Badi et al., 2011; Michalena and Angeon, 2009; Boyle, 1994; Jager-Waldau, 2007; Charters, 2001; Qiu et al., 1996). The sub-barriers that may be listed under the category of institutional barrier include - lack of agencies to disseminate information, uncertain government policies, lack of a legal/regulatory framework, tedious bureaucratic procedures, unstable macro-economic environment, lack of stakeholder participation in decision making, clash of interests among stakeholders, lack of R&D culture, insufficient professional institutions and lack of private sector participation (Painuly, 2001). For example, institutional barriers reported to be affecting family type biogas plants, improved cook stoves and solar cooker in developing countries are: lack of infrastructure, incompatibility with existing work organization, difficulties in obtaining loans from government, lack of coordination among various agencies, poor technology transfer and afterinstallation services, and differences in priority of policymaker and users (Quadir et al., 1995). Based on their characteristics, institutional barriers can be classified as: a) policy and regulatory; b) infrastructure; and c) administrative barriers.

2.2.3.1. Policy and Regulatory

Lack of consistent policies and regulations to support DRES (e.g., lack of incentives to consumers, difficult zoning and permitting processes, etc.) has been cited as a barrier to its diffusion (Oliver and Jackson, 1999; Rijal, 1999; Sahir and Qureshi, 2008; Krupa, 2012; Ahlborg and Hammar, 2011; Zhang et al., 2012; Adams et al., 2011; Prasertsan and Sajjakulnukit, 2006; Junfeng et al., 2002; Zyadin et al., 2014; Margolis and Zuboy, 2006; Lidula et al., 2007; Puri, 2006). Worldwide, policies are reportedly biased towards fossil fuels and nuclear energy (Krupa, 2012; Boyle, 1994). Lack of suitable legal and regulatory framework for dissemination of DRES is also a major institutional barrier (Beck and Martinot, 2004; Jarach, 1989; Jagadeesh, 2000; Patlitzianas et al., 2006; Philibert, 2006; Hiremath, 2009; Liu et al., 2013; Zhang et al., 2012; Adams et al., 2011; Kennedy and Basu, 2013a; Adhikari et al., 2008; Dorf, 1984; Huacuz, 2001; Ruble and El-Khoury, 2013; Rosch and Kaltschmitt, 1999; Martinot, 1999; Charters, 2001). Wind turbines, rooftop solar water heaters, photovoltaic installations, etc face opposition from urban planning agencies due to lack of established procedures for siting and installation of household DRESs (Beck and Martinot, 2004; Patlitzianas et al., 2006). The opposition may be based upon height, aesthetics, noise, or safety (Beck and Martinot, 2004). While excessive/inefficient/outdated regulation is reported to be hindering the development of DRESs (Owen, 2006), the risk of change of legislation has been found to be a major institutional barrier to the development of DRES in South Africa (Pegels, 2010).

2.2.3.2. Infrastructure

For development of DRES friendly environment, the institutions involved in its dissemination are expected to be effective in the following roles – planning at central, federal and local level, programme implementation, quality control and standardization, performance monitoring, human resource development, technology development and transfer, awareness generation and information

dissemination, and market development (Chandrasekar and Kandpal, 2007). However, many studies have pointed that the institutional infrastructure may not have evolved enough to effectively support the dissemination of DRES. For example, in China, underdeveloped market support infrastructure for DRES has reportedly acted as an institutional barrier (Junfeng et al., 2002). Lack of institutional, financial and technical structures to promote DRES has been found to be detrimental to its diffusion in ASEAN (Lidula et al., 2007). In another study, Martinot (1998) has observed that ineffective market and contract institutions and lack of institutional framework are the major institutional barriers in Russia. Also, multiplicity of agencies for wind energy in India has been reported as a barrier as it has resulted in lack of coordination and unnecessary delays (Jagadeesh, 2000). Lack of organizational structure for installation, sales, repair and maintenance of DRESs is also cited as a barrier to their diffusion (Bhatia, 1990). As per a study on Europe, lack of infrastructure to support market introduction and subsequent dissemination of biomass based DRES has been a significant barrier (Rosch and Kaltschmitt, 1999). Echoing similar observation, service infrastructure for the promotion, distribution, sales, technical assistance and maintenance of solar PV systems is poorly developed and has been hindering their diffusion in many parts of the world (Oliver and Jackson, 1999). Mismatch between organizational aspects of DRES and adopters also lead to unsuccessful diffusion (e.g., DRES requiring frequent maintenance and services generally fail in rural areas of developing countries as these areas suffer from inaccessibility and lack of skilled workforce) (Green, 1999).

Availability of infrastructure for after sales services is also crucial for accelerated diffusion of DRES. Underdeveloped extension services for spare parts supply and maintenance services are reportedly hindering dissemination of renewable energy technologies for decentralized applications in rural areas (Rijal, 1986; Jagadeesh, 2000; Oliver and Jackson, 1999; Painuly, 2001; Mirza et al., 2003; Pokharel, 2003; Mirza et al., 2009; Bhattacharya and Jana, 2009; Ahlborg and Hammar,

2011; Zhang et al., 2012; Chandrasekar and Kandpal, 2007; Joseph and Burton, 1990; Junfeng et al., 2002; Radulovic, 2005; Adhikari et al., 2008; Dorf, 1984; Perlack et al., 1990). In developing countries, poor extension and after-installation services have resulted in slow dissemination of family type biogas plants, improved cook stoves and box type solar cookers (Quadir et al., 1995). For example, Barnett (1990) has noted that lack of maintenance services has been the major factor behind the failure of biomass gasifiers in Philippines. Lack of technical support for installation and maintenance is also reported as a barrier impeding the dissemination of solar home systems in Africa (Wamukonya, 2007).

Institutional support to ensure easy availability of spare parts is necessary to ensure effective maintenance services for DRESs. Limited availability of spare parts and maintenance expertise has been cited as a barrier to the growth of DRESs (Doukas et al., 2009; Kassenga, 1997). For example, as most of the renewable energy systems are imported in Pakistan, non-availability of spare parts is reported to be an important technical barrier to their diffusion in the country (Mirza et al., 2009). Similarly, frequent failure of mantle lamps of biogas plants and its unavailability as spare part has led to non-usage of biogas plants in Nepal (Rijal, 1986).

As renewable energy sources are site specific, reliable resource availability data is essential for selection of favorable site for renewable energy projects. However, diffusion of DRES is reportedly facing barrier due to lack of reliable resource availability data (Mirza et al., 2009; Prasertsan and Sajjakulnukit, 2006; Kassenga, 1997; Kinab and Elkhoury, 2012; Lidula et al., 2007; Al-Badi et al., 2009). According to Al-badi et al. (2009), lack of accurate data on resource availability, and inadequate support to research are hindering development of DRESs in Oman. Similarly, Mirza et al. (2009) has cited lack of detailed renewable energy resource assessments and data banks as barriers hindering diffusion of DRESs in Pakistan. Accurate and reliable resource assessment would need institutional infrastructure for strong coordination between government agencies and education and research institutions.

2.2.3.3. Administrative

Administrative barriers limit effective implementation of renewable energy programme. Lack of coordination between various stakeholders has been frequently cited as a major administrative barrier to the diffusion of DRESs (Mondal et al., 2010; Adams et al., 2011; Prasertsan and Sajjakulnukit, 2006; Kennedy and Basu, 2013a; Radulovic, 2005; Margolis and Zuboy, 2006; Njuguna, 1997; McCormick and Kaberger, 2007). For example, dearth of good coordination between various ministries and agencies, and dependence of renewable energy budget on national budget has been acting as barriers to DRES development in Bangladesh (Mondal et al., 2010). In addition, few studies have cited poor monitoring and evaluation as a significant barrier to the diffusion of DRESs (Bhattacharya and Jana, 2009; Qiu et al., 1996). For example, large scale implementation of improved biomass cookstoves with poor monitoring and evaluation lead to failure of early programmes in China (Qiu et al., 1996). Similarly, poor monitoring and evaluation and subsidy driven nature of National Programme on Improved Cookstoves has been instrumental in limiting the impact of the programme in India (Bhattacharya and Jana, 2009). Tedious administrative and documentation procedures involved in approval of DRES projects also hinder the diffusion of DRESs (Mondal et al., 2010; Doukas et al., 2009; Michalena and Angeon, 2009; Puri, 2006). Few studies have also cited bureaucratic administrative procedures of government institutions as barriers impeding the growth of DRESs (Zyadin et al., 2014; Adhikari et al., 2008).

2.2.3.4. Potential Remedial Measures

Institutional barriers can be addressed through several measures. Table 2.4 presents the suggested remedial measures to overcome the sub-barriers listed

under institutional barrier. From the table, it may be noted that the role of DRES related policymaking agency is important to overcome institutional barriers due to inappropriate policy and regulatory framework. Worldwide, conducive regulatory frameworks have been enacted to accelerate the diffusion of DRES. For example, through a regulation introduced in 1980, Israel achieved 80% coverage of the roofs of residential households with solar water heaters (Philibert, 2006). To promote solar energy utilization in buildings, building code of Florida (USA) mandates all new educational buildings to include passive solar design (Beck and Martinot, 2004). Similarly, through renewable access laws in some countries, property owners are provided the right to continued access to a renewable resource (Beck and Martinot, 2004). The access is ensured through voluntary contracts between neighbors or covenant laws (Beck and Martinot, 2004).

Table 2.4: Potential remedial measures suggested to overcome the sub-barriers of institutional barrier

Sub-barrier	Remedial	Responsibility	Relevant reference(s)
	measure (s)	center(s)	
Policy and	Conducive long-	DRES related	Quadir et al., 1995; Mirza et al., 2003;
regulatory	term policies for	policymaking	Pokharel, 2003; Reddy and Painuly,
	all stakeholders	agency	2004; Foxon et al., 2005; GNESD,
			2007; Sahir and Qureshi, 2008;
			Ahlborg and Hammar, 2011; Liu et
			al., 2013; Prasertsan and
			Sajjakulnukit, 2006; Junfeng et al.,
			2002; Zyadin et al., 2014; Kinab and
			Elkhoury, 2012; Kennedy and Basu,
			2013a; Lidula et al., 2007; Balcombe
			et al., 2013; McCormick and
			Kaberger, 2007; Negro et al., 2012;
			Ruble and El-Khoury, 2013; Finney et
			al., 2012; Puri, 2006
	Conducive	DRES related	Beck and Martinot, 2004; Oliver and
	regulatory policymaking		Jackson, 1999; Rijal, 1999; Painuly,

Sub-barrier	Remedial	Responsibility	Relevant reference(s)
	measure (s)	center(s)	
	framework		2001; Owen, 2006; Philibert, 2006;
	ITAILEWOIK	agency	
			Hiremath et al., 2009; Bhattacharya
			and Jana, 2009; Liu et al., 2013;
			Zhang et al., 2012; Allen et al., 2008;
			Junfeng et al., 2002; Zyadin et al.,
			2014; Kinab and Elkhoury, 2012;
			Ohunakin, 2014; Lidula et al., 2007;
			Njuguna, 1997; Martinot, 1998; Al-
			Badi et al., 2011; Finney et al., 2012
	Integration of	DRES related	GNESD, 2007; Junfeng et al., 2002
	DRES policies	policymaking	
	with	agency and	
	developmental	other	
	programmes	participating	
		government	
		agencies	
	Policy involving	DRES related	Liu et al., 2013; Al-Badi et al., 2009;
	incentives for	policymaking	Al-Badi et al., 2011; Charters, 2001
	DRES utilization	agency	
	Private sector	DRES related	Mondal et al., 2010; Bhattacharya and
	participation	policymaking	Jana, 2009; Ahlborg and Hammar,
		agency	2011; Zyadin et al., 2014; Kinab and
			Elkhoury, 2012; Dorf, 1984
Infrastructure	Specialized	DRES related	Mondal et al., 2010; Jagadeesh, 2000;
	institutions for	policymaking	Painuly, 2001; Junfeng et al., 2002
	R&D, financing,	and	
	capacity	implementation	
	building,	agency, R&D	
	marketing and	institutions,	
	commercializa-	banks, NGOs	
	tion of DRES	and academic	
		institutions	
	After sales	DRES related	Rijal, 1986; Pokharel, 2003; Green,
			· · · · · · · · · · · · · · · · · · ·

Table 2.4: Potential remedial measures suggested to overcome the sub-barriers of institutional barrier (continued...)

	(continued)	D	
Sub-barrier	Remedial	Responsibility	Relevant reference(s)
	measure (s)	center(s)	
	services	implementation	2004; Zhang et al., 2012; Radulovic,
	infrastructure for	agency, energy	2005; Perlack et al., 1990;
	training and	services	Wamukonya, 2007
	extension	companies,	
	programmes	NGOs and	
		academic	
		institutions	
Administrative	Strong	DRES related	Foxon et al., 2005; Patlitzianas et al.,
	coordination	implementation	2006; Mirza et al., 2009; Martin and
	between various	agency and	Rice, 2012; Krupa, 2012; Prasertsan
	agencies and	other relevant	and Sajjakulnukit, 2006; Kennedy and
	stakeholders	government	Basu, 2013a; McCormick and
		agencies such	Kaberger, 2007; Huacuz, 2001; Rosch
		as municipal	and Kaltschmitt, 1999
		corporations	
	Involvement of	DRES related	Mondal et al., 2010; Rijal, 1999;
	local	implementation	Oikonomou et al., 2009; Ahlborg and
	stakeholders in	agency	Hammar, 2011; Zyadin et al., 2014;
	planning and		Kennedy and Basu, 2013a; Ohunakin
	implementation		et al., 2014; McCormick and
	of DRES		Kaberger, 2007
	programme		
	Simplified	DRES related	Philibert, 2006; Rosch and
	approval	implementation	Kaltschmitt, 1999; Puri, 2006
	procedures or	agency	
	single window		
	clearance		
	Support and	DRES related	Painuly, 2001; Reddy and Painuly,
	facilitation by	policymaking	2004; Ahlborg and Hammar, 2011;
	government from	and	Liu et al., 2013; Adams et al., 2011;
	R&D to	implementation	Junfeng et al., 2002; Kennedy and
		agency	Basu, 2013a; Radulovic, 2005;
	commercializa-		Ohunakin, 2014; Lidula et al., 2007;

Table 2.4: Potential remedial measures suggested to overcome the sub-barriers of institutional barrier (continued...)

Sub-barrier	Remedial measure (s)	Responsibility center(s)	Relevant reference(s)
	tion of DRES		Boyle, 1994; Charters, 2001
	Effective project	DRES related	Mondal et al., 2010; Bhatia, 1990;
	monitoring and	implementation	Jager-Waldau, 2007; Martinot, 1999;
	evaluation	agency	Qiu et al., 1996

Table 2.4: Potential remedial measures suggested to overcome the sub-barriers of institutional barrier (continued...)

Apart from the generic remedial measures listed in Table 2.4, there are few other case-specific measures that have been recommended to overcome institutional barriers. Rather than just focusing on number of installations, Bhatia (1990) has advocated meticulous planning and in-depth socio-economic evaluation studies for improved diffusion of biogas engines in India. Market intermediation by Russian government for securing support of government officials, securing funds, obtaining necessary licenses and approvals, and managing, monitoring and evaluating projects to promote renewable energy in the country has been recommended (Martinot, 1999). Creation of an umbrella organization for monitoring, regulating and capacity building is recommended to overcome institutional barriers in Bangladesh (Mondal et al., 2010). For Turkey, it is recommended that DRES be promoted as unique products with attributes such as least cost and environmental and social benefits (Nalan et al., 2009). Appropriate institutional infrastructure to plan and implement well-coordinated programme at all levels and simplified time-bounded administrative procedure for various approvals and clearances are suggested to promote wind installations in India (Jagadeesh, 2000). Learning from the success of China's diffusion programme of improved biomass stoves, Qiu et al. (1996) advocates working in the best areas first, regular, systematic and consistent monitoring and evaluation, and promotion of rural energy companies.

It can be concluded that in addition to framing conducive long-term policies and a favorable regulatory framework for diffusion of DRESs, DRES related

policymaking agency is also expected to create conducive environment for development of specialized institutions for R&D, financing, capacity building, marketing and commercialization (including awareness generation and quality control) of DRESs. Effective project monitoring and evaluation is also recommended to ensure the success of DRES projects.

2.2.4. Socio-cultural Barriers

The category of socio-cultural barriers is another important impediment that affects the diffusion of DRESs (Stangeland, 2007). Social/socio-cultural/cultural barriers have been extensively reported with reference to diffusion of DRESs (Jarach, 1989; Quadir et al., 1995; Agarwal, 1983; Green, 1999; Rijal, 1999; Painuly, 2001; Green, 2004; Pohekar and Ramachandran, 2006; Philibert, 2006; Stangeland, 2007; Mirza et al., 2009; Nalan et al., 2009; Oikonomou, 2009; Purohit, 2009; Doukas et al., 2009; Krupa, 2014; Ahlborg and Hammar, 2011; Chandrasekar and Kandpal, 2007; Junfeng et al., 2002; Kassenga, 1997; Ohunakin et al., 2014; Njuguna, 1997; Michalena and Angeon, 2009; van der Gaast et al., 2009; Verbruggen et al., 2010; Sovacool, 2009; Alit, 1990; Pohl and Gisler, 2003; Kaldellis, 2005). Moreover, negative impacts of socio-economic, socio-political and political barriers on diffusion of DRES have also been discussed in Rijal (1999), Sahir and Qureshi (2008) and Green (1999) respectively. Socio-cultural barriers may arise as a result of the following: a) societal structure, norms and value system, b) awareness and risk perception, c) behavioral or lifestyle issues (Verbruggen et al., 2010).

2.2.4.1. Societal Structure, Norms and Value System

A socio-cultural barrier may exist due to - lack of satisfaction of perceived needs of the user and non-integration of the technology within the social structure and disharmony with prevailing values and ideology (Quadir et al., 1995). For example, in many rural societies, traditional cook stoves satisfy lighting, space heating, pest control, drying, etc needs of the household in addition to cooking. Improved cook stoves, though having higher efficiency in cooking, do not satisfy the other above-mentioned perceived needs of the user and thus have not been adopted (Quadir et al., 1995). Lack of understanding about the needs of the users primarily contributed to the failure of early Chinese biogas program (Barnett, 1990). A biogas project failed in Indonesia because it was incompatible with the local belief which considered rice fields as holy and installation of biogas units on it was considered a taboo (Alit, 1990). In Nepal, many households did not accept improved cook stoves and continued with open fire cooking as they believed that their family spirit resided in it (Agarwal, 1983). For family size biogas plants, improved cook stoves and box type solar cookers, socio-cultural acceptability factor is reported to be relatively more important as compared to solar water heating systems and solar photovoltaic technologies (Chandrasekar and Kandpal, 2007). This reflects better socio-cultural acceptance of non-cooking devices such as solar water heating and photovoltaic technologies.

Green (1999) has reported that diffusion faces hurdles when there are cultural differences between donor and receiver. In Turkey, wind energy installations have reportedly faced opposition due to its weak social compatibility (Nalan et al., 2009). Likewise, for preservation of natural resources and cultural heritage in Crete Island (Greece), local population opposed wind energy projects (Michalena and Angeon, 2009).

Psychological barriers and conservative rural traditions also act as hindrances to successful diffusion of DRES (Michalena and Angeon, 2009). In USA, psychological attributes such as comfort, freedom, control, trust, social status, ritual, and habit are reportedly impeding the diffusion of DRES in the country (Sovacool, 2009). Cooking is generally done by women, but gender bias leading to lack of women participation in decision making and inadequate access to credit has reportedly hindered adoption of improved cook stoves (Agarwal, 1983). Non-

ownership of house is a psychological barrier to diffusion of domestic solar water heater in Greece as it creates a condition of split incentives for the developer/owner and tenant (Sidiras and Koukios, 2004). Philibert (2006) has also reported problem of split incentives with respect to diffusion of solar thermal technologies.

2.2.4.2. Awareness and Risk Perception

Lack of information or awareness is a widely reported socio-economic barrier impeding diffusion of DRES (Beck and Martinot, 2004; Jarach, 1989; Mondal et al., 2010; Oliver and Jackson, 1999; Rijal, 1999; Painuly, 2001; Reddy and Painuly, 2004; Pohekar et al., 2005; Patlitzianas et al., 2006; Owen, 2006; Philibert, 2006; GNESD, 2007; Srinivasan, 2008; Mirza et al., 2009; Oikonomou, 2009; Martin and Rice, 2012; Ahlborg and Hammar, 2011; Chandrasekar and Kandpal, 2007; Prasertsan and Sajjakulnukit, 2006; Zyadin et al., 2014; Kinab and Elkhoury, 2012; Radulovic, 2005; Lidula et al., 2007; Dorf, 1984; Mezher et al., 2012; McCormick and Kaberger, 2007; Huacuz, 2001; Matinot, 1998; Mwirigi et al., 2009; Martinot, 1999; Muntasser et al., 2000; van der Gaast et al., 2009; Verbruggen et al., 2010; Rebane and Barham, 2011). Because of lack of awareness, DRESs are often perceived as inferior technologies in terms of utility and user comfort (Reddy and Painuly, 2004). For example, for wind parks in Dodecanese Islands of Greece, public opinion on its aesthetic harmful effect and insufficient information on social benefits are acting as social barriers (Oikonomou et al., 2009). As per a survey conducted in Greece, respondents consider opinion of friends as a barrier to the diffusion of domestic solar water heaters in the country (Sidiras and Koukios, 2004).

Negative perception about DRES is another issue that is hindering its diffusion. Generally, DRES suffer from perceptions of greater technical risk than conventional technologies because of lack of visible installations and familiarity with the system (Beck and Martinot, 2004). Perceived technology performance

uncertainty, poor reliability and associated risks have also been cited by other studies reflecting on barriers to DRES (Quadir et al., 1995; Bakthavatsalam, 1999; Jagadeesh, 2000; Reddy and Painuly, 2004; Foxon et al., 2005; Pohekar et al., 2005; Patlitzianas et al., 2006; Srinivasan, 2008; Bhattacharya and Jana, 2009; Kennedy and Basu, 2013a; Mezher et al., 2012; Balcombe et al., 2013; McCormick and Kaberger, 2007; Perlack, et al., 1990). Also, many societies have the perception that DRES negatively affects community social structures and thus resist them (Doukas et at., 2009). Negative impression created by failure of DRES projects in the past also hinder diffusion of technically sound DRES (Green, 1999; Philibert, 2006; van der Gaast, 2009). For example, negative image caused by failed biogas plants in Kenya has been reported as a major barrier to its diffusion (Mwirigi et al., 2009). Moreover, failure of DRES in raising the standard of living has developed negative perception about DRES among potential users (Green, 2004; Joseph and Burton, 1990). Past failures have increased the risk perception regarding DRESs among public, politician and local authorities that are reportedly impeding diffusion of DRES (Painuly, 2001; Rosch and Kaltschmitt, 1999; Boyle, 1994). Lack of demonstration of DRES utility among potential users aggravates risk perception (Martinot, 1999). Mirza et al. (2003) have also pointed that inadequate demonstration of utility of solar energy devices is a significant barrier affecting their diffusion in Pakistan.

2.2.4.3. Behavioral or Lifestyle Issues

Preference for traditional energy sources and resistance to change has reportedly created behavioral barriers that may impede diffusion of DRES (Painuly, 2001; Reddy and Painuly, 2004; Verbruggen et al., 2010). Few studies have cited behavioral or lifestyle issues impeding the diffusion of DRES (cooking technologies) (Quadir et al., 1995; Pohekar et al., 2005; Pohekar and Ramachandran, 2006; Philibert, 2006; van der Gaast et al., 2009). Behavioral barriers are not limited to cooking devices. Power engineers and others working

in large energy supply companies are also reportedly resisting innovations such as DRES (van der Gaast, 2009). In United Kingdom, inconvenience and subsequent behavioral changes involved in adoption of DRES is reportedly preventing its adoption (Balcombe et al., 2013).

2.2.4.4. Potential Remedial Measures

For successful diffusion of DRES, it is necessary to address socio-cultural barriers faced by it. Suggested remedial measures and corresponding responsibility center(s) to address socio-cultural barriers are presented in Table 2.5.

In addition to the generic remedial measures listed in Table 2.5, few other casespecific remedial measures have been recommended to overcome socio-cultural barriers. For example, installation of solar home systems for public view in neighborhood of potential users has been advocated to increase awareness regarding the system in rural Nicaragua (Rebane and Barham, 2011). Similarly, Painuly (2001) has recommended demonstration programmes of DRES to reduce its risk perception among users. For Russia, Martinot (1999) recommends market intermediation and joint ventures with foreign corporations for enhanced information dissemination and demonstration experiences. It is also suggested that the policymakers should strive to improve public understanding of renewable energy systems (Sovacool, 2009). Increased women participation and adequate consideration of social equity for poor and marginalized mountain population are recommended for improved DRES dissemination programmes in mountainous areas of China, India, Nepal and Pakistan (Rijal, 1999).

From the above suggestions, we can conclude that surmounting socio-cultural barriers associated with the diffusion of DRES would need institutional support for participative and indigenous R&D, demonstration and awareness generation. Government may support these activities through academic and R&D institutions and NGOs.

Sub-barrier	Remedial measure(s)	Responsibility center(s)	Relevant reference(s)
Societal	Comprehensive	R&D institutions	Quadir et al., 1995;
structure,	assessment of the		Agarwal, 1983; Green,
norms and	perceived needs of the		1999; Barnett, 1990
value system	end user		
	Involvement of local	DRES related	Mondal et al., 2010;
	stakeholders in	policymaking and	Pohekar et al., 2005;
	planning and	implementation agency	Patlitzianas et al., 2006;
	promotion of DRES		Oikonomou et al., 37;
			Sidiras and Koukios,
			2004; Radulovic, 2005;
			Rosch and Kaltschmitt,
			1999; Michalena and
			Angeon, 2009
Awareness	Awareness generation	DRES related	Beck and Martinot, 2004;
and	or information	implementation agency,	Mondal et al., 2010; Rijal,
perception	dissemination	NGOs and academic	1999; Painuly, 2001;
	programmes	institutions	Owen, 2006; Pohekar and
			Ramachandran, 2006;
			Philibert, 2006; GNESD,
			2007; Srinivasan, 2008;
			Mirza, 2009; Doukas et
			al., 2009; Martin and
			Rice, 2012; Krupa, 2012;
			Prasertsan and
			Sajjakulnukit, 2006;
			Zyadin et al., 2014;
			Kassenga, 1997; Sidiras
			and Koukios, 2004;
			Kennedy and Basu,
			2013a; Ohunakin et al.,
			2014; Adhikari et al.,
			2008; Dorf, 1984;

Table 2.5: Potential remedial measures suggested to overcome the sub-barriers of socio-cultural barrier

Sub-barrier	Remedial measure(s)	Responsibility center(s)	Relevant reference(s)
			McCormick and
			Kaberger, 2007; Huacuz,
			2001; Ruble and El-
			Khoury, 2013; Rosch and
			Kaltschmitt, 1999;
			Mwirigi et al., 2009;
			Michalena and Angeon,
			2009; Muntasser et al.,
			2000; Kaldellis, 2005
	Demonstration	DRES related	Beck and Martinot, 2004;
	programmes	implementation agency,	Owen, 2006; Philibert,
		NGOs and academic	2006; Liu et al., 2013;
		institutions	Prasertsan and
			Sajjakulnukit, 2006;
			Adhikari et al., 2008;
			Njuguna, 1997
Behavioral or	Demonstration	DRES related	Owen, 2006; Philibert,
lifestyle	programmes	implementation agency,	2006; Njuguna, 1997
issues		NGOs and academic	
		institutions	

Table 2.5: Potential remedial measures suggested to overcome the sub-barriers of socio-cultural barrier (continued...)

2.2.5. Environmental Barriers

In comparison to conventional energy technologies, most of the renewable energy technologies are relatively better in terms of environmental emissions and are expected to promote environmental sustainability. However, environmental impacts of DRESs must be analyzed for their large scale diffusion (Sidiras and Koukios, 2004).

Environmental barriers with respect to DRES involve competition for natural resources (e.g., water and land for biomass and solar power) and pollution (e.g., noise and visual pollution in case of wind energy) (Painuly, 2001). For example,

non-availability of water has been reported to be one of the significant barriers to biogas engine utilization in India (Bhatia, 1990). A study on solar desalination plants in Israel has listed large land requirement as a major barrier (Sagie et al., 2001). Land issues affecting DRES have also been reported from Nigeria (Ohunakin, 2014). Environmental barrier is also significant to biomass gasifiers as it involves combustion, gasification and pyrolysis that release pollutants in the atmosphere (Jarach, 1989). Similarly, biogas and wind energy systems are also reported to have environmental concerns (Jarach, 1989). For example, leakage of biogas (mixture of methane, carbondioxide and hydrogen sulphide) pollutes

atmosphere and leads to global warming. Also, noise and odor have been reportedly hindering the usage of bioenergy technologies in United Kingdom (Adams et al., 2011). Wind energy installations are also facing environmental barriers as it negatively affects ecosystem (damage to flora and displacement of fauna such as migratory birds) (Oikonomou et al., 2009). Other environmental issues hindering wind energy are microwave interference, possibility of climate modification, noise, aesthetic (landscape) impact, bird collision and change of land use (Jarach, 1989; Nalan et al., 2009; Oikonomou et al., 2009; Krupa, 2012). Few other studies have also noted that aesthetic issues or its perception with respect to DRESs are acting as barriers (Zhang et al., 2012; Adams et al., 2011; Sidiras and Koukios, 2004; Margolis and Zuboy, 2006; Balcombe et al., 2013).

2.2.5.1. Potential Remedial Measures

Environmental barriers need to be assessed and addressed for improved diffusion of DRESs. Table 2.6 presents the suggested remedial measures and relevant responsibility center to address environmental barrier. Life cycle analysis (LCA)

Sub-barrier	Remedial measure and	Responsibility center(s)	Relevant
	reference(s)		reference(s)
Resources	Life cycle analysis of the	Environment protection	Stangeland, 2007
(land and	project	agency	
water),	R&D for development of	R&D institutions	Jarach, 1989
pollution,	efficient systems with		
aesthetics	minimum possible		
	footprint		
	Awareness generation	DRES related	Sidiras and Koukios,
	among stakeholders	implementation agency,	2004
		NGOs and academic	
		institutions	

Table 2.6: Potential remedial measures suggested to overcome the sub-barriers of environmental barrier

has been recommended for assessment of environmental impact of various DRES (Stangeland, 2007). For a given energy project, based on the results of LCA, the cleaner technology must be selected from a set of competing DRESs. Research for development of efficient technologies with minimum possible footprint and awareness generation campaigns regarding environmental/aesthetic issues of DRES are also recommended. Institutions that deal with environmental protection and R&D as well as academic institutions can play a major role in addressing environmental concerns associated with DRES projects.

2.3. Concluding Remarks

Diffusion of DRES may face variety of technical, economic, institutional, sociocultural and environmental barriers. As DRESs are off-grid systems that are generally adopted and used directly by the adopters, barriers corresponding to personal adoption decision are more critical. Therefore, inappropriateness of technology, unavailability of skilled manpower for maintenance, unavailability of spare parts, high cost, lack of access to credit, poor purchasing power and other spending priorities, unfair energy pricing, lack of information or awareness, and lack of operation and maintenance training are the most critical barriers impeding the dissemination of DRESs. Long-term conducive policies, appropriate regulatory framework, financial incentives (capital subsidies and soft loans) to users, technology and skill development, inclusion of externalities in the cost of energy, withdrawal of subsidies to fossil fuels, development of specialized institutions, cooperation with international agencies, participation of local community and awareness generation are the frequently prescribed measures for increased dissemination of DRES. It may be concluded that for accelerated diffusion of DRES, appropriate institutional arrangements are required to facilitate R&D, capacity building, conducive market, credit facilities and awareness generation. Role of DRES related policymaking and implementation agency, R&D institutions, NGOs and academic institutions would be crucial to overcome barriers to the promotion of DRES.

CHAPTER 3

ESTIMATION OF POTENTIAL OF DECENTRALIZED RENEWABLE ENERGY SYSTEMS IN UTTARAKHAND

3.1. Introduction

The characteristics of the state of Uttarakhand in India have already been discussed in detail in Chapter 1. Characteristics of the state indicate that the conditions in most areas of the state are not favorable for centralized power plants and grid extension because of hilly terrain, large forest cover and scattered and thinly populated villages. However, solar and biomass based DRESs may be the suitable options to fulfill energy demand in such areas of the state. In rural areas of the state, repair and maintenance concerns may support those DRESs that are either easy to maintain or are almost maintenance free. Based on ease of operation and maintenance and the characteristics of the state of Uttarakhand, it may be inferred that solar water heater, solar home system, solar lantern, solar cooker, solar dryer, solar PV pump, family size biogas plant and improved cookstove are the DRESs that could have significant potential in the state. An attempt to estimate the potential of using DRESs in the state has been made in this chapter.

3. 2. Frameworks for Estimation of Potential of using DRESs in Uttarakhand

This section presents frameworks developed for estimating the potential of some of the DRESs namely solar water heater, solar home system, solar lantern, solar cooker, solar dryer and solar PV pump, family size biogas plant and improved cookstove in Uttarakhand. The potential of these DRESs in Uttarakhand would depend on factors such as resource availability, perceived energy need and socioeconomic conditions of the adopter households such as purchasing power and awareness. Possibility of changes in: a) resource availability due to varying weather or climatic conditions, b) purchasing power due to higher income, provision of capital subsidy or soft loan, c) awareness levels of potential adopters indicate dynamic aspects of potential estimates. In this study, prevailing conditions with respect to climate, household income, capital subsidy and soft loan schemes have been considered for potential estimation of DRESs in Uttarakhand. Resource availability and energy need aspects have been discussed in subsequent sections as these are DRES specific. However, the impact of purchasing power and awareness on the adoption of all DRESs is more generic. Rural households in Uttarakhand have lesser purchasing power than their urban counterparts. Thus, in this study, the two (rural and urban households) have been considered separately. While developing the framework it has also been assumed that all potential users may not have the propensity to adopt (buy) a DRES because of differences in awareness, spending priorities, etc. and thus a factor of propensity to adopt (f_{pa}) has been included in the framework to accommodate the same.

3.2.1. Solar Energy based DRESs

As discussed in Chapter 1, in almost all districts of the state of Uttarakhand both the values of annual average GHI and DNI are greater than 5 kWh/m²/day. Hence, with sufficient resource availability, solar energy based DRES such as domestic solar water heater, solar home system, solar lantern, solar cooker, solar dryer and solar PV pump may be considered for use at almost all locations of the state. However, there may be issues with respect to access to solar radiation particularly in urban areas of the state with higher population density and more number of multi-storeyed buildings compared to the rural areas. On the other hand, houses in rural areas are scattered and seldom multi-storeyed and thus most of the rural households may have access to solar radiation.

3.2.1.1. Domestic Solar Water Heaters

Domestic solar water heaters (DSWHs) are used by households to meet their hot

water requirements for bathing and sometimes for cloth and dish washing as well. In India, people generally take bath during early morning hours. Areas having low ambient temperature during early morning hours and good solar radiation availability throughout the year are suitable for the usage of domestic solar water heaters. The following assumptions have been made in the study for estimating the utilization potential of domestic solar water heater in Uttarakhand:

- i. It is assumed that a household in Uttarakhand would take bath during 6-9 am.
- ii. Ambient temperatures are the lowest during the early morning hours (IMD, n.d.). As water has high specific heat compared to air, the stored water temperature would lag behind ambient air temperature after sunrise. Thus, it has been assumed in the study that the temperature of water stored in overhead tank between 6-9 am is same as the minimum ambient air temperature. Hence, water heating requirement at a location is gauged from the minimum ambient air temperature recorded for that place.
- iii. It is assumed that the areas in Uttarakhand that have monthly average minimum temperature less than 20 °C would need water heating during that month.
- iv. It is also assumed that the households located in the areas of the state that have monthly average minimum ambient air temperature less than 20 °C for seven months or more per year are potential users of DSWH [assumption based on Chandrasekar and Kandpal (2004)].
- v. The households of the state that have average monthly per capita expenditure (MPCE) higher than the MPCE required to adopt a DSWH are considered as the potential adopters. It is also assumed that such households would have houses (roof structure) and overhead water storage tanks that are suitable for the usage of DSWH.

With the above assumptions, the potential of DSWH in the state of Uttarakhand can be estimated using the following framework:

$$P_{dswh} = N_h \times \left[\left(f_{h(u)} \times f_{hdswh(u)} \times f_{a(u)} \times f_{ppdswh(u)} \right) + \left(f_{h(r)} \times f_{hdswh(r)} \times f_{a(r)} \times f_{ppdswh(r)} \right) \right] \times f_{pa}$$
(Eqn. 3.1)

where N_h represents the number of households in Uttarakhand, f_h the fraction of households in urban/rural areas of the state, f_{hdswh} the fraction of households situated in locations suitable for DSWH usage in urban/rural areas, f_a the fraction of households having access to solar radiation in urban/rural areas, f_{ppdswh} the fraction of households having the purchasing power to adopt DSWH in urban/rural areas, and f_{pa} the fraction of households having the propensity to adopt a DRES. Subscripts (u) and (r) are used in the framework to represent urban and rural areas respectively.

3.2.1.2. Solar Home Systems

Solar home systems (SHSs) can be used to meet basic lighting and other demands in un-electrified households located in remote places with difficulty in grid extension. In Uttarakhand, about 17% and 4% households are un-electrified in rural and urban areas respectively (ORGCC, n.d.). Such un-electrified households may adopt solar home systems. The following are the assumptions used in the study to estimate the potential of solar home system in Uttarakhand:

- i. As urban areas generally have better access to grid compared to rural areas, lack of access to grid electricity in urban households may not be due to grid unavailability. It may be due to regulatory issues related to the construction of the house or due to poor purchasing power of the household. Thus, un-electrified households in urban areas may prefer to opt for grid electricity whenever possible as against making an investment in SHS.
- ii. In rural areas, un-electrified households may not have electricity due to lack of access to grid infrastructure. Also, due to remote location and difficult terrain (forest, snow and hilly land) in rural areas of Uttarakhand, grid extension to the un-electrified villages may not be viable and thus

they may not be electrified in near future. Thus, these un-electrified rural households are potential adopters of solar home systems.

iii. The un-electrified rural households that have average MPCE higher than the MPCE required to adopt an SHS are considered as the potential adopters.

In view of the above, the potential of SHS in the state of Uttarakhand can be expressed as:

$$P_{shs} = N_h \times f_{h(r)} \times f_{ueh(r)} \times f_{a(r)} \times f_{ppshs(r)} \times f_{pa}$$
(Eqn. 3.2)

where $f_{ueh(r)}$ is the fraction of un-electrified households in rural Uttarakhand and $f_{ppshs(r)}$ the fraction of rural households having the purchasing power to adopt an SHS.

3.2.1.3. Solar Lanterns

A solar lantern can either be used for lighting in un-electrified households or as a back-up lighting source in electrified households. As solar lantern is mobile, it can also be used for lighting during outdoor activities. To estimate the potential of solar lanterns in Uttarakhand, the following assumptions have been used in the study:

- i. As an un-electrified household may adopt either SHS or solar lantern or both, it is necessary to avoid overlapping among the two. Thus, it is assumed that only those un-electrified rural households would adopt SHS that would have the purchasing power to buy an SHS. Among the rest, only those that have the purchasing power to buy a solar lantern would adopt the lantern.
- ii. In un-electrified urban households, due to availability of grid infrastructure in vicinity, the household would be more interested in getting grid electricity as it is economical compared to electricity

generated from SHS. Till the time it happens, it may consider adopting solar lantern as it is much cheaper compared to an SHS.

- iii. The rural areas of Uttarakhand may not have sufficient street lighting and thus venturing outdoors during night may be difficult for the people residing in such areas. In such cases, battery powered torch and solar lantern may be used for outdoor lighting. In this study, it is assumed that a small fraction of the total electrified rural households may prefer solar lantern as a mobile light source for outdoor activities during night.
- iv. Also, the electrified households in both urban and rural areas that face erratic power supply may consider adopting solar lantern as a backup lighting device. However, to avoid double counting of potential adopter households (electrified rural households may adopt solar lantern for outdoor lighting and/or to counter erratic power supply), this has not been considered in the study.
- v. All the households of the state (both rural and urban) that may adopt solar lantern and also have average MPCE higher than the MPCE required to adopt a solar lantern are considered as the potential adopters.

With the above assumptions, the potential of solar lantern in the state of Uttarakhand can be expressed as:

$$P_{sl} = N_h \times \left[\left(f_{h(u)} \times f_{ueh(u)} \times f_{a(u)} \times f_{ppsl(u)} \right) + \left(f_{h(r)} \times f_{ueh(r)} \times f_{a(r)} \times \left(1 - f_{ppshs(r)} \right) \times f_{ppsl(r)} \right) + \left(f_{h(r)} \times \left(1 - f_{ueh(r)} \right) \times f_{sl(r)} \times f_{a(r)} \times f_{ppsl(r)} \right) \right] \times f_{pa}$$
(Eqn. 3.3)

where f_{ueh} is the fraction of unelectrified households in urban/rural areas, f_{ppsl} the fraction of households in urban/rural areas having the purchasing power to adopt solar lantern and $f_{sl(r)}$ the fraction of electrified rural households that may prefer solar lantern for outdoor lighting.

3.2.1.4. Dish Type (Paraboloid) Solar Cookers

A dish type solar cooker uses the direct component of solar radiation to meet the heat energy demand for cooking. Solar cookers are likely to be more suitable to cook lunch. Solar cookers are available in different sizes to satisfy a household or community cooking energy needs. In India, solar cookers have been used for boiling type cooking activities. However, modern day Scheffler solar cookers can perform all types of cooking (both boiling and frying) but they are costlier. Usage of paraboloid solar cooker at households may involve the following challenges: a) lifestyle changes (cooking outdoor under sun); b) inconvenience and complexity as the cooker need to track the sun; c) cooker can't be used for preparing meal in the evening and night due to lack of solar radiation; d) restrictions with respect to type of cooking (frying may not be performed in all solar cookers). Also, urban households may not have the required space and/or access to solar radiation. Similarly, rural households cooking with low cost fuel wood may not see solar cooker as a viable option. Above all, even if households (both urban and rural) adopt solar cooker, they need to necessarily have a complimentary cooking device to meet cooking energy needs during the period when solar radiation is low or unavailable. Due to these challenges, individual households may be reluctant to adopt solar cookers. However, solar cooker enthusiasts can utilize it at household level for cooking rice, lentils and vegetable and preparing tea and coffee during daytime.

In India, usage of solar cooker at community level has been reported from several temples and schools e.g. Shri Saibaba Sansthan, Shirdi, Maharashtra (MEDA, n.d.). Government of India has been running mid-day meal scheme in primary and secondary schools for several years. The meal prescribed involves rice, lentil and egg and all these involve boiling. The prescribed meal time is also around noon time. With requirement of boiling type cooking around noon time, mid-day meal scheme provide a suitable opportunity for usage of solar cooker at community

level. Teachers or staff of the school can take care of the tracking requirements associated with solar cooker. Moreover, usage of solar cooker at schools would have demonstration effect on the students that may encourage them to promote solar cooker among their friends and relatives. Thus, the study focusses on the use of solar cookers at schools in Uttarakhand and assumes that all mid-day meal serving schools of the state are potential adopters of solar cooker. Thus, the expression used to estimate the potential of solar cookers (community) in Uttarakhand is:

$$P_{sc} = N_{smdms} \times A_{sc} \tag{Eqn. 3.4}$$

where N_{smdms} represents the number of schools covered under mid-day meal scheme in the state and A_{sc} the average number of solar cooker installed per school.

3.2.1.5. Solar Dryers

Solar dryers are used for crop drying to improve its shelf life as with reduced moisture content, it can be preserved for longer period. With about 70% of the rural population of Uttarakhand engaged in agriculture (as main or marginal worker) and sufficient solar radiation (GHI) availability, solar dryers have significant potential in the state. However, due to small landholdings per household, household dryers may face low capacity utilization and thus may not be economical. This study considers potential adoption of solar dryers at community level in Uttarakhand and the assumptions used for estimation of its potential are:

- i. A community solar dryer would be used per 25 households in the villages of Uttarakhand.
- ii. As villages have been classified as per population range, average population of the villages and average household size would be considered for the estimation of number of households in the villages.

- iii. Only one solar dryer would be used if the number of households in a village is less than 25. For other cases, the number of dryers in a village would be rounded off to the nearest whole number.
- iv. The issue pertaining to purchasing power has not been considered in this case since for community scale use, other appropriate financing modalities could be adopted.

With the above mentioned assumptions, the potential of solar dryer (community) in the state of Uttarakhand is estimated as:

$$P_{sd} = \sum_{i} N_{vpr_i} \times \frac{AP_{vpr_i}}{AHS_{(r)} \times 25}$$
(Eqn. 3.5)

where N_{vpr_i} is the number of villages in the ith population range category, AP_{vpr_i} the average population of villages in ith population range category and $AHS_{(r)}$ the average household size in rural Uttarakhand.

3.2.1.6. Solar PV Pumps

As solar PV pump is a costly device (₹ 3 lakhs for a 2 HP pump with 1800 W_p PV system) (Project Officer of Uttarakhand Renewable Energy Development Agency, Personal Communication, May 11, 2014), these may not be used by individual households in electrified areas. Even in un-electrified areas (generally remote rural areas), due to its high cost and low purchasing power of households, it may not be preferred by households for personal use. However, in un-electrified remote areas, it may be utilized for community managed domestic use or irrigation water supply. As domestic use of water (including drinking) is of higher priority, in this study community usage of solar PV pump for domestic water supply in un-electrified areas has been considered. The assumptions used to estimate the potential of solar PV pump in Uttarakhand are:

i. As per UPCL, the un-electrified villages in Uttarakhand have difficult terrain and are surrounded by dense forests, steep hills or snowbound

areas. It is assumed that such villages would have a natural water stream or an artificial water reservoir (created by rain water harvesting).

- ii. With sufficient solar radiation availability, a solar pump in the unelectrified villages would supply water from the stream/reservoir to the households.
- iii. As solar PV pump would be dedicated to community drinking water supply, the issue pertaining to purchasing power has not been considered in the study as for community usage, other appropriate financing modalities could be adopted.

In view of above assumptions, the potential of solar PV pump in Uttarakhand can be expressed as:

$$P_{pvp} = N_{uev} \tag{Eqn. 3.6}$$

where N_{uev} is the number of un-electrified villages in the state.

3.2.2. Biomass based DRESs

In Chapter 1, characteristics of Uttarakhand with respect to forest cover, engagement or rural population in agriculture, cattle holding per household and usage of biomass for cooking in rural households indicate adequate biomass availability in Uttarakhand. Thus, biomass based DRESs such as family size biogas plants and improved cookstoves may be promoted among the households in the state of Uttarakhand.

3.2.2.1. Family Size Biogas Plants

Family size biogas plants (FSBPs) are generally used in rural households that have adequate cattle holding to feed cattle dung to the plant and sufficient open land adjacent to the house for the installation of the biogas plant. Also, it has been reported that biogas generation falls significantly at low temperatures and biogas plants are reported to be unviable in low temperature regions (annual mean temperature < 20 °C) (GTZ, n.d.). It is also reported that minimum of 2-3 cattle are required to generate sufficient cow dung for satisfactory operation of a family size biogas plant (Singh and Sooch, 2004). The following are the assumptions used in the study to estimate the potential of family size biogas plant in Uttarakhand:

- i. The locations in Uttarakhand that have annual mean temperature ≥ 20 °C are suitable locations for installation of biogas plant.
- The rural households that are located in the suitable locations and have a minimum cattle holding of 2-3 cattle are the potential users of family size biogas plants.
- iii. All the potential users may adopt family size biogas plants provided they have sufficient land for installation of the plant and average MPCE higher than the MPCE required to adopt it.
- iv. As the hilly areas of Uttarakhand are ruled out for biogas plant usage due to low annual mean temperatures, it is also assumed that all potential users of family size biogas plants (generally located in plain areas of Uttarakhand) have sufficient water availability to prepare slurry for family size biogas plants.

In view of above considerations, the potential of family size biogas plants in Uttarakhand can be expressed as:

$$P_{bp} = N_{h(r)} \times f_{sh(r)} \times f_{l(r)} \times (1 - f_{idh(r)}) \times f_{ppbp(r)} \times f_{pa}$$
(Eqn. 3.7)

where $f_{sh(r)}$ is the fraction of suitable households in rural areas that satisfy both temperature and cattle holding criteria, $f_{l(r)}$ the fraction of rural households that have adequate land adjacent to the house, $f_{idh(r)}$ the fraction of suitable households that may not have adequate cow dung due to inefficient collection, and $f_{ppbp(r)}$ the fraction of rural households having the purchasing power to adopt a family size biogas plant.

3.2.2.2. Improved Biomass Cookstoves

In comparison to traditional biomass cookstoves, improved biomass cookstoves have higher thermal efficiency and thus consumes lesser biomass as fuel. It is convenient for a traditional cookstove user to switch to improved cookstove as it wouldn't require any lifestyle changes. Unlike other DRESs, apart from its primary function (cooking), traditional biomass cookstoves may also be fulfilling other perceived needs of the users such as room heating, lighting, mosquito control, etc. Hence, satisfaction of perceived needs of the users is critical to the adoption of improved biomass cookstoves. Thus, it is assumed that all the households currently using biomass (firewood and crop residue) for cooking may switch to improved biomass cookstoves provided it satisfies the perceived needs of the potential users and the users have the purchasing power to adopt it. The potential of improved cookstoves in Uttarakhand can be expressed as:

$$P_{ic} = N_h \times \left[\left(f_{h(u)} \times f_{bch(u)} \times f_{ppic(u)} \right) + \left(f_{h(r)} \times f_{bch(r)} \times f_{ppic(r)} \right) \right] \times f_{spn} \times f_{pa}$$
(Eqn. 3.8)

where f_{bch} represents the fraction of households in urban/rural areas of the state using biomass for cooking, f_{ppic} the fraction of households having the purchasing power to adopt improved cookstove in urban/rural areas and f_{spn} the fraction of households whose perceived needs are fulfilled by improved biomass cookstoves.

3.3. Results and Discussion

Using the framework outlined earlier, the potential of aforementioned DRESs in Uttarakhand have been estimated. Results and analysis regarding the potential estimation of the DRESs have been presented in this section.

3.3.1. Domestic Solar Water Heaters

Uttarakhand is a hilly state and the elevation levels of locations vary significantly from one location to another. Varying elevation levels impact the ambient temperature of the location. As hot water demand for bathing is assumed to depend on monthly averaged minimum ambient temperature, this study has collected temperature data at sub-district (tehsil) level of the state to internalize the impact of elevation on ambient temperature. List of sub-districts in Uttarakhand has been taken from Census of India, 2011. Based on the latitude and longitude of sub-districts (tehsil), monthly average minimum ambient temperature of the locations has been obtained from (NASA, n.d.). Table 3.1 presents the sub-districts of Uttarakhand that have monthly average minimum ambient temperature less than 20 °C for seven months or more in a year. The number of households located in areas suitable for DSWH usage are presented in Table 3.1 and the same has been used to estimate the values of $f_{hdswh(u)}$ and $f_{hdswh(r)}$. The approach followed to estimate the fraction of rural and urban households having the purchasing power to adopt a DRES like DSWH is presented in Appendix I.

District	Suitable sub-	Rural	Urban
	districts	households	households
Uttarkashi	Puraula	6521	0
Uttarkashi	Mori	7473	0
Uttarkashi	Rajgarhi	12103	1509
Uttarkashi	Dunda	12493	0
Uttarkashi	Chiniyalisaur	9974	0
Uttarkashi	Bhatwari	13350	4179
Chamoli	Joshimath	7610	4748
Chamoli	Chamoli	16328	5914
Chamoli	Pokhari	8244	0
Chamoli	Karnaprayag	9220	3984
Chamoli	Tharali	19739	0
Chamoli	Gairsain	13177	0
Rudraprayag	Ukhimath	18227	297
Rudraprayag	Rudraprayag	19134	2363
Rudraprayag	Jakholi	13521	0
Tehri Garhwal	Ghansali	25127	0
Tehri Garhwal	Devprayag	21397	913
Tehri Garhwal	Pratapnagar	14773	0
Tehri Garhwal	Jakhanidhar	7955	0
Tehri Garhwal	Tehri	18773	8146
Tehri Garhwal	Dhanaulti	12409	0
Tehri Garhwal	Narendra Nagar	15257	7964

Table 3.1: Estimation of number of households in Uttarakhand with perceived need for water heating (ORGCC, n.d.)

districts households households Dehradun Tyuni 4715 0 Dehradun Kalsi 6421 0 Dehradun Dehradun 144112 202889 Dehradun Rishikesh 28284 26233 Garhwal Srinagar 8159 4669 Garhwal Pauri 27830 6304 Garhwal Dhoomakot 9600 0 Garhwal Dhoomakot 9600 0 Garhwal Satpuli 8106 0 Garhwal Satpuli 8106 0 Garhwal Yamkeshwar 8759 1085 Pithoragarh Munsiari 11285 0 Pithoragarh Dharchula 13002 1712 Pithoragarh Berinag 12386 0 Pithoragarh Gangolihat 16412 0 Bageshwar Kanda 6342 0 Bageshwar Garud 15192 0	·	tor notiting (ortoe		,
Dehradun Chakrata 5399 759 Dehradun Tyuni 4715 0 Dehradun Dehradun 144112 202889 Dehradun Rishikesh 28284 26233 Garhwal Srinagar 8159 4669 Garhwal Pauri 27830 6304 Garhwal Thailisain 19679 0 Garhwal Dhoomakot 9600 0 Garhwal Lansdowne 17632 1200 Garhwal Satpuli 8106 0 Garhwal Chaubattakhal 9539 0 Garhwal Yamkeshwar 8759 1085 Pithoragarh Munsiari 11285 0 Pithoragarh Dharchula 13002 1712 Pithoragarh Gangolihat 16412 0 Pithoragarh Gangolihat 16412 0 Bageshwar Kapkot 13909 0 Bageshwar Garud 15192	District	Suitable sub-	Rural	Urban
Dehradun Tyuni 4715 0 Dehradun Kalsi 6421 0 Dehradun Dehradun 144112 202889 Dehradun Rishikesh 28284 26233 Garhwal Srinagar 8159 4669 Garhwal Pauri 27830 6304 Garhwal Thailisain 19679 0 Garhwal Lansdowne 17632 1200 Garhwal Satpuli 8106 0 Garhwal Satpuli 8106 0 Garhwal Chaubattakhal 9539 0 Garhwal Yamkeshwar 8759 1085 Pithoragarh Munsiari 11285 0 Pithoragarh Didihat 17613 2011 Pithoragarh Berinag 12386 0 Pithoragarh Garud 13909 0 Bageshwar Kapkot 13909 0 Bageshwar Garud 15192 0 </td <td></td> <td>districts</td> <td></td> <td></td>		districts		
Dehradun Kalsi 6421 0 Dehradun Dehradun 144112 202889 Dehradun Rishikesh 28284 26233 Garhwal Srinagar 8159 4669 Garhwal Pauri 27830 6304 Garhwal Thailisain 19679 0 Garhwal Dhoomakot 9600 0 Garhwal Lansdowne 17632 1200 Garhwal Satpuli 8106 0 Garhwal Chaubattakhal 9539 0 Garhwal Yamkeshwar 8759 1085 Pithoragarh Munsiari 11285 0 Pithoragarh Dharchula 13002 1712 Pithoragarh Gangolihat 16412 0 Pithoragarh Gangolihat 16412 0 Bageshwar Kapkot 13909 0 Bageshwar Kapkot 13909 0 Bageshwar Bageshwar 20549	Dehradun	Chakrata	5399	759
Dehradun Dehradun 144112 202889 Dehradun Rishikesh 28284 26233 Garhwal Srinagar 8159 4669 Garhwal Pauri 27830 6304 Garhwal Thailisain 19679 0 Garhwal Dhoomakot 9600 0 Garhwal Lansdowne 17632 1200 Garhwal Satpuli 8106 0 Garhwal Satpuli 8106 0 Garhwal Chaubattakhal 9539 0 Garhwal Yamkeshwar 8759 1085 Pithoragarh Munsiari 11285 0 Pithoragarh Didihat 17613 2011 Pithoragarh Bidihat 17613 2011 Pithoragarh Pithoragarh 26273 14036 Bageshwar Kapkot 13909 0 Bageshwar Bageshwar 2054 Bageshwar Bageshwar Garud 15192 </td <td>Dehradun</td> <td>Tyuni</td> <td>4715</td> <td>0</td>	Dehradun	Tyuni	4715	0
Dehradun Rishikesh 28284 26233 Garhwal Srinagar 8159 4669 Garhwal Pauri 27830 6304 Garhwal Thailisain 19679 0 Garhwal Dhoomakot 9600 0 Garhwal Lansdowne 17632 1200 Garhwal Satpuli 8106 0 Garhwal Chaubattakhal 9539 0 Garhwal Yamkeshwar 8759 1085 Pithoragarh Munsiari 11285 0 Pithoragarh Didihat 17613 2011 Pithoragarh Berinag 12386 0 Pithoragarh Gangolihat 16412 0 Pithoragarh Pithoragarh 20549 2054 Bageshwar Kapkot 13909 0 Bageshwar Garud 15192 0 Almora Bhikiasain 16994 0 Almora Sult 12778 0	Dehradun			0
Garhwal Srinagar 8159 4669 Garhwal Pauri 27830 6304 Garhwal Thailisain 19679 0 Garhwal Dhoomakot 9600 0 Garhwal Lansdowne 17632 1200 Garhwal Satpuli 8106 0 Garhwal Chaubattakhal 9539 0 Garhwal Yamkeshwar 8759 1085 Pithoragarh Munsiari 11285 0 Pithoragarh Dharchula 13002 1712 Pithoragarh Berinag 12386 0 Pithoragarh Gangolihat 16412 0 Pithoragarh Pithoragarh 26273 14036 Bageshwar Kapkot 13909 0 Bageshwar Kapkot 13909 0 Bageshwar Garud 15192 0 Almora Bhikiasain 16994 0 Almora Sult 12778 0 <td>Dehradun</td> <td>Dehradun</td> <td>144112</td> <td>202889</td>	Dehradun	Dehradun	144112	202889
Garhwal Pauri 27830 6304 Garhwal Thailisain 19679 0 Garhwal Dhoomakot 9600 0 Garhwal Lansdowne 17632 1200 Garhwal Satpuli 8106 0 Garhwal Chaubattakhal 9539 0 Garhwal Yamkeshwar 8759 1085 Pithoragarh Dharchula 13002 1712 Pithoragarh Dharchula 13002 1712 Pithoragarh Berinag 12386 0 Pithoragarh Gangolihat 16412 0 Pithoragarh Pithoragarh 20547 14036 Bageshwar Kapkot 13909 0 Bageshwar Garud 15192 0 Almora Bhikiasain 16994 0 Almora Chaukhutiya 10832 0 Almora Someshwar 9697 0 Almora Jainti 6349	Dehradun	Rishikesh	28284	26233
GarhwalThailisain196790GarhwalDhoomakot96000GarhwalLansdowne176321200GarhwalSatpuli81060GarhwalChaubattakhal95390GarhwalYamkeshwar87591085PithoragarhMunsiari112850PithoragarhDharchula130021712PithoragarhDidihat176132011PithoragarhBerinag123860PithoragarhGangolihat164120PithoragarhGangolihat164120PithoragarhPithoragarh2627314036BageshwarKapkot139090BageshwarKanda63420BageshwarGarud151920AlmoraBhikiasain169940AlmoraChaukhutiya108320AlmoraSult127780AlmoraDwarahat12419668AlmoraJainti63490AlmoraBhanoli121670Champawat1073011721172ChampawatLohaghat166031846ChampawatLohaghat166031846ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalNainital1874812842NainitalKaladhungi105851431Udham SinghBajpur26	Garhwal	Srinagar	8159	4669
GarhwalDhoomakot96000GarhwalLansdowne176321200GarhwalSatpuli81060GarhwalChaubattakhal95390GarhwalYamkeshwar87591085PithoragarhMunsiari112850PithoragarhDharchula130021712PithoragarhDidihat176132011PithoragarhBerinag123860PithoragarhGangolihat164120PithoragarhGangolihat164120PithoragarhPithoragarh2627314036BageshwarKapkot139090BageshwarKanda63420BageshwarGarud151920AlmoraBhikiasain169940AlmoraSult127780AlmoraSomeshwar96970AlmoraJainti63490AlmoraJainti63490AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKaladhungi138360NainitalNainital1874812842NainitalHaldwani2426350012NainitalHaldwani2426350012NainitalHaldwani242635	Garhwal	Pauri	27830	6304
GarhwalLansdowne176321200GarhwalSatpuli81060GarhwalChaubattakhal95390GarhwalYamkeshwar87591085PithoragarhMunsiari112850PithoragarhDharchula130021712PithoragarhDidihat176132011PithoragarhBerinag123860PithoragarhGangolihat164120PithoragarhPithoragarh2627314036BageshwarKapkot139090BageshwarKanda63420BageshwarGarud151920AlmoraBhikiasain169940AlmoraSult127780AlmoraSomeshwar264179940AlmoraSomeshwar96970AlmoraJainti63490AlmoraBhanoli121670ChampawatLohaghat166031846ChampawatLohaghat166031846ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalNainital1874812842NainitalNainital18360NainitalHaldwani2426350012NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Garhwal	Thailisain	19679	0
GarhwalSatpuli81060GarhwalChaubattakhal95390GarhwalYamkeshwar87591085PithoragarhMunsiari112850PithoragarhDharchula130021712PithoragarhDidihat176132011PithoragarhBerinag123860PithoragarhGangolihat164120PithoragarhPithoragarh2627314036BageshwarKapkot139090BageshwarKanda63420BageshwarBageshwar205492054BageshwarGarud151920AlmoraBhikiasain169940AlmoraSult127780AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraJainti63490AlmoraBhanoli121670AlmoraBhanoli121670ChampawatChampawat107301172ChampawatLohaghat166031846ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalNainital1874812842NainitalNainital138360NainitalDhari138360NainitalDhari138360NainitalHaldwani2426350012NainitalHaldwani242635	Garhwal	Dhoomakot	9600	0
GarhwalChaubattakhal95390GarhwalYamkeshwar87591085PithoragarhMunsiari112850PithoragarhDharchula130021712PithoragarhDidihat176132011PithoragarhBerinag123860PithoragarhGangolihat164120PithoragarhPithoragarh2627314036BageshwarKapkot139090BageshwarKanda63420BageshwarBageshwar205492054BageshwarGarud151920AlmoraBhikiasain169940AlmoraChaukhutiya108320AlmoraSult127780AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraJainti63490AlmoraJainti63490AlmoraJainti63490AlmoraJainti63490AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatPoornagiri99415194NainitalKasya Kutauli64800NainitalBetalghat43570NainitalNainital1874812842NainitalDhari138360NainitalDhari138360Nai	Garhwal	Lansdowne	17632	1200
GarhwalYamkeshwar87591085PithoragarhMunsiari112850PithoragarhDharchula130021712PithoragarhDidihat176132011PithoragarhBerinag123860PithoragarhGangolihat164120PithoragarhPithoragarh2627314036BageshwarKapkot139090BageshwarKanda63420BageshwarBageshwar205492054BageshwarGarud151920AlmoraBhikiasain169940AlmoraChaukhutiya108320AlmoraSult127780AlmoraBukiasain12419668AlmoraDwarahat12419668AlmoraJainti63490AlmoraJainti63490AlmoraBhanoli121670ChampawatLohaghat166031846ChampawatLohaghat166031846ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalNainital1874812842NainitalDhari138360NainitalDhari138360NainitalDhari138360NainitalHaldwani2426350012NainitalHaldwani2426350012NainitalHaldwani2426350	Garhwal	Satpuli	8106	0
PithoragarhMunsiari112850PithoragarhDharchula130021712PithoragarhDidihat176132011PithoragarhBerinag123860PithoragarhGangolihat164120PithoragarhPithoragarh2627314036BageshwarKapkot139090BageshwarBageshwar205492054BageshwarGarud151920AlmoraBhikiasain169940AlmoraChaukhutiya108320AlmoraSult127780AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraJainti63490AlmoraSomeshwar96970AlmoraBhanoli121670ChampawatChampawat107301172ChampawatLohaghat166031846ChampawatLohaghat166031846ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalNainital1874812842NainitalNainital1874812842NainitalHaldwani2426350012NainitalHaldwani2426350012NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Garhwal	Chaubattakhal	9539	0
PithoragarhDharchula130021712PithoragarhDidihat176132011PithoragarhBerinag123860PithoragarhGangolihat164120PithoragarhPithoragarh2627314036BageshwarKapkot139090BageshwarBageshwar205492054BageshwarGarud151920AlmoraBhikiasain169940AlmoraChaukhutiya108320AlmoraSult127780AlmoraBanikhet175564760AlmoraDwarahat12419668AlmoraJainti63490AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatLohaghat166031846ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalNainital1874812842NainitalNainital138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Garhwal	Yamkeshwar	8759	1085
PithoragarhDidihat176132011PithoragarhBerinag123860PithoragarhGangolihat164120PithoragarhPithoragarh2627314036BageshwarKapkot139090BageshwarKanda63420BageshwarBageshwar205492054BageshwarGarud151920AlmoraBhikiasain169940AlmoraChaukhutiya108320AlmoraSult127780AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraJainti63490AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalNainital1874812842NainitalNainital1874812842NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Pithoragarh	Munsiari	11285	0
PithoragarhBerinag123860PithoragarhGangolihat164120PithoragarhPithoragarh2627314036BageshwarKapkot139090BageshwarKanda63420BageshwarBageshwar205492054BageshwarGarud151920AlmoraBhikiasain169940AlmoraChaukhutiya108320AlmoraSult127780AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraAlmora264179940AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatChampawat166031846ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Pithoragarh	Dharchula	13002	1712
PithoragarhGangolihat164120PithoragarhPithoragarh2627314036BageshwarKapkot139090BageshwarKanda63420BageshwarBageshwar205492054BageshwarGarud151920AlmoraBhikiasain169940AlmoraChaukhutiya108320AlmoraSult127780AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraAlmora264179940AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatPati84670ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Pithoragarh	Didihat	17613	2011
PithoragarhPithoragarh2627314036BageshwarKapkot139090BageshwarKanda63420BageshwarBageshwar205492054BageshwarGarud151920AlmoraBhikiasain169940AlmoraChaukhutiya108320AlmoraSult127780AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraDwarahat12419668AlmoraSomeshwar96970AlmoraBhanoli121670ChampawatChampawat107301172ChampawatChampawat166031846ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalBetalghat43570NainitalDhari138360NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Pithoragarh	Berinag	12386	0
BageshwarKapkot139090BageshwarKanda63420BageshwarBageshwar205492054BageshwarGarud151920AlmoraBhikiasain169940AlmoraChaukhutiya108320AlmoraSult127780AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraDwarahat12419668AlmoraSomeshwar96970AlmoraBhanoli121670ChampawatChampawat107301172ChampawatChampawat166031846ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalBetalghat43570NainitalDhari138360NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Pithoragarh	Gangolihat	16412	0
BageshwarKanda63420BageshwarBageshwar205492054BageshwarGarud151920AlmoraBhikiasain169940AlmoraChaukhutiya108320AlmoraSult127780AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraDwarahat12419668AlmoraAlmora264179940AlmoraJainti63490AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatLohaghat166031846ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Pithoragarh	Pithoragarh	26273	14036
BageshwarBageshwar205492054BageshwarGarud151920AlmoraBhikiasain169940AlmoraChaukhutiya108320AlmoraSult127780AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraAlmora264179940AlmoraAlmora264179940AlmoraSomeshwar96970AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Bageshwar	Kapkot	13909	0
BageshwarGarud151920AlmoraBhikiasain169940AlmoraChaukhutiya108320AlmoraSult127780AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraDwarahat12419668AlmoraAlmora264179940AlmoraSomeshwar96970AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalDhari138360NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Bageshwar	Kanda	6342	0
AlmoraBhikiasain169940AlmoraChaukhutiya108320AlmoraSult127780AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraAlmora264179940AlmoraSomeshwar96970AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Bageshwar	Bageshwar	20549	2054
AlmoraChaukhutiya108320AlmoraSult127780AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraAlmora264179940AlmoraSomeshwar96970AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Bageshwar	Garud	15192	0
AlmoraSult127780AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraAlmora264179940AlmoraSomeshwar96970AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalNainital138360NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Almora	Bhikiasain	16994	0
AlmoraRanikhet175564760AlmoraDwarahat12419668AlmoraAlmora264179940AlmoraSomeshwar96970AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalNainital138360NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Almora	Chaukhutiya	10832	0
AlmoraDwarahat12419668AlmoraAlmora264179940AlmoraSomeshwar96970AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalBetalghat43570NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Almora	Sult	12778	0
AlmoraAlmora264179940AlmoraSomeshwar96970AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalBetalghat43570NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Almora	Ranikhet	17556	4760
AlmoraSomeshwar96970AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalBetalghat43570NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Almora	Dwarahat	12419	668
AlmoraJainti63490AlmoraBhanoli121670ChampawatChampawat107301172ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalBetalghat43570NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Almora	Almora	26417	9940
AlmoraBhanoli121670ChampawatChampawat107301172ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalBetalghat43570NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Almora	Someshwar	9697	0
ChampawatChampawat107301172ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalBetalghat43570NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Almora	Jainti	6349	0
ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalBetalghat43570NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Almora	Bhanoli	12167	0
ChampawatPati84670ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalBetalghat43570NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Champawat	Champawat	10730	1172
ChampawatLohaghat166031846ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalBetalghat43570NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	_		8467	0
ChampawatPoornagiri99415194NainitalKosya Kutauli64800NainitalBetalghat43570NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186	Champawat	Lohaghat	16603	1846
NainitalKosya Kutauli64800NainitalBetalghat43570NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186				
NainitalBetalghat43570NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186NagarAltageAltageAltage			6480	0
NainitalNainital1874812842NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham Singh NagarBajpur261378186	Nainital		4357	0
NainitalDhari138360NainitalHaldwani2426350012NainitalKaladhungi105851431Udham Singh NagarBajpur261378186		-	18748	12842
NainitalHaldwani2426350012NainitalKaladhungi105851431Udham SinghBajpur261378186Nagar				
NainitalKaladhungi105851431Udham Singh NagarBajpur261378186				50012
Udham Singh Bajpur 26137 8186 Nagar 8186				
Nagar				
	U			
		useholds	1029359	399020

Table 3.1: Estimation of number of households in Uttarakhand with perceived need for water heating (ORGCC, n.d.) (continued...)

Input values used to estimate the potential of DSWH and the results have been presented in Table 3.2. For estimation, evacuated tube collector (ETC) based DSWH has been considered as it is comparatively cheaper and the current adoption trend in Uttarakhand indicates that ETC DSWH has been preferred over flat plate cFollector (FPC) type. By using the input values and the relevant framework (equation 3.1), the potential of ETC based 100 liters per day (LPD) DSWH has been estimated. Results indicate that DSWH has significant potential in Uttarakhand. It may also be noted from Table 3.2 that in comparison to capital subsidy, soft loan mode of financial support is more effective for large scale adoption of DSWH as the households can repay in smaller installments spread over 5 years. Thus, soft loan improves the purchasing power of households and its impact on purchasing power is very prominent in rural households that generally have lower purchasing power. Hence, it can be inferred that in comparison to capital subsidy mode, soft loan would be more effective in promoting large scale diffusion of DSWH.

3.3.2. Solar Home Systems

As per the framework, equation 3.2 has been used to estimate the potential of SHS in Uttarakhand. In addition to the input values of N_h , $f_{h(r)}$, $f_{a(r)}$ and f_{pa} that has been used in earlier section, other relevant input values and the results have been presented in Table 3.3. In Uttarakhand, during the year 2014-15, capital subsidy on SHS and solar lantern has been revised to 30% of the benchmark cost from erstwhile 90% capital subsidy (MNRE, 2014b). As expected, the current scheme of 30% capital subsidy on SHS has significantly reduced its potential users. Results also indicate that soft loan is a better financing option to promote widespread usage of SHS.

Parameter	Unit	Value	Reference / assumption / estimation
Total number of households (N _b)	Number	1997068	ORGCC, n.d.
Fraction of households in urban areas $(f_{h(u)})$	Fraction	0.30	ORGCC, n.d.
Fraction of households in rural areas $(f_{h(r)})$	Fraction	0.70	ORGCC, n.d.
Fraction of suitable households in urban	Fraction	0.67	Estimation
areas (f _{hdswh(u)})			
Fraction of suitable households in rural areas	Fraction	0.73	Estimation
(f _{hdswh(r)})			
Fraction of urban households having access	Fraction	0.75	Assumption
to solar radiation $(f_{a(u)})$			1
Fraction of rural households having access to	Fraction	1.00	Assumption
solar radiation $(f_{a(r)})$			1
Fraction of urban households having the	Fraction	0.30	Estimation
purchasing power to adopt an ETC based			
DSWH with capital subsidy (60% on			
benchmark cost) $(f_{ppdswh(u)})$			
Fraction of rural households having the	Fraction	0.07	Estimation
purchasing power to adopt an ETC based			
DSWH with capital subsidy (60% on			
benchmark cost) (f _{ppdswh(r)})			
Fraction of urban households having the	Fraction	0.50	Estimation
purchasing power to adopt an ETC based			
DSWH with soft loan (20% margin money,			
loan on 80% of cost at 5% interest rate for 5			
years) $(f_{ppdswh(u)})$			
Fraction of rural households having the	Fraction	0.26	Estimation
purchasing power to adopt an ETC based			
DSWH with soft loan (20% margin money,			
loan on 80% of cost at 5% interest rate for 5			
years) $(f_{ppdswh(r)})$			
Fraction of households having propensity to	Fraction	0.70	Assumption
adopt DRES (f _{pa})			
Potential of ETC type DSWH with capital	Number	113284	Estimation
subsidy			
Potential of ETC type DSWH with soft loan	Number	292086	Estimation

Table 3.2: Input values and results for estimation of potential of 100 LPD ETC type DSWH in

Uttarakhand

Parameter	Unit	Value	Reference / assumption / estimation
Fraction of un-electrified households in rural areas $(f_{ueh(r)})$	Fraction	0.17	ORGCC, n.d.
Fraction of rural households having the purchasing power to adopt an SHS with capital subsidy (30% on benchmark cost) (f _{ppshs(r)})	Fraction	0.07	Estimation
Fraction of rural households having the purchasing power to adopt an SHS with soft loan (20% margin money, loan on 80% of cost at 5% interest rate for 5 years) (f _{ppshs(r)})	Fraction	0.47	Estimation
Fraction of rural households having the purchasing power to adopt an SHS with capital subsidy (90% on benchmark cost) (f _{ppshs(r)})	Fraction	0.75	Estimation
Potential of SHS with capital subsidy (30% on benchmark cost)	Number	12157	Estimation
Potential of SHS with soft loan	Number	78055	Estimation
Potential of SHS with capital subsidy (90% on benchmark cost)	Number	124326	Estimation

Table 3.3: Input values and results for estimation of potential of SHS in Uttarakhand

3.3.3. Solar Lanterns

In accordance with the framework, equation 3.3 has been used to estimate the potential of solar lantern in Uttarakhand. Apart from the relevant input values cited earlier, other desired values and the results have been presented in Table 3.4. The study has estimated the potential of solar lantern with current capital subsidy scheme (30% of benchmark cost), erstwhile capital subsidy of 90% on benchmark cost and with soft loan. Interestingly, the potential of solar lantern decreases with attractive subsidy schemes (increase in capital subsidy or soft loan). This is due to the fact that both solar lantern and SHS compete with each other as a lighting option and with more attractive financing schemes that applies to both, SHS becomes affordable to more number of households. Thus, it is expected that an un-electrified household in rural area would prefer SHS over solar lantern once SHS becomes affordable. The preference to SHS may be due to its ability to support wider range of electrical/electronic appliances.

Parameter	Unit	Value	Reference / assumption / estimation
Fraction of un-electrified households in urban areas $(f_{ueh(u)})$	Fraction	0.04	ORGCC, n.d.
Fraction of electrified rural households that may prefer solar lantern for outdoor lighting $(f_{sl(r)})$	Fraction	0.10	Assumption
Fraction of urban households having the purchasing power to adopt a solar lantern with capital subsidy (30% on benchmark $cost$) ($f_{ppsl(u)}$)	Fraction	1.00	Estimation
Fraction of rural households having the purchasing power to adopt a solar lantern with capital subsidy (30% on benchmark $cost$) ($f_{ppsl(r)}$)	Fraction	1.00	Estimation
Fraction of urban households having the purchasing power to adopt a solar lantern with soft loan (20% margin money, loan on 80% of cost at 5% interest rate for 5 years) (f _{ppsl(u)})	Fraction	1.00	Estimation
Fraction of rural households having the purchasing power to adopt a solar lantern with soft loan (20% margin money, loan on 80% of cost at 5% interest rate for 5 years) $(f_{ppsl(r)})$	Fraction	1.00	Estimation
Fraction of urban households having the purchasing power to adopt a solar lantern with capital subsidy (90% on benchmark $cost$) ($f_{ppsl(u)}$)	Fraction	1.00	Estimation
Fraction of rural households having the purchasing power to adopt a solar lantern with capital subsidy (90% on benchmark cost) (f _{ppsl(r)})	Fraction	1.00	Estimation
Potential of solar lantern with capital subsidy (30% on benchmark cost)	Number	247120	Estimation
Potential of solar lantern with soft loan Potential of solar lantern with capital subsidy (90% on benchmark cost)	Number Number	181222 134952	Estimation Estimation

Table 3.4: Input values and results for estimation of potential of solar lantern in Uttarakhand

3.3.4. Dish Type Solar Cookers

In Uttarakhand, about 17978 schools run mid-day-meal schemes that serve lunch to a total of about 860139 students (average of 48 students per school) for a minimum number of 239 days per year (MHRD, 2013). As per Uttarakhand Renewable Energy Development Agency (UREDA), in the schools covered under mid-day meal scheme in Uttarakhand, generally 2-4 solar cookers have been installed per school (UREDA, 2011; UREDA, 2012). As per equation 3.4, with N_{smdms} equal to 17978 and A_{sc} as 3, Uttarakhand has a potential of 53934 solar cookers.

3.3.5. Solar Dryers

In line with the framework, with $AHS_{(r)}$ value of 5 (ORGCC, n.d.) and other input values (N_{vpr} and AP_{vpr}) as presented in Table 3.5, potential of solar dryer has been estimated by using equation 3.5. Results presented in Table 3.5 indicate that community type solar dryer has significant potential in the state of Uttarakhand.

Table 3.5: Classification of villages according to population range and estimation of potential of solar dryer in Uttarakhand (ORGCC, n.d.)

Number of	Population	Population	Assumed	Estimated number of
villages in	range	range	average	community solar dryers (@
Uttarakhand	category (i)		population	25 households per solar
(N_{vpr})			(AP_{vpr})	dryer)
7823	1	< 200	100	7823
4684	2	200 - 499	350	13115
1826	3	500 - 999	750	10956
824	4	1000 - 1999	1500	9888
471	5	2000 - 4999	3500	13188
96	6	5000 - 9999	7500	5760
21	7	≥ 10000	15000	2520
Potential of solar	dryer in Uttarakl	63250		

3.3.6. Solar PV Pumps

As per CEA (2015), there are about 107 un-electrified villages (N_{uev}) in state of Uttarakhand. About 79% of the villages in Uttarakhand have population up to 500 and about 91% of the villages have a population of 999 (ORGCC, n.d.). Average domestic water need per person per day is about 70 liters (Kandpal and Garg, 2003). Thus villages with an average population of 750 persons are considered in the study for estimation of potential of solar PV pump. Such villages would need about 52500 liters water per day for various domestic needs. As per MNRE

specifications, a 1800 W_p solar PV pump can supply 57000 liters of water per day from a total head of 30 m with solar radiation of 5.5 kWh/m²/day (MNRE, 2013). As solar radiation availability is sufficient in Uttarakhand, 1800 W_p solar PV pumps can satisfy the domestic water needs of un-electrified villages in the state. Thus, as per equation 3.6, N_{uev} value of 107 represents the potential of solar PV pump in the state of Uttarakhand.

3.3.7. Family Size Biogas Plants

As per the framework outlined (equation 3.7) for the estimation of potential of family size biogas plants in Uttarakhand, rural households of the state that are located in places that have annual mean temperature ≥ 20 °C along with an average cattle (cow or buffalo) holding size $\geq 2-3$ are considered as the suitable households that may adopt family size biogas plant provided they have the required purchasing power and propensity to adopt. List of sub-districts (tehsils) in Uttarakhand has been taken from Census of India, 2011. Based on the latitude and longitude of sub-districts attained from GP (n.d.), annual mean temperature of the sub-districts has been obtained from NASA (n.d.). District-wise average cattle holding size ≥ 3 as suitable households whereas Case II considers households with average cattle holding size ≥ 2 as suitable households for usage of family size biogas plants. For both the cases, estimated number of suitable households has been presented in Table 3.6.

	Case I			Case II	
Sub-districts satisfying both temperature and ≥ 3 cattle size criteria	District	No. of rural househol ds in sub- district	Sub-districts satisfying both temperature and ≥ 2 cattle size criteria	District	No. of rural households in sub-district
Srinagar	Garhwal	8159	Devprayag	Tehri Garhwal	21397
Satpuli	Garhwal	8106	Kalsi	Dehradun	6421
Kotdwara	Garhwal	26876	Vikas Nagar	Dehradun	51355
Bhikiasain	Almora	16994	Rishikesh	Dehradun	28284
Poornagiri	Champawat	9941	Srinagar	Garhwal	8159
Betalghat	Nainital	4357	Satpuli	Garhwal	8106
Haldwani	Nainital	24263	Kotdwara	Garhwal	26876
Ramnagar	Nainital	19294	Bhikiasain	Almora	16994
Kaladhungi	Nainital	10585	Poornagiri	Champawat	9941
Lalkuan	Nainital	17391	Betalghat	Nainital	4357
Number of suital in rural Uttarakh		145966	Haldwani	Nainital	24263
			Ramnagar	Nainital	19294
			Kaladhungi	Nainital	10585
			Lalkuan Kashipur	Nainital Udham Singh Nagar	17391 27184
			Jaspur	Udham Singh Nagar	21064
			Kichha	Udham Singh Nagar	30465
			Gadarpur	Udham Singh Nagar Udham Singh	27623
			Sitarganj	Nagar Udham Singh	32014
			Khatima	Nagar	34158
			Roorke	Hardwar	108928
			Hardwar	Hardwar	59160
			Laksar	Hardwar	36389
			Number of suit in rural Uttarak	able households hand	630408

Table 3.6: Suitable households for the usage of family size biogas plants in Uttarakhand

In addition to the values of input parameters discussed earlier, the values of remaining parameters and the results have been presented in Table 3.7. Results

point that family size biogas plants have significant potential in Uttarakhand. Also, soft loan scheme emerges as a better option for widespread adoption of family size biogas plants in Uttarakhand.

Table 3.7: Input values and results for estimation of potential of family size biogas plant (1 m ³	
fixed dome type) in Uttarakhand	

Parameter	Unit	Value	<i>Reference / assumption / estimation</i>
Fraction of suitable households in rural areas for Case I $(f_{sh(r)})$	Fraction	0.10	Estimation
Fraction of suitable households in rural areas for Case II $(f_{sh(r)})$	Fraction	0.45	Estimation
Fraction of rural households having the required land (15 m ²) adjacent to their household ($f_{l(r)}$)	Fraction	0.90	Assumption
Fraction of suitable rural households that may not have adequate cowdung to feed the biogas plant in Case I ($f_{idh(r)}$)	Fraction	0.05	Assumption
Fraction of suitable rural households that may not have adequate cowdung to feed the biogas plant in Case II ($f_{idh(r)}$)	Fraction	0.40	Estimation
Fraction of rural households having the purchasing power to adopt a family size biogas plant of 1 m ³ capacity with capital subsidy (50% on benchmark cost) ($f_{ppbp(r)}$)	Fraction	0.26	Estimation
Fraction of rural households having the purchasing power to adopt a family size biogas plant of 1 m ³ capacity with soft loan (20% margin money, loan on 80% of cost at 5% interest rate for 5 years) (f _{ppbp(r)})	Fraction	0.36	Estimation
Potential of family size biogas plant with capital subsidy (50% on benchmark cost) in Case I	Number	22714	Estimation
Potential of family size biogas plant with soft loan in Case I	Number	31450	Estimation
Potential of family size biogas plant with capital subsidy (50% on benchmark cost) in Case II	Number	61956	Estimation
Potential of family size biogas plant with soft loan in Case II	Number	85786	Estimation

3.3.8. Improved Biomass Cookstoves

Apart from the input values of N_h , $f_{h(u)}$, $f_{h(r)}$ and f_{pa} that have been cited in earlier sections, values of other input parameters and the result of potential estimation

has been presented in Table 3.8. As improved cookstove is a low cost DRES (about \gtrless 1500) (Project Officer of UREDA, Personal Communication, May 11, 2014), and with capital subsidy, the DRES is affordable to almost all rural and urban households. By putting input values in equation 3.8, result has been obtained that indicates that about 208757 households are the potential users of improved biomass cookstoves in Uttarakhand.

Table 3.8: Input values and result for estimation of potential of improved biomass cookstoves in Uttarakhand

Parameter	Unit	Value	Reference / assumption / estimation
Fraction of urban households using	Fraction	0.15	ORGCC, n.d.
biomass for cooking $(f_{bch(u)})$			
Fraction of rural households using biomass	Fraction	0.65	ORGCC, n.d.
for cooking $(f_{bch(r)})$			
Fraction of urban households having the	Fraction	1.00	Estimation
purchasing power to adopt an improved			
cookstove with capital subsidy (50% on			
benchmark cost) or soft loan $(f_{ppic(u)})$			
Fraction of rural households having the	Fraction	1.00	Estimation
purchasing power to adopt an improved			
cookstove with capital subsidy (50% on			
benchmark cost) or soft loan $(f_{ppic(r)})$			
Fraction of households whose perceived	Fraction	0.30	Assumption
needs are fulfilled by improved biomass			
cookstoves (f_{spn})			
Estimated potential of improved cookstove	Number	208757	Estimation
(with capital subsidy or soft loan)			

3.4. Concluding Remarks

Frameworks for the estimation of potential of some DRESs in Uttarakhand have been developed. Using the framework, potential of the DRESs has been estimated. Estimations point that domestic solar water heater, solar home system, solar lantern, solar cooker, solar dryer, solar PV pump, family size biogas plant and improved biomass cookstove have significant potential in the state of Uttarakhand (Table 3.9). As soft loan scheme has greater impact on the purchasing power of households in Uttarakhand than the prevailing subsidy scheme, estimated values of potential of DRESs in Uttarakhand are generally higher with soft loans (Table 3.9). This reflects the effectiveness of soft loan as a financial tool in comparison to capital subsidy for promoting the usage of DRESs.

DRES	Estimated p	ootential	Remark(s)
	with	with soft	
	capital	loan	
	subsidy		
Domestic solar	113284	292086	Soft loan increases the purchasing power of
water heater			households, thereby significantly increasing the
Solar home system	12157	78055	estimated value of potential
Solar lantern	247120	181222	Estimated potential decreases with soft loan
			provision as some potential users of solar
			lantern achieve the purchasing power to become
			potential users of solar home system
Solar cooker	53934	53934	Adopted in community mode with funding from
Solar dryer	63250	63250	government or other agencies, and thus
Solar PV pump	107	107	purchasing power issue is assumed to be
			insignificant reflecting similar values for
			estimated potential with capital subsidy and
			with soft loan.
Family size biogas	61956	85786	Soft loan increases the purchasing power of
plant			households, thereby significantly increasing the
			estimated value of potential
Improved biomass	208757	208757	As the capital cost is low, all households have
cookstove			the purchasing power to adopt it in capital
			subsidy mode or soft loan mode and thus the
			values are similar for capital subsidy and soft
			loan modes.

Table 3.9: Summary of potential of DRESs in Uttarakhand

CHAPTER 4

THEORY OF DIFFUSION OF INNOVATION AND EXPECTED TREND OF DISSEMINATION OF DECENTRALIZED RENEWABLE ENERGY SYSTEMS IN UTTARAKHAND

4.1. Theory of Diffusion of Innovation

New technologies or ideas (innovations) such as DRESs have to successfully undergo diffusion process for its large scale utilization. Diffusion is a process by which an innovation is communicated through certain channels over time among the members of a social system (Rogers, 2003). The four main elements of diffusion are: innovation, communication channels, time and social system.

4.1.1. Innovation

'An innovation is an idea, practice, or object that is perceived as new by an individual or other unit of adoption. It matters little, so far as human behavior is concerned, whether or not an idea is objectively new as measured by the lapse of time since its first use or discovery. If an idea seems new to the individual, it is an innovation' (Rogers, 2003).

All innovations should not be assumed as equivalent units of analysis as they exhibit different rates of adoption. The most important characteristics of innovations are relative advantage, compatibility, complexity, trialability and observability. Innovations that are perceived to have greater relative advantage, compatibility, trialability, and observability, and less complexity are expected to be adopted faster than other innovations.

 Relative advantage is the degree to which an innovation is perceived as superior than the innovation it displaces. Relative advantage may be measured in economic terms, but it may also include factors such as social prestige, convenience, and satisfaction. Perception regarding relative advantage rather than objectivity is more important in diffusion of innovation. The greater the perceived relative advantage of an innovation, the more will be its rate of adoption.

- ii. Compatibility is the degree to which an innovation is perceived as being consistent with the existing morals and values of the individual's social system while satisfying the needs of the potential adopters. An idea that is contrary to the values and norms of a social system will not be adopted as readily as an innovation that is coherent with the social system.
- iii. Complexity is the perceived degree of difficulty in understanding and usage of an innovation. Some innovations are readily understood by most members of a social system whereas others are more complicated and the adopter is required to develop new skills and understanding prior to its usage. Such complicated innovations are adopted slowly.
- iv. Trialability is the degree to which an innovation may be used for a short time on experimental basis. Innovations that can be tried on installment plan are expected to be adopted rapidly.
- v. Observability is the degree to which the results of an innovation are visible to others. The more visible are the results of an innovation, the more is the likelihood of its adoption. Such visibility stimulates peer discussion about the innovation as individuals in the adopter's network often enquire about the experience of the adopter with the innovation.

Innovations that are perceived to have greater relative advantage, compatibility, trialability, and observability, and less complexity are expected to be adopted faster than other innovations. Past research indicates that these five attributes of an innovation are the most important factors affecting its rate of adoption among which the first two attributes, relative advantage and compatibility, are particularly very important (Rogers, 2003).

4.1.2. Communication Channels

Diffusion is a special type of communication in which the message is concerned with a new idea. The communication with respect to diffusion involves (a) an innovation, (b) an individual or other unit of adoption having knowledge or experience of the innovation, (c) another individual or other unit unaware of the innovation, and (d) a communication channel connecting the two units. Mass media (radio, television, newspapers) and interpersonal channels are the most common communication channels through which messages are conveyed among different units.

For awareness generation among potential adopters regarding an innovation, mass media channels are usually the most rapid and efficient tool. Interpersonal channels (word of mouth) are found be to be more effective in persuading an individual for adopting an innovation.

4.1.3. Time

Time is the third element in the diffusion process. It is involved in diffusion in: (a) the innovation-decision process in which an individual consumes time from first knowledge of an innovation to its adoption or rejection, (b) the innovativeness (relative earliness) of an individual or other unit of adoption compared with other members of a system, and (c) an innovation's rate of adoption in a system, typically measured as the number of adoptions of the innovation in a given time period.

Innovation-decision process is the process through which an individual (or other decision-making unit) passes from awareness (initial knowledge) regarding an innovation, to development of an attitude toward the innovation, to a decision on adoption or rejection, to implementation and use of the innovation, and to confirmation of this decision. The abovementioned steps involved in innovation-

decision process are conceptualized as: knowledge, persuasion, decision, implementation, and confirmation (Table 4.1).

Knowledge is attained when an individual (or other decision-making unit) is aware of the existence of the innovation and has some understanding of its functioning. The innovation-decision process is essentially an informationseeking and information-processing activity in which an individual is motivated to reduce uncertainty about the advantages and disadvantages of an innovation. The three types of knowledge involved are: a) awareness-knowledge; b) how-to knowledge; c) principles knowledge. Awareness-knowledge refers to the information that an innovation exists. Awareness-knowledge may motivate an individual to seek how-to knowledge and principles knowledge. How-to knowledge consists of information necessary to use an innovation properly. In case of innovations that are relatively complex, the amount of how-to knowledge needed for adoption is much greater than in the case of less complex ones. And when an adequate level of how-to knowledge is not obtained prior to the trial and adoption of an innovation, rejection and discontinuance are likely to result. Principles knowledge consists of information dealing with the functioning principles underlying how an innovation works. It is usually possible to adopt an innovation without principles knowledge, but the danger of misusing a new idea is greater and discontinuance may result (Rogers, 2003).

In persuasion stage, an individual forms a favorable/unfavorable attitude toward the innovation. Whereas the mental activity at the knowledge stage was mainly cognitive (or knowing), the main type of thinking at the persuasion stage is affective (or feeling). At the persuasion stage the individual becomes more psychologically involved with the innovation. He or she actively seeks information about the new idea, decides what messages he or she regards as credible, and decides how he or she interprets the information that is received. Thus, selective perception is important in determining the individual's behavior at the persuasion stage, for it is at the persuasion stage that a general perception of the innovation is developed. Such perceived attributes of innovations such as their

Stages in the Innovation-	Activities in the Innovation-Decision Process
Decision Process	
Knowledge stage	Recall of information
	Comprehension of messages
	• Knowledge or skill for effective adoption of the
	innovation
Persuasion stage	Liking the innovation
	• Discussion of the new behavior with others
	• Acceptance of the message about the innovation
	• Formation of a positive image of the message and
	the innovation
	• Support for the innovative behavior from the system
Decision stage	• Intention to seek additional information about the
	innovation
	• Intention to try the innovation
Implementation stage	Acquisition of additional information about the
	innovation
	• Use of the innovation on a regular basis
	• Continued use of the innovation
Confirmation stage	• Recognition of the benefits of using the innovation
	• Integration of the innovation into one's ongoing
	routine
	• Promotion of the innovation to others

Table 4.1: Activities involved in various stages in the innovation-decision process

(Rogers, 2003)

relative advantage, compatibility, and complexity are especially important at this stage. The main outcome of the persuasion stage in the innovation-decision process is a favorable or unfavorable attitude toward the innovation. It is assumed

that such persuasion will lead to a subsequent change in overt behavior (that is, adoption or rejection) consistent with the individual's attitude.

During the process of decision, an individual engages in activities that result in decision about adoption or rejection of the innovation. Adoption is a decision to make full use of an innovation as the best course of action available. Rejection is a decision not to adopt an innovation. The innovation-decision process can just as logically lead to a rejection decision as to adoption.

Implementation occurs when an individual (or other decision-making unit) puts an innovation to use. Until the implementation stage, the innovation-decision process has been a strictly mental exercise of thinking and deciding. But implementation involves overt behavior change as the new idea is actually put into practice. The implementation stage may continue for a lengthy period of time, depending on the nature of the innovation. Eventually a point is reached at which the new idea becomes institutionalized as a regularized part of an adopter's ongoing operations. The innovation loses its distinctive quality as the separate identity of the new idea disappears. This point is considered the end of the implementation stage.

During confirmation, an individual assesses his/her experience regarding usage of the innovation and seeks reinforcement of the adoption decision which may be reversed if the individual is not satisfied with the innovation. If the adopter's experience is not good, the adopter may go for discontinuance of the innovation. Discontinuance is a decision to reject an innovation after having previously adopted it.

The innovation-decision period is the time duration of the innovation-decision process. Different individuals exhibit different innovation-decision periods as some people require many years to adopt an innovation while others may adopt quickly. Innovativeness is the degree of relative earliness with which an individual adopts an innovation in comparison to other members of the system. On the basis of innovativeness, the members of a social system may be classified as: (a) innovators, (b) early adopters, (c) early majority, (d) late majority, and (e) laggards. Figure 4.1 depicts the normal frequency distribution among five adopter categories. In the figure, approximate percentage of individuals included in each category is plotted on a normal distribution curve. The first 2.5% of the individuals in a system to adopt an innovation are innovators followed by early adopters which constitute 13.5% of the system. The subsequent 34% of the adopters fall into early majority category followed by another 34% tagged as late majority. The last 16% to adopt are categorized as laggards.

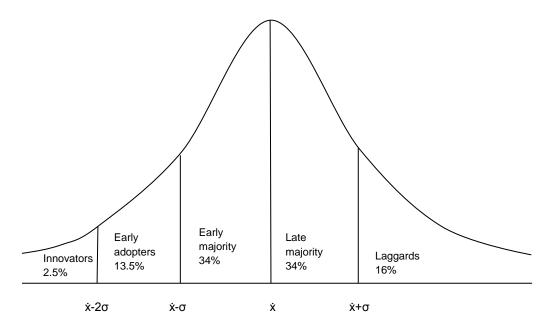
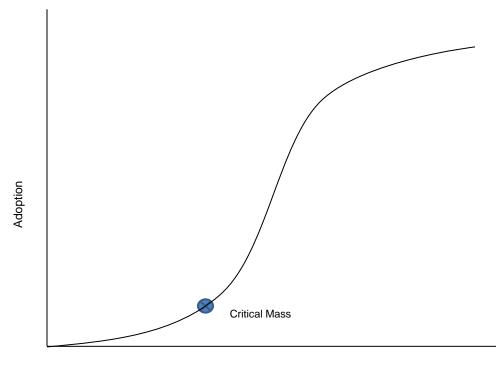



Figure 4.1: Adopter categorization on the basis of innovativeness (Rogers, 2003)


Innovators exhibit obsession for new ideas and this venturesomeness takes them out of their local peer networks to a more cosmopolite social network. Though the innovator may not be respected by members of his/her local system, it is the innovator who launches new ideas in the system by importing the innovation from outside and thus plays a very important role in the diffusion process. Early adopters are a more integral part of the local social system than the innovators and are thus widely followed by others in the system. Innovators are cosmopolites

whereas early adopters are localites. Early adopters have the highest degree of opinion leadership in their local systems and members of this adopter category are generally sought by change agents as local missionaries for accelerating the diffusion process. By adopting an innovation early and providing subjecting evaluation of the innovation to the members of the local system, the early adopter decreases uncertainty about a new idea. Because of their high degree of opinion leadership, early adopters help trigger the critical mass (the point after which further diffusion becomes self-sustaining) when they adopt an innovation. Individuals of the early majority category adopt innovations just ahead of the average member of a system. The early majority exhibit lesser innovativeness compared to innovators and early adopters and may deliberate for some time before adopting a new idea. Though the early majority interacts frequently with their peers, they lack opinion leadership in a system. Individuals of the late majority group adopt new ideas just after the average member of a system. Both economic necessity and peer pressure triggers adoption of innovation by late majority. Their relatively scarce resources mean that the uncertainty about an innovation should be minimized before the late majority feels safe to adopt. Laggards are the most localite of all adopter categories in their outlook and are the last in a social system to adopt an innovation. Their uncertain economic position compels them to be extremely cautious in adopting new ideas.

Time dimension is also involved in the diffusion of innovations with respect to the rate of adoption of innovation. Rate of adoption is defined as the relative speed with which an innovation is adopted by members of a social system. An Sshaped curve (Figure 4.2) is observed when the cumulative number of individuals adopting an innovation is plotted against time. At the beginning, only few individuals adopt the innovation and these are the innovators. Subsequently, the diffusion curve exhibits sharp rise as more and more adoptions happen in each succeeding time period. Eventually, the trajectory of the curve levels off as fewer and fewer individuals remain who have not yet adopted the innovation. Finally, the S-shaped curve reaches its asymptote resulting in conclusion of the diffusion process.

A crucial concept in understanding the social nature of the diffusion process is the 'critical mass', the point after which further diffusion becomes self-sustaining. The critical mass occurs at the point (depicted in the S-curve) at which enough individuals in a system have adopted an innovation so that the innovation's further rate of adoption becomes self-sustaining. Earlier adopters of non-interactive innovations have a sequential interdependence effect on later adopters. As more and more individuals in a system adopt, the non-interactive innovation is perceived as increasingly beneficial to future adopters (and this encourages them to adopt). But in the case of interactive innovations, not only do earlier adopters influence later adopters, but later adopters also influence earlier adopters in a process of reciprocal interdependence. The benefits from each additional adoption

of an interactive innovation increase not only for all future adopters, but also for each previous adopter. For example, with each additional adopter of the internet, e-mail became slightly more valuable to everyone, as a larger number of other people could be reached by e-mail. So the benefits of an interactive innovation flow backward in time to previous adopters, as well as forward in time to future adopters. The strategies used to reach critical mass for an interactive innovation in a system are: a) targeting highly-respected individuals in a system's hierarchy for initial adoption of the innovation; b) shaping individual's perception of the innovation in desired manner through various mass media mechanisms; c) introducing innovation to an intact group in the system whose members are likely to be relatively more innovative; d) incentivizing early adoptions at least until a critical mass is reached.

4.1.4. Social System

Diffusion occurs within a social system. A social system is a combination of interrelated units that are pursuing a common goal. Social system may consist of individuals, informal groups, organizations, and/or subsystems. Though the units in a social system are not all identical in their behavior, a structure exists in a system with a patterned arrangement of the units of the system. This structure gives regularity and stability to human behavior in a system; it allows one to predict behavior with some degree of accuracy. Structure of the social system can facilitate or hinder diffusion of innovation. A system's social structure can have overriding effect on the individual characteristics of the members of the system due to peer pressure. For example, individual innovativeness is affected by an individual's characteristics as well as by the nature of the relevant social system. Societal norms, role of opinion leaders and change agents lead to development of social structure.

Social system has direct or indirect impact on the diffusion of innovations. Innovations are adopted or rejected by an individual member of a system or by the entire social system, which decides to adopt an innovation by a collective or an authoritative decision. Based on the adoption of an innovation by an individual or society, the following are the different types of innovation-decisions:

- i. Optional innovation-decisions adoption/rejection decisions made by an individual independent of the decisions of the other members of the system. In this case, the norms of the system and communication through interpersonal networks (social system) indirectly affect the choices made by the individual.
- Collective innovation-decisions adoption/rejection decisions made by consensus among the members of a system. Usually, all units of the system must adhere to the system's decision.
- iii. Authority innovation-decisions adoption/rejection decisions taken by a statutory body or a small group of influential individuals in a system possessing power, status, or technical expertise. An individual member of the system is left with no option but to accept the decision of the authority.

Concepts and results of diffusion research have been utilized extensively in the areas of social psychology, communication, public relations, advertising, marketing, consumer behavior, public health, rural sociology, etc (Rogers, 2003). In this chapter, an attempt has been made to use the concept of diffusion of innovation to study the diffusion of DRESs in Uttarakhand.

4.2. Time-trend of Diffusion of DRESs in Uttarakhand

Subsequent to the formation of the state of Uttarakhand in 2000, Uttarakhand Renewable Energy Development Agency (UREDA) was established in July 2001 for the promotion of renewable energy in the state (UREDA, 2015). Through its annual reports (UREDA, n.d., 2005, 2007, 2011a, 2012a), UREDA has been reporting annual diffusion of various DRESs in Uttarakhand since 2003-04. Several DRESs such as solar water heaters, FSBPs, solar lanterns and solar home systems had achieved substantial cumulative dissemination in areas of Uttar

Pradesh that later became part of Uttarakhand. However, as those disseminations can't be corrrelated to the renewable energy promotion programmes of the government of Uttarakhand, they have been ignored. Data for annual capital subsidy disbursed for DRESs is available from the year 2007-08. With the available data, an attempt has been made to depict the time-trend of diffusion of DRESs in Uttarakhand after the formation of the state (Tables 4.2-4.6). The time-trend reflects the following salient features of the diffusion of DRESs in Uttarakhand:

- Annual subsidy released by UREDA for the promotion of various DRESs (except solar water heater²) has been inconsistent over the years. Only solar water heater (SWH) has received consistent subsidy support since 2003-04 reflected by sustained growth in annual subsidy allocated for its promotion.
- ii. Assessment of the time-trend of diffusion of DRESs in Uttarakhand has indicated that the dissemination of various DRESs (except SWH) has been highly inconsistent over the years. In the case of SWHs, barring few years, there has been substantial growth in their annual dissemination. In addition, rebate on electricity bill for SWH users has helped the diffusion of SWHs since 2005 (MNRE, 2010). Reasonably strong positive correlation (above 0.65) between diffusion and subsidy of DRESs reflect subsidy driven programme and dependence of diffusion on subsidy (DoS, n.d.). Among all DRESs, the correlation coefficient is highest for solar lanterns (1.00) and solar water heaters (0.91) reflecting strong dependence of their diffusion on subsidy.

 $^{^2}$ In case of solar water heaters, data for dissemination of DSWHs in Uttarakhand and subsidies associated with their promotion is not reported individually but cumulatively for all solar water heaters (domestic, institutional, commercial, and industrial) (UREDA, 2015). Past trend reflect that more than $3/4^{\text{th}}$ of the cumulative dissemination (in litres per day) of solar water heaters in Uttarakhand has been in residential and institutional category that have been entitled for similar subsidy benefits (MNRE, 2011). Thus, through the assessment of dissemination of solar water heaters in Uttarakhand, this study makes an attempt to evaluate the trend of dissemination of domestic solar water heaters in the state. Also, this study assesses cumulative diffusion of solar water heaters in litres per day (LPD), as collector area (in m²) for the same LPD solar water heater differs for FPC and ETC type collectors.

iii. Private equity leveraged by government expenditure on capital subsidy is significantly low (as the ratio of private equity leveraged to capital subsidy for all DRESs has been ≤1) reflecting ineffective use of public finance.

 Table 4.2: Diffusion pattern of solar water heaters and associated subsidy expenditure (UREDA, n.d., 2005, 2007, 2011a, 2012a; Project Officer of Uttarakhand Renewable Energy Development Agency, Personal Communication, May 11, 2014)

	Annual installations					Ratio of private
			Cumulative	Annual	Equity	equity leveraged
			installations	subsidy	leveraged	to public finance
Year	LPD	Area m ²	(LPD)	released (₹)	(₹)	through subsidy
2003-04	13700	274	301400			
2004-05	12500	250	313900			
2005-06	42000	780	355900			
2006-07	68100	1222	424000			
2007-08	41400	771	465400	359650	239743	0.67
2008-09	151200	3024	616600	868900	579209	0.67
2009-10	193600	3372	810200	1286100	857314	0.67
2010-11	167425	2999	977625	7740200	5159617	0.67
2011-12	316575	5224	1294200	25000000	16665000	0.67
2012-13	520300	8152	1814500	29334679	19554497	0.67

* Correlation (installations in LPD and subsidy) – 0.91

** Correlation (installations in m^2 and subsidy) – 0.90

*** Correlation (subsidy and equity leverage) – 1.00

	Annual installations	<i>Cumulative</i> installations	Annual subsidy released	Equity leveraged	Ratio of private equity leveraged to public finance
Year	(no.)	(no.)	(₹)	(₹)	through subsidy
2003-04	500	4407			
2004-05	1198	5605			
2005-06	998	6603			
2006-07	751	7354			
2007-08	825	8179			
2008-09	1104	9283			
2009-10	1225	10508	2680000	2680000	1
2010-11	2082	12590	8388200	8388200	1
2011-12	2114	14704	8903150	8903150	1
2012-13	1831	16535	2500000	2500000	1

Table 4.3: Diffusion pattern of FSBPs and associated subsidy expenditure (UREDA, n.d., 2005, 2007, 2011a, 2012a; Project Officer of Uttarakhand Renewable Energy Development Agency, Personal Communication, May 11, 2014)

* Correlation (installations and subsidy) -0.79

** Correlation (subsidy and equity leverage) – 1.00

Table 4.4: Diffusion pattern of solar cookers and associated subsidy expenditure (UREDA,

n.d., 2005, 2007, 2011a, 2012a; Project Officer of Uttarakhand Renewable

Energy Development Agency, Personal Communication, May 11, 2014)

	Annual installations	<i>Cumulative</i> installations	Annual subsidy released	Equity leveraged	Ratio of private equity leveraged to public finance
Year	(no.)	(no.)	(₹)	(₹)	through subsidy
2003-04	0	0			
2004-05	50	50			
2005-06	218	268			
2006-07	349	617			
2007-08	215	832	333000	221978	0.67
2008-09	885	1717	1479750	986401	0.67
2009-10	341	2058	1149400	766190	0.67
2010-11	699	2757	1253210	835390	0.67
2011-12	44	2801	620790	413819	0.67
2012-13	317	3118	1490152	993335	0.67

* Correlation (installation and subsidy) -0.69

** Correlation (subsidy and equity leveraged) - 1.00

Table 4.5: Diffusion pattern of solar lanterns and associated subsidy expenditure (UREDA,

			Annual		Ratio of private
	Annual	Cumulative	subsidy	Equity	equity leveraged to
	dissemination	dissemination	released	leveraged	public finance
Year	(no.)	(no.)	(₹)	(₹)	through subsidy
2003-04	672	40535			
2004-05	780	41315			
2005-06	0	41315			
2006-07	9500	50815			
2007-08	7500	58315	33109500	3678797	0.11
2008-09	1967	60282	13022575	1446938	0.11
2009-10	4009	64291	9961975	1106875	0.11
2010-11	2673	66964	57100000	6344381	0.11
2011-12	0	66964	0	0	NA
2012-13	0	66964	0	0	NA

n.d., 2005, 2007, 2011a, 2012a; Project Officer of Uttarakhand Renewable Energy Development Agency, Personal Communication, May 11, 2014)

* Correlation (installations and subsidy) -1.00

** Correlation (subsidy and equity leverage) – 1.00

Table 4.6: Diffusion pattern of solar home systems and associated subsidy expenditure (UREDA, n.d., 2005, 2007, 2011a, 2012a; Project Officer of Uttarakhand Renewable Energy Development Agency, Personal Communication, May 11, 2014)

	Annual installations	Cumulative dissemination	Annual subsidy released	Equity leveraged	Ratio of private equity leveraged to public finance
Year	(no.)	(no.)	(₹)	(₹)	through subsidy
2003-04	4776	36082			
2004-05	0	36082			
2005-06	0	36082			
2006-07	9108	45190			
2007-08	7000	52190	36888350	4098296	0.11
2008-09	1791	53981	45734000	5081047	0.11
2009-10	3152	57133	32272250	3585447	0.11
2010-11	1697	58830	290000	32219	0.11
2011-12	0	58830	0	0	NA
2012-13	0	58830	0	0	NA

* Correlation (installations and subsidy) -0.65

** Correlation (subsidy and equity leverage) - 1.00

4.3. Technology Diffusion Models

Generally, diffusion of a technology is assessed in terms of cumulative number of adoptions over a period of time. As discussed in earlier section, diffusion follows an exponential growth pattern reflected by an S-shaped curve. These S-shaped curves are characterized by a sluggish early growth, followed by accelerated growth phase and then again a slow growth phase headed for a finite upper limit. Bass model, Gompertz model, Logistic model and Pearl model are the commonly used technology diffusion models (Purohit and Kandpal, 2005; Rao and Kishore, 2010).

a) Bass model

Bass developed an empirical diffusion model with an intrinsic assumption that that early adopters influence later adoptions. As per the model (Bass, 1969), cumulative number of adoptions, N(t), of a technology up to a given point of time (t^{th} year) can be estimated as per the following expression:

$$N(t) = M\left[\frac{1 - e^{-(a+b)t}}{1 + (\frac{b}{a})e^{-(a+b)t}}\right]$$
(Eqn. 4.1)

where M represents estimated potential of the technology in the country, a the coefficient of innovation and b the coefficient of imitation. By utilizing the past data on diffusion of the technology, the values of these coefficients can be estimated.

b) Gompertz model

As per Gompertz model (Islam and Haque, 1994), cumulative diffusion, N(t), of the technology disseminated up to the tth year is expressed as:

$$N(t) = Me^{-ae^{-bt}}$$
(Eqn. 4.2)

Here also, coefficients of *a* and *b* can be estimated from regression of past data on the dissemination of technology.

c) Logistic model

Logistic model (Islam and Haque, 1994) expresses cumulative diffusion, N(t), of the technology disseminated up to t^{th} year as:

$$N(t) = M\left[\frac{e^{(a+bt)}}{1+e^{(a+bt)}}\right]$$
(Eqn. 4.3)

and the regression coefficients (a and b) are estimated by a linear regression of the log-log form of equation (4.3) as expressed by equation (4.4).

$$ln\left[\frac{\frac{N(t)}{M}}{1-\frac{N(t)}{M}}\right] = a + bt$$
(Eqn. 4.4)

d) Pearl model

As per Pearl model (Islam and Haque, 1994), the cumulative diffusion, N(t), till tth year can be expressed as:

$$N(t) = \frac{M}{1 + ae^{-bt}}$$
(Eqn. 4.5)

with a and b as the coefficients that can be estimated using regression of past diffusion data.

4.4. Estimation of Time Required for the Cumulative Diffusion of DRESs to Reach their Estimated Utilization Potential

Among the diffusion models discussed in the earlier section, logistic model has been frequently used to study the diffusion of renewable energy technologies (Purohit and Michaelowa, 2008). In this study, logistic model (equation 4.4) has been used to estimate the time required for the cumulative diffusion of DRESs to reach their utilization potential in Uttarakhand as estimated in Chapter 3.

Yearly diffusion data of DRESs in Uttarakhand (presented in Tables 4.2-4.6) and the estimated potential of these systems (output of Chapter 3) has been used to fit a curve to equation 4.4. Results of the curve fitting presented in Figures 4.3-4.7 indicate good fit with high R^2 values. From the results, coefficients a and b has been obtained for each DRESs. With the values of the coefficients and the estimated potential known, the time required for the cumulative diffusion of the DRESs to reach its estimated potential in Uttarakhand has been estimated by considering cumulative diffusion, N(t), as almost equal to M (i.e. N(t) = 0.99999999999999999 M).

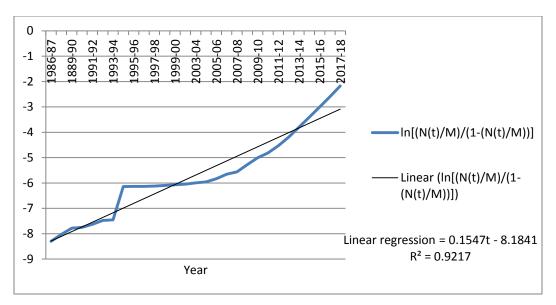


Figure 4.3: Curve fitting for DSWHs³

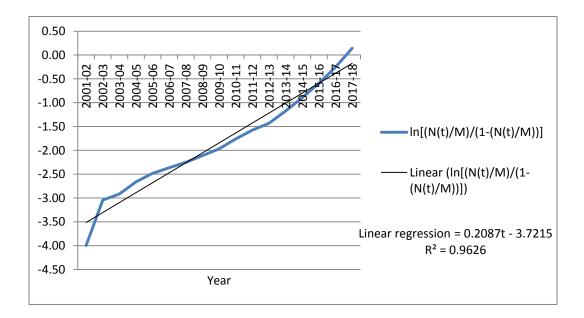


Figure 4.4: Curve fitting for FSBPs

 $^{^3}$ Data for annual dissemination of DSWHs in Uttarakhand has not been reported separately and is reported cumulatively for all solar water heaters since 1986-87 (UREDA, n.d.). Past trend and subsequent future projections indicate 24% share of DSWHs in cumulative dissemination (in m²) of solar water heaters in Uttarakhand (MNRE, 2011) and the same share is assumed for annual dissemination (in LPD) of DSWHs in the state. Also, since data for annual dissemination of solar water heaters (and subsequently DSWHs) in Uttarakhand are available since 1986-87, the same has been used for curve fitting.

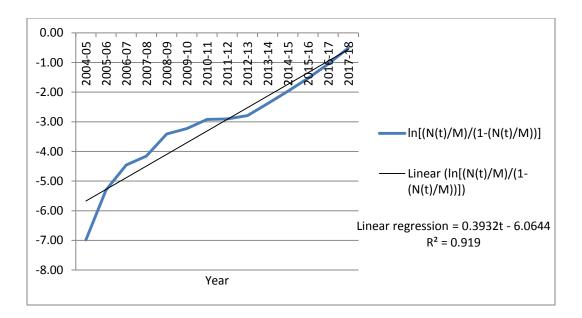


Figure 4.5: Curve fitting for solar cookers

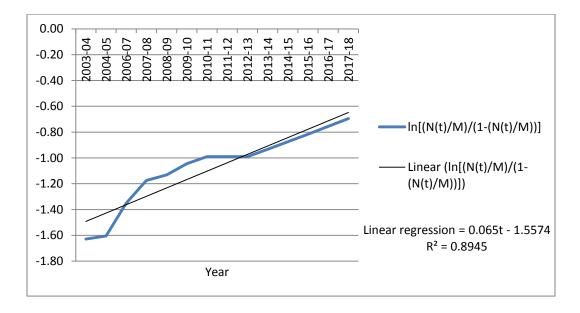


Figure 4.6: Curve fitting for solar lanterns

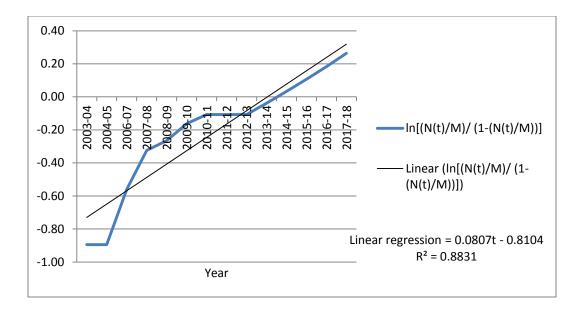


Figure 4.7: Curve fitting for solar home systems

The time durations required for the cumulative diffusion of the DRESs to reach their estimated potential in Uttarakhand have been presented in Table 4.7. Estimated time durations reflect that it may take more than two hundred years for the cumulative diffusion of the DRESs to reach their estimated potential indicating sluggishness and inconsistencies associated with the current trend.

Table 4.7: Estimated time duration by which cumulative diffusion of DRESs will reach their potential

DRES	Year by which cumulative diffusion will reach its potential
DSWH	2261-62
FSBP	2201-02
Solar cooker	2091-92
Solar lantern	2415-16
Solar home system	2326-27

4.5. Concluding Remarks

From an analysis of time-trend of diffusion of DRESs in Uttarakhand, it is observed that the promotion of various DRESs (except SWH) has been inconsistent over the years. Only SWH has received consistent subsidy support since 2003-04 reflected by sustained growth in annual subsidy allocated for its promotion. A similar trend is reflected in the cumulative annual dissemination of SWHs in Uttarakhand. Reasonably strong positive correlation (above 0.65) between diffusion and subsidy of DRESs indicate the dependence of diffusion on subsidy. Among all DRESs, the correlation coefficient is highest for solar lanterns (1.00) and solar water heaters (0.91), thereby reflecting strong dependence of their diffusion on subsidy. Private equity leveraged by the government expenditure on capital subsidy is significantly low as the ratio of private equity leveraged to capital subsidy for all DRESs has been ≤ 1 . This reflects ineffective use of public finance for the promotion of DRESs.

Based on past dissemination trends of DRESs in Uttarakhand and their estimated potential, time duration has been estimated by which their cumulative diffusion will reach their potential. Estimated time durations reflect sluggishness and inconsistencies associated with current trend emphasizing the need for sustained efforts to accelerate the dissemination of DRESs in Uttarakhand.

CHAPTER 5

ASSESSMENT OF BARRIERS FACED BY DECENTRALIZED RENEWABLE ENERGY SYSTEMS ADOPTERS AND NON-ADOPTERS IN UTTARAKHAND

5.1. Introduction

Estimated potential of DRESs in Chapter 3 indicate significant potential of DRESs in Uttarakhand. However, study of time-trend of diffusion of DRESs in Chapter 4 has indicated sluggishness in its diffusion in the state. The sluggishness in the diffusion of DRESs may be attributed to barriers as Chapter 2 has concluded that the diffusion of DRESs often faces barriers. The barriers may be similar or different for adopters (those who have adopted one or more DRES(s)) or non-adopters (those who are yet to adopt a DRES). In this chapter, an attempt has been made to assess the barriers faced by DRES adopters and non-adopters in Uttarakhand.

5.2. Sample Design for Survey

Assessment of the barriers faced by DRES adopters and non-adopters in Uttarakhand involve getting firsthand information from the adopters and non-adopters that necessitates conduct of survey. For a total number of 19,97,068 households in Uttarakhand, the sample size of the survey has been estimated as 204 households (determined using Yamane's formula for 95% confidence level, \pm 7% level of precision and 50% degree of variability)(Yamane, 1967; Israel, 2013). Estimated sample size is in accordance with the sample size recommended by Churchill and Iacobucci (2002). As the geographical area of interest is large and the sampling units are heterogeneous, multi-stage sampling has been used in the study. The various stages of multi-stage sampling is as follows:

First-stage: Among all 13 districts of Uttarakhand, Nainital, Chamoli and Dehradun districts have been considered for sampling as these districts have experienced the maximum dissemination/usage of biogas plants, solar lighting systems and solar water heaters respectively.

Second-stage: Equal number of samples to be selected from each area for total sample size.

Third stage: From the total sample for the three districts, 50% of adopters and 50% non-adopters have been interviewed. For both adopter and non-adopter categories, households have been selected using quota sampling.

A questionnaire has been developed to record the information generated during the survey (Appendix II). The questionnaire attempts to capture information regarding the demography, source of awareness, current energy consumption pattern, usage of DRES (if any), and the opinion about DRES from adopters and non-adopters. For opinion, the responders of the survey have been asked to rate the impact of 11 barriers on the adoption of DRES on a 4-point scale (can't say, not at all, to some extent, to large extent). The barriers listed in the questionnaire have been selected on the basis of literature review (Chapter 2) and pilot study. The listed barriers are: high capital cost, lack of access to capital / loan, availability of cheaper fuel, unavailability of trained manpower for installation and maintenance, lack of user training for maintenance, unavailability of retail shops, unavailability of spares, inappropriateness of technology, poor resource availability, lack of adequate awareness, and lack of socio-cultural acceptability.

5.3. Results of Survey

The survey has been conducted during October-December 2014. Data collected during the survey has been analyzed using SPSS. Factor analysis has been conducted to assess the factors critical to the dissemination of DRESs in Uttarakhand. For the analysis, the data has been coded (can't say - 0; not at all - 1; to some extent - 2; to large extent - 3) (Wade, 2006) and results have been

generated (Tables 5.1 - 5.5). Cronbach's Alpha value of 0.870 reflects reliability of the scale used in the study (Table 5.2) (George and Mallery, 2003). Results of KMO and Barlett's Test (MSA of 0.769) indicate that adequate number of samples has been taken for factor analysis (Table 5.3) (Kaiser, 1974; Hair et al., 2006). Scree plot (Figure 5.1) suggests that after the third factor, the slope of the curve doesn't change much, and three factors are adequate to explain about 80% variance (Table 5.4). Thus, all the 11 barriers used in the study have been classified under three broad factors. From the rotated component matrix (Table 5.5), it may be noted that the loading of the barriers on three factors are as follows:

- Factor 1 high capital cost, lack of access to capital / loan; availability of cheaper fuel, unavailability of trained manpower for installation and maintenance, lack of user training for maintenance, unavailability of retail shops and unavailability of spares
- ii. Factor 2 inappropriateness of technology, poor resource availability

iii. Factor 3 – lack of adequate awareness, lack of socio-cultural acceptability The barriers listed under Factor 1 reflect economic, supply chain and after sales support aspects of DRES market and thus may be categorized as market barriers. The barriers loaded under Factor 2 deal with technical aspects of resource and technology and thus Factor 2 may be named as technical barrier. Similarly, as Factor 3 has barriers that reflect socio-cultural aspects of potential adopters, it may be termed as socio-cultural barrier. The survey questionnaire also includes questions on source of awareness regarding DRESs and responses have revealed that in rural areas of Uttarakhand, Panchayat Pradhan (elected representative of village in India) has been the main source of awareness to the villagers.

Table 5.1: Case processing summary

	-	Ν	%
Cases	Valid	204	100.0
	Excluded ^a	0	.0
	Total	204	100.0

a. Listwise deletion based on all

variables in the procedure.

Table 5.2: Reliability statistics

	Cronbach's	
	Alpha Based	
	on	
Cronbach's	Standardized	
Alpha	Items	N of Items
.870	.874	11

Table 5.3: KMO and Bartlett's Test

Kaiser-Meyer-Olkin	Kaiser-Meyer-Olkin Measure of Sampling					
Adequacy.	.769					
Bartlett's Test of	Approx. Chi-Square	2046.827				
Sphericity	df	55				
	Sig.	.000				

	In	itial Eigenv	values	Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
		% of	Cumulative		% of			% of	
Component	Total	Variance	%	Total	Variance	Cumulative %	Total	Variance	Cumulative %
1	5.177	47.062	47.062	5.177	47.062	47.062	4.238	38.526	38.526
2	2.718	24.711	71.773	2.718	24.711	71.773	3.345	30.407	68.933
3	.893	8.119	79.892	.893	8.119	79.892	1.205	10.959	79.892
4	.664	6.036	85.929						
5	.481	4.372	90.301						
6	.370	3.367	93.668						
7	.238	2.163	95.832						
8	.175	1.589	97.420						
9	.135	1.232	98.652						
10	.113	1.030	99.681						
11	.035	.319	100.000						

Table 5.4: Total variance explained (Extraction method: Principal component analysis)

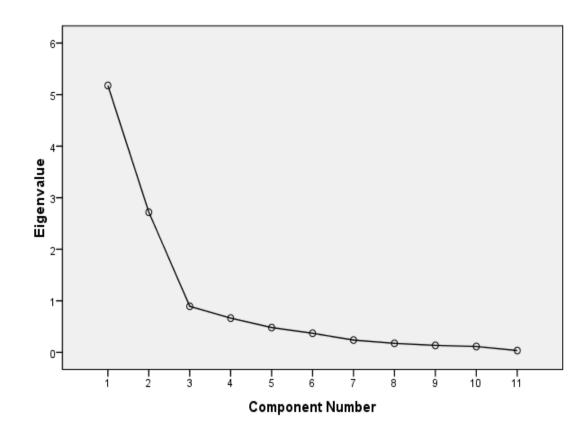


Figure 5.1: Scree plot

Table 5.5: Rotated Component Matrix^a

	Componen	t	
	1	2	3
Lack of user training	.887		.320
Unavailability of trained			
manpower for installation	.885		
and maintenance			
Lack of access to loan	.822		.429
High capital cost	.893		
Unavailability of spare	.659	.425	
parts	.039	.425	
Unavailability of retail	.658	.458	
shop	.050		
Lack of socio-cultural			.656
acceptability			.050
Inappropriateness of		.917	
technology		.917	
Poor resource availability		.889	
Availability of cheaper	.836		.260
fuel	.050		.200
Awareness issues	.332		.895

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 6 iterations.

Apart from rating the impact of barriers the adoption of DRES on a scale, the responders of the survey have also been asked to list three most critical barriers. The responses of both the adopters and non-adopters have been listed in Table 5.6. It may be noted from the table that high capital cost, lack of access to capital /

loan, lack of adequate awareness, unavailability of trained manpower for installation and maintenance, and unavailability of spare parts are the most critical barriers affecting the adoption of DRESs in Uttarakhand. As per the responses, lack of adequate awareness has been considered more critical by the non-adopters. It limits their understanding regarding the utility and functioning of the DRES and available government schemes (subsidy / loan), ultimately resulting in non-adoption. For the adopters of DRESs that need frequent maintenance services such as SHS and FSBP, unavailability of trained manpower for installation and maintenance and unavailability of spares are more critical barriers. High capital cost and lack of access to capital / loan are the barriers that are considered most critical by all categories of responders.

Table 5.6: Criticalit	v of barriers to ado	ntion in the on	ninion of ado	nters and non-adopte	ers
rable 5.0. Childan	y of barriers to auto	puon in the op	minon or auop	piers and non-adopt	

DRES	Adopter	Agree that barriers	Critical barrier no. 1	Critical barrier no. 2	Critical barrier no. 3
	/Non-	are hindering the	(% of responses)	(% of responses)	(% of responses)
	adopter	adoption of DRES			
		(% of responses)			
FSBP	Adopter	91.18	Unavailability of trained manpower for	Unavailability of trained manpower for	Lack of adequate awareness (17.65);
			installation and maintenance (41.18);	installation and maintenance (20.59);	high capital cost (14.71);
			inappropriateness of technology (17.65);	high capital cost (20.59);	lack of access to capital / loan (14.71)
			lack of access to capital / loan (11.76)	unavailability of spare parts (17.65)	
	Non-	88.24	High capital cost (47.06);	Lack of access to capital / loan (35.29);	Lack of access to capital / loan (17.65);
	adopter		lack of adequate awareness (26.47);	high capital cost (26.47);	lack of adequate awareness (17.65);
			unavailability of land (8.82)	lack of adequate awareness (11.76)	unavailability of trained manpower for installation and
					maintenance (14.71)
DSWH	Adopter	91.18	Lack of adequate awareness (29.41);	High capital cost (20.59);	Unavailability of trained manpower for installation and
			high capital cost (26.47);	lack of access to capital / loan (17.65);	maintenance (26.47);
			unavailability of retail shops (14.71)	lack of adequate awareness (14.71)	lack of access to capital / loan (14.71);
					unavailability of space (11.76)
	Non-	94.12	High capital cost (50.00);	High capital cost (32.35);	Lack of adequate awareness (26.47);
	adopter		lack of adequate awareness (26.47);	lack of access to capital / loan (32.35);	lack of access to capital / loan (20.59)
			unavailability of retail shops (8.82)	lack of adequate awareness (17.65)	high capital cost (11.76)
SHS	Adopter	97.06	High capital cost (61.76);	Lack of access to capital / loan (26.47);	Unavailability of spare parts (38.26);
			unavailability of trained manpower for	unavailability of trained manpower for	unavailability of trained manpower for installation and
			installation and maintenance (17.65);	installation and maintenance (23.53);	maintenance (26.47);
			lack of user training for operation and	unavailability of spare parts (20.59)	lack of user training for operation and maintenance
			maintenance (8.82)		(11.76)
	Non-	88.24	High capital cost (70.59);	Lack of access to capital / loan (61.76);	Unavailability of trained manpower for installation and
	adopter		lack of adequate awareness (8.82)	high capital cost (11.76);	maintenance (52.94);
			lack of user training for operation and	unavailability of retail shops (11.76)	lack of adequate awareness (14.71);
			maintenance (5.88)		unavailability of spare parts (14.71)

During the survey, responders have also been asked regarding the status of adopted DRESs. It may be noted from Table 5.7 that a substantial no. of SHS and FSBP adopters have discontinued DRES usage because of system failure and lack of repair facility. The problem is reportedly more severe in the case of SHS adopters. As expected, majority of SHS adopters and a

	ntore
Table 5.7: Status of adopted DRESs and opinion and role of ado	pleis

DRES	Adopted	Adopted	Reasons for stopping	Ор	vinion of adopters	s (%)	Exp	eriences (%)	DRES	Conversion of
adopted	DRES	DRES	usage	Poor	Acceptable	Very	Favorable (if any)	Unfavorable (if any)	recommended	recommendations
	still in	not in				good			by adopters (%)	into adoption (%)
	use (%)	use (%)								
FSBP	85.29	14.71	System failure and	14.71	44.11	41.18	Saves LPG (82.35)	Maintenance issues (8.82);	41.18	85.72
			lack of repair facility;					uncertainty in gas		
			dissatisfied with					production during winter		
			performance due to					(32.35);		
			uncertainty in biogas					system failure and lack of		
			production					repair facility (14.71)		
DSWH	100.00	0.00	NA	0.00	44.11	55.89	Less electricity bill	Heating problem during	82.35	89.29
							and subsidy on	cloudy weather (41.18)		
							electricity bill			
							(100.00)			
SHS	44.11	55.89	System failure and	55.89	32.35	11.75	Useful for lighting	System failure and lack of	0.00	NA
			lack of repair facility				(44.11)	repair facility (55.89);		
								Maintenance issues (20.58);		
								Unavailability of spares		
								(CFLs) (5.88);		
								Problem during cloudy		
								weather (5.88)		

significant number of FSBP adopters have poor opinion about them. However, all DSWH adopters are using the system and have positive opinion about them. Generally, a satisfied adopter of DRES is expected to promote the system among his neighbors and friends and relatives. The same is reflected from the data gathered during the survey (Table 8). A large number (82%) of DSWH adopters have recommended it to others and almost 90% of them have resulted in its adoption. Though only 40% of FSBP adopters have recommended it to others, conversion of recommendation into adoption is still high (85%). Due to system failure issues in majority of SHS adoptions, none of its adopters have recommended it to other.

5.4. Concluding Remarks

High capital cost, lack of access to capital / loan, lack of adequate awareness, unavailability of trained manpower for installation and maintenance, and unavailability of spare parts are the most critical barriers affecting the adoption of DRESs in Uttarakhand. Lack of awareness is a critical barrier to the non-adopters of DRESs whereas the adopters consider unavailability of trained manpower for installation and maintenance and unavailability of spares as more critical. High capital cost and lack of access to capital / loan are the barriers that are considered most critical by all categories of responders.

Recommendations and adoption trends point that a satisfied DRES adopter is more likely to recommend it to others. Also, such recommendations are more likely to result in adoptions. Thus, it may be inferred that DRES promoting institutions can accelerate the rate of adoption of DRES by ensuring effective maintenance services to the adopters. The maintenance services can be improved by countering the barriers namely unavailability of trained manpower for maintenance, unavailability of spare parts and lack of user training for operation and maintenance.

CHAPTER 6

ASSESSMENT OF FINANCIAL ATTRACTIVENESS OF DECENTRALIZED RENEWABLE ENERGY SYSTEMS IN UTTARAKHAND

6.1. Introduction

Literature review on the barriers to the dissemination of DRESs (Chapter 2) has evidently pointed out that financial or economic barrier is one of the most critical barriers impeding the dissemination of DRESs. Results of the survey presented in Chapter 5 also reaffirm the criticality of financial barrier to the diffusion of DRESs. Considering the importance of financial barrier, and the potential of solar and biomass based DRESs in Uttarakhand (presented in Chapter 3), this chapter is an attempt to assess the financial attractiveness of solar and biomass based DRESs in the state.

6.2. Methodology

The DRESs considered in the study are domestic solar water heater, solar home system, solar lantern, family size biogas plant, improved biomass cookstove, solar cooker, solar dryer and solar PV pump. For assessing the financial attractiveness of DRESs in Uttarakhand, input data regarding capital cost, useful life, usage hours or capacity utilization factor, operation and maintenance cost and other parameters are obtained from relevant sources such as Ministry of New and Renewable Energy (MNRE) India, government agencies, manufacturers, distributors and the published literature. In the analysis, the incentive schemes (capital subsidy and/or rebate on electricity bill) currently applicable in Uttarakhand have also been considered.

The measures of financial performance used in the analysis are discounted payback period, net present value, internal rate of return and unit cost of useful energy. Scenario analysis is also performed to assess the financial attractiveness of DRESs under various conditions. The expressions used for estimating the values of different measures of financial performance are presented in the following sections.

6.2.1. Expressions for Measures of Financial Performance

6.2.1.1. Discounted Payback Period

Discounted payback period (DPP) of an investment in a DRES is the period by which the cumulative present value of net benefits is equal to the capital cost. In case of uniform net annual benefits, the DPP of an investment can be expressed as:

$$DPP = \frac{\ln(B-C) - \ln[(B-C) - dC_0]}{\ln(1+d)}$$
(Eqn. 6.1)

where B represents the annual benefit accrued to the DRES user as a result of fuel savings, C the annual cost of operation and maintenance, d the discount rate and C_0 the capital cost⁴ of the DRES. For various DRESs, the mathematical expressions for estimating B may vary and the same have been presented for each of the DRESs considered in the next section. Annual operation and maintenance cost (C) can be estimated as:

$$C = fC_0 - R \tag{Eqn. 6.2}$$

where f represents annual operation and maintenance cost as a fraction of the capital cost of the DRES and R is the annual rebate (if any) to the DRES user (e.g., solar water heater users in several states of India get rebate in their electricity bills for using the heaters).

⁴ If any capital subsidy (CS) is available on the purchase of DRES, the effective value of capital cost (C_0) for the investment would be C_0 -CS in expressions (1), (2), (3), (4), and (7) and all these expressions shall be accordingly modified.

6.2.1.2. Net Present Value

Net present value (NPV) of an investment in a product is the sum of present value of all cash flows associated with it during its useful life. In the case of uniform net annual benefits accrued as a result of DRES usage, NPV can be expressed as:

NPV = (B - C)
$$\left[\frac{(1+d)^n - 1}{d(1+d)^n}\right] - C_0$$
 (Eqn. 6.3)

where n is the useful life of the DRES.

6.2.1.3. Internal Rate of Return

Internal rate of return (IRR) is defined as the discount rate at which the NPV of an investment on DRES is zero. For a uniform series of cash flows (i.e. net annual benefits), IRR can be estimated by solving the following equation:

$$(B - C) \left[\frac{(1 + IRR)^n - 1}{IRR(1 + IRR)^n} \right] - C_0 = 0$$
 (Eqn. 6.4)

6.2.1.4. Levelized Cost of Useful Energy

Levelized cost of useful energy (LCUE) associated with the usage of a DRES can be estimated as the ratio of total annual cost (AC) to the annual useful energy (AUE) delivered by the DRES.

$$LCUE = \frac{AC}{AUE}$$
(Eqn. 6.5)

AC can be estimated as the sum of the annualized capital cost (AC_c) and annual cost of operation and maintenance (C):

$$AC = AC_{C} + C \tag{Eqn. 6.6}$$

For a defined discount rate (d) and the useful life (n) of a DRES costing C_0 , the annualized capital cost can be estimated as a product of the capital cost and the capital recovery factor:

$$AC_{C} = C_{0} \frac{d(1+d)^{n}}{(1+d)^{n}-1}$$
(Eqn. 6.7)

6.2.2. DRES Specific Expressions for Estimation of Monetary Value of Annual Benefits

The DRESs considered in the study are expected to satisfy different household needs such as water heating, lighting, cooking, etc. The benefits accrued from usage of such DRESs are different as the amounts and types of fuel substituted could be different and are thus estimated independently for each DRES. In the following sub-sections the expressions for estimation of annual monetary benefits have been presented with P_f , CV_f , and η_{fu} representing the unit price, calorific value and efficiency of fuel utilization of the fuel replaced by the DRES respectively.

6.2.2.1. Domestic Solar Water Heater

A DSWH is generally used to heat water up to 60 °C to satisfy hot water needs for bathing and washing. There are two types of DSWH: a) design using a flat plate collector (FPC); and b) design using evacuated tubular collector (ETC). Temperature data mined for sub-district regions of the 13 districts of Uttarakhand from NASA database (NASA, n.d.) reflect that majority of the locations in the state have monthly average minimum ambient temperature less than 20 °C for seven months or more in a year. Such low temperatures indicate potential for water heating (and subsequently DSWH) in Uttarakhand. Annual monetary benefits (B) expected to accrue to a household as a result of usage of DSWH to fulfill partial or total water heating needs of the household is estimated as:

$$B = \frac{{}^{365 \times CUF_{DSWH} \times M_{DSWH} \times c_{pw} \times (T_2 - T_1) \times P_f}}{{}^{CV_f \times \eta_{fu}}}$$
(Eqn. 6.8)

where CUF_{DSWH} represents the annual capacity utilization factor of the DSWH, M_{DSWH} the daily water heating capacity of the DSWH, c_{pw} the specific heat of

water, and T_1 and T_2 the inlet and outlet (delivery) temperatures of water. The annual useful energy (AUE) delivered by a DSWH can be expressed as:

 $AUE = 365 \times CUF_{DSWH} \times M_{DSWH} \times c_{pw} \times (T_2 - T_1)$ (Eqn. 6.9)

6.2.2.2. Family Size Biogas Plant

A FSBP generates biogas from organic feed-stocks such as animal manure, chicken droppings, agricultural residues etc. through anaerobic digestion. Biogas is environmentally clean and renewable energy source and its chemical composition is – approximately 55-65% methane, 35-40% carbon dioxide and traces of other gases such as hydrogen sulphide and ammonia. Calorific value of biogas is about 20 MJ/m³. Biogas produced by a FSBP may be used for cooking, lighting and other applications. However, in India, it is generally used for cooking. With 0.3-0.4 m³ per person per day biogas requirement for cooking, a 2 m³ capacity FSBP is sufficient to meet the cooking energy needs of a 5 member household (Nijaguna, 2002). In plain areas of Uttarakhand, significant biogas usage for cooking has been reported (ORGCC, n.d.). Annual monetary benefits accrued to the owner of a FSBP as a result of replacement of existing cooking fuel with biogas can be estimated as:

$$B = \frac{{}^{365 \times f_{bp} \times n_{ph} \times UER_{pd} \times P_f}}{{}^{CV_f \times \eta_{fu}}}$$
(Eqn. 6.10)

where f_{bp} represents the fraction of annual useful energy required for domestic cooking met with biogas, n_{ph} the number of persons per household, and UER_{pd} the useful cooking energy requirement per person per day. Annual useful energy delivered by an FSBP can be expressed as:

$$AUE = 365 \times f_{bp} \times n_{ph} \times UER_{pd}$$
(Eqn. 6.11)

6.2.2.3. Improved Biomass Cookstove

Improved biomass cookstoves have significantly higher efficiency than traditional cookstoves and their adoption by replacing the traditional cookstoves would result in in saving of biomass presently being used for cooking. With about 63% of the rural households practicing fire-wood based cooking in Uttarakhand (ORGCC, n.d.), the state has significant potential for improved biomass cookstoves. The annual monetary benefit likely to accrue to a user on replacing a traditional biomass cookstove with an improved cookstove can be estimated as:

$$B = \frac{365 \times f_{ic} \times n_{ph} \times UER_{pd} \times P_{f}}{CV_{f}} \times \left(\frac{1}{\eta_{tc}} - \frac{1}{\eta_{ic}}\right)$$
(Eqn. 6.12)

where f_{ic} represents the fraction of annual useful energy required for domestic cooking met with improved biomass cookstove, η_{tc} and η_{ic} the efficiencies of tradition cookstoves and improved cookstoves respectively. Annual useful energy delivered by an improved biomass cookstove can be computed as:

$$AUE = 365 \times f_{ic} \times n_{ph} \times UER_{pd}$$
(Eqn. 6.13)

6.2.2.4. Paraboloid (Dish) Type Solar Cooker

A dish type solar cooker is essentially a paraboloid solar cooker that focusses the Direct Normal Irradiance (DNI) component of solar radiation to provide heat to the cooking vessel located at its focal point. With sufficient solar radiation availability in Uttarakhand, households in the state may opt for household type solar cookers. Also, there are about 17978 schools in the state that have mid-day meal schemes (MHRD, 2013) that involve providing cooked meals to the school going children. These mid-day meals can also be prepared with community type paraboloid solar cookers. Cooking of several food items commonly prepared by households and schools in Uttarakhand such as rice, dal (cereals) and vegetables involve boiling type cooking. Usage of dish type solar cooker by a household or community for one or multiple meals per day would lead to replacement of fuels

such as LPG, kerosene, fuelwood, etc. Due to such replacements, the solar cooker user would save expenditure on fuel and the annual monetary benefit to such a solar cooker user can be expressed as:

$$B = \frac{n_{mcy} \times UER_{mp} \times n_{mc} \times P_{f}}{CV_{f} \times \eta_{fu}}$$
(Eqn. 6.14)

where n_{mcy} represents the number of meals cooked by solar cooker per year, UER_{mp} the useful energy required per meal per person and n_{mc} the average number of persons for whom the meal is cooked. Annual useful energy delivered by a dish type solar cooker can be estimated as:

$$AUE = n_{mcy} \times UER_{mp} \times n_{mc}$$
(Eqn. 6.15)

6.2.2.5. Solar Lantern

A solar lantern is a portable lighting device that utilizes GHI component of solar radiation and converts it into electricity to charge a battery that can power a CFL or LED whenever required. There are about 17% unelectrified households in rural areas of the state of Uttarakhand (ORGCC, n.d.) that may be accounted as potential users of solar lantern. A solar lantern generally replaces lighting devices such as kerosene lamp or LPG lamp. The fuel savings as a result of replacement of an LPG/kerosene lamp with a solar lantern would result in annual monetary benefit to the lantern user that can be estimated as:

$$B = 365 \times f_{sl} \times n_{hrld} \times SFC \times P_f$$
 (Eqn. 6.16)

where f_{sl} represents the fraction of annual lighting energy demand met with solar lantern, n_{hrld} the number of hours of lighting per day, and SFC the specific fuel consumption of the lighting appliance replaced by solar lighting device.

6.2.2.6. Solar Home System

A solar home system has a PV module, charge controller and battery to convert GHI component of solar radiation into electricity that can power multiple electric appliances such as CFLs, LEDs, fans, television, mobile charger, etc. With sufficient solar radiation availability throughout the year and about 17% unelectrified households in rural areas (ORGCC, n.d.), the state of Uttarakhand may have potential for solar lantern and/or solar home system. As solar home systems are significantly costlier compared to solar lanterns, solar home systems would be preferred only by those households that have adequate purchasing power. The SHS generally promoted in Uttarakhand has two lamps (CFLs). As a result of adoption of an SHS and consequent fuel savings, the annual monetary benefit to the SHS user can be estimated as:

$$B = n_l \times 365 \times f_{shs} \times n_{hrld} \times SFC \times P_f$$
 (Eqn. 6.17)

where n_l represents the number of lamps replaced by SHS, and f_{shs} the fraction of annual lighting energy demand met by SHS.

6.2.2.7. Solar PV Pump

A solar PV pump consists of a PV module, charge controller, pump and balance of system. It converts GHI component of solar radiation into electricity that is used to energize the pump. In areas that have adequate solar radiation availability throughout the year (e.g. Uttarakhand) along with good rainfall and perennial water streams, it may be used for water pumping. As solar PV pump is a costly device, it may not be widely adopted by individual households due to poor purchasing power in water scarce areas but it may be installed as community pumps. A solar PV pump may replace electric or diesel pump and such replacement would lead to monetary savings as a result of fuel savings. The expected annual monetary benefit due to utilization of a solar PV pump to fulfill the domestic water needs of a village can be estimated as:

$$B = \frac{{}^{365 \times f_{sp} \times \rho_w \times g \times V_{wpd} \times n_{pv} \times h \times P_f}}{{}^{CV_f \times \eta_{fu}}}$$
(Eqn. 6.18)

where f_{sp} represents the fraction of annual water pumping energy requirement met by solar PV pump, ρ_w the density of water (1000 kg/m³), g the acceleration due to gravity (9.8 m/s²), V_{wpd} the volume of water required per person per day for various domestic activities, n_{pv} the number of persons in the village, and h the head for water pumping. The annual useful energy delivered by a solar PV pump is estimated as:

$$AUE = 365 \times f_{sp} \times \rho_w \times g \times V_{wpd} \times n_{pv} \times h$$
 (Eqn. 6.19)

6.2.2.8. Solar Dryer

A solar dryer is a heat transfer device that utilizes solar energy to dry organic materials such as fruits, vegetables, herbs, etc. that enhances their shelf lives. As the state of Uttarakhand produces varieties of agricultural products and it also has adequate solar radiation availability throughout the year, solar dryers may be used in the state to increase the shelf life of agricultural products. For effective drying, it may be necessary to either adopt a fossil fuel / biomass based dryer or adopt solar drying. In this study, it is assumed that use of a solar dryer would save fuel consumption in the proposed fossil fuel / biomass based drying that need to be adopted otherwise. Hence, adoption of solar dryer would result in fuel savings. As per Kumar and Kandpal (2005), the annual monetary benefit to the solar dryer user can be expressed as:

$$B = \left[s(T_d - T_a) + \left(\frac{M_i - M_f}{1 - M_f}\right)h_{fg}\right]\frac{M_{sd} \times n_{ly} \times P_f}{CV_f \times \eta_{fu}}$$
(Eqn. 6.20)

where s represents the specific heat of wet crop, T_d the drying temperature, T_a the ambient temperature, M_i and M_f the initial and final moisture contents (in fraction) of the crop on wet basis respectively, h_{fg} the enthalpy of evaporation of water at the drying temperature, M_{sd} the capacity of solar dryer (mass of crop

dried on wet basis), and n_{ly} the number of loadings per year. Annual useful energy delivered by a solar dryer can be estimated as:

$$AUE = \left[s(T_d - T_a) + \left(\frac{M_i - M_f}{1 - M_f}\right)h_{fg}\right] \times M_{sd} \times n_{ly}$$
(Eqn. 6.21)

6.3. Results and Discussion

For financial analysis of the DRESs considered in the study, values of relevant input parameters such as subsidized/unsubsidized price of fuel(s), calorific value of fuel(s), efficiency of fuel utilization, etc. are presented in Table 6.1. In case of availability of multiple values for a parameter, the study has considered values that lead to conservative estimates of NPV and IRR. DRES specific input data such as capital cost, subsidy, useful life, operation and maintenance cost, etc. and subsequent results of financial analysis are presented in the following subsections.

Parameter	Unit	Value	Reference
Price of subsidized domestic	₹ per 14.2 kg	433.50	Indane, n.d.
LPG	LPG cylinder		
Price of unsubsidized domestic	₹ per 14.2 kg	755.00	Indane, n.d.
LPG	LPG cylinder		
Price of subsidized electricity	₹ per kWh	2.30	UPCL, 2013
(domestic category)			
Price of subsidized electricity	₹ per kWh	1.10	UPCL, 2013
(pumps – domestic, agriculture)			
Price of unsubsidized electricity	₹ per kWh	4.55	Planning Commission, 2011
Price of subsidized kerosene	₹ per liter	14.15	DFCS, 2015
Price of unsubsidized kerosene	₹ per liter	50.00	Kerosene Vendor, Personal
			Communication, May 12, 2014
Price of subsidized fuelwood	₹ per kg	1.60	UFDC, n.d.
Price of unsubsidized fuelwood	₹ per kg	10.00	Fuelwood Vendor, Personal
			Communication, May 27, 2014
Calorific value of fuelwood	kJ per kg	16000	Chandrasekar and Kandpal, 2004
Efficiency of fuelwood	%	10	Chandrasekar and Kandpal, 2004

Table 6.1: General input parameters for financial analysis of DRESs in Uttarakhand

utilization in traditional cookstovekg per liter0.81Pathak et al., 2009Calorific value of kerosenekJ per kg44500Chandrasekar and Kandpal, 2004Efficiency of kerosene utilization in kerosene stove%40Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Calorific value of LPGkJ per kg45000Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Calorific value of LPGkJ per kg45000Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Efficiency of LPG stove%60Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Efficiency of electric geyser%90Chandrasekar and Kandpal, 2004Density of dieselkg per liter0.845SIAM, nd.; BEE, 2011Calorific value of diesel₹ per liter65.61PPAC, 2014Discount rate%10.95CERC, 2013Energy required for cooking in number of persons per household in UttarakhandkJ per person2130Number of hours of lighting number of hours of lighting na LPG lamphr4Kandpal and Garg, 2003; Mahapatra et al., 2009Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in kerosene in a kerosene (hurricane) lantern%40Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of electric-motor- pumpset%40Kandpal and	Parameter	Unit	Value	Reference
Density of kerosenekg per liter0.81Pathak et al., 2009Calorific value of kerosenekJ per kg44500Chandrasekar and Kandpal, 2004;Efficiency of kerosene%40Chandrasekar and Kandpal, 2004;utilization in kerosene stove%40Chandrasekar and Kandpal, 2004;Calorific value of LPGkJ per kg45000Chandrasekar and Kandpal, 2004;Efficiency of LPG stove%60Chandrasekar and Kandpal, 2004;Ravindranath and Ramakrishna, 19971997Efficiency of electric geyser%90Chandrasekar and Kandpal, 2004Density of dieselkg per liter0.845SIAM, n.d.; BEE, 2011Calorific value of dieselkJ per kg42700Kandpal and Garg, 2003Price of subsidized diesel₹ per liter65.61PPAC, 2014Discount rate%10.95CERC, 2013Inergy required for cooking in household in UttarakhandkJ per person2130Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in an LPG lampkg per hr0.03Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of hurricane) lantern%40Purohit and Kandpal, 2005Efficiency of diesel pump%40Purohit and Kandpal, 2005Solar PV system%40Furdial and Garg, 2003Efficiency of electric-motor-%40 <t< td=""><td>utilization in traditional</td><td></td><td></td><td></td></t<>	utilization in traditional			
Calorific value of kerosenekJ per kg44500Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Calorific value of LPGkJ per kg400Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Calorific value of LPGkJ per kg45000Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Efficiency of LPG stove%60Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Efficiency of electric geyser%90Chandrasekar and Kandpal, 2004Density of dieselkg per liter0.845SIAM, n.d.; BEE, 2011Calorific value of dieselkJ per kg42700Kandpal and Garg, 2003Price of subsidized diesel₹ per liter65.61PPAC, 2014Discount rate%10.95CERC, 2013Energy required for cooking in household in UttarakhandkJ per person per day2130Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in an LPG lampkg per hr0.03Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pupp used with solar PV system%40Purohit and Kandpal, 2005Efficiency of diesel pump%40Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of diesel pump%40Purohit and Kandpal, 2005	cookstove			
Efficiency of kerosene%40Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Calorific value of LPGkJ per kg45000Chandrasekar and Kandpal, 2004Efficiency of LPG stove%60Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Efficiency of LPG stove%60Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Efficiency of electric geyser%90Chandrasekar and Kandpal, 2004Density of dieselkg per liter0.845SIAM, n.d.; BEE, 2011Calorific value of diesel≹ per kg42700Kandpal and Garg, 2003Price of subsidized diesel₹ per liter65.61PPAC, 2014Discount rate%10.95CERC, 2013Energy required for cooking in number of persons per household in Uttrakhand130Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in an LPG lampkg per hr0.03Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of electric-motor- busholar of laster%40Purohit and Garg, 2003	Density of kerosene	kg per liter	0.81	Pathak et al., 2009
utilization in kerosene stoveRavindranath and Ramakrishna, 1997Calorific value of LPGkJ per kg45000Chandrasekar and Kandpal, 2004Efficiency of LPG stove%60Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Efficiency of electric geyser%90Chandrasekar and Kandpal, 2004Density of dieselkg per liter0.845SIAM, n.d.; BEE, 2011Calorific value of dieselkJ per kg42700Kandpal and Garg, 2003Price of subsidized diesel₹ per liter65.61PPAC, 2014Discount rate%10.95CERC, 2013Energy required for cooking in nural areas per person per day per day2130Kandpal and Garg, 2003Number of persons per nousehold in Uttarakhandnumber5ORGCC, n.d.Number of hours of lighting an LPG lamphr4Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in kerosene in a kerosene (hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of kerosene in a kerosene (hurricane) lantern%400Purohit and Kandpal, 2005Efficiency of diesel pump%400Kandpal and Garg, 2003Efficiency of electric-motor-%52Purohit and Kandpal, 2005	Calorific value of kerosene	kJ per kg	44500	Chandrasekar and Kandpal, 2004
Image: Calorific value of LPGkJ per kg4500Chandrasekar and Kandpal, 2004Efficiency of LPG stove%60Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Efficiency of electric geyser%90Chandrasekar and Kandpal, 2004Density of dieselkg per liter0.845SIAM, n.d.; BEE, 2011Calorific value of dieselkJ per kg42700Kandpal and Garg, 2003Price of subsidized diesel₹ per liter65.61PPAC, 2014Discount rate%10.95CERC, 2013Energy required for cooking in nural areas per person per day per day2130Kandpal and Garg, 2003Number of hours of lighting equirement per dayhr4Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in kerosene in a kerosene (hurricane) lanternkg per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of diesel pump%40Purohit and Kandpal, 2005	Efficiency of kerosene	%	40	Chandrasekar and Kandpal, 2004;
Calorific value of LPGkJ per kg4500Chandrasekar and Kandpal, 2004Efficiency of LPG stove%60Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Efficiency of electric geyser%90Chandrasekar and Kandpal, 2004Density of dieselkg per liter0.845SIAM, n.d.; BEE, 2011Calorific value of dieselkJ per kg42700Kandpal and Garg, 2003Price of subsidized diesel₹ per liter65.61PPAC, 2014Discount rate%10.95CERC, 2013Energy required for cooking in nural areas per person per day per day2130Kandpal and Garg, 2003; Mahapatra et al., 2009Number of hours of lighting an LPG lamphr4Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Kandpal and Garg, 2003Efficiency of diesel pump%40Kandpal and Garg, 2003	utilization in kerosene stove			Ravindranath and Ramakrishna,
Efficiency of LPG stove%60Chandrasekar and Kandpal, 2004; Ravindranath and Ramakrishna, 1997Efficiency of electric geyser%90Chandrasekar and Kandpal, 2004Density of dieselkg per liter0.845SIAM, n.d.; BEE, 2011Calorific value of dieselkJ per kg42700Kandpal and Garg, 2003Price of subsidized diesel₹ per liter65.61PPAC, 2014Discount rate%10.95CERC, 2013Energy required for cooking in household in UttarakhandkJ per person per day2130Kandpal and Garg, 2003Number of persons per household in Uttarakhandhr4Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in kerosene in a kerosene (hurricane) lanternkg per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of kerosene in a kerosene (hurricane) lantern%40Purohit and Kandpal, 2005Efficiency of pump used with solar PV system%40Kandpal and Garg, 2003Efficiency of electric-motor-%52Purohit and Kandpal, 2005				1997
Ravindranath and Ramakrishna, 1997Efficiency of electric geyser%90Chandrasekar and Kandpal, 2004Density of dieselkg per liter0.845SIAM, n.d.; BEE, 2011Calorific value of dieselkJ per kg42700Kandpal and Garg, 2003Price of subsidized diesel₹ per liter65.61PPAC, 2014Discount rate%10.95CERC, 2013Energy required for cooking in nural areas per person per daykJ per person2130Number of persons per household in Uttarakhandnumber5ORGCC, n.d.Number of hours of lighting equirement per dayhr4Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in kerosene in a kerosene (hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of diesel pump%40Kandpal and Garg, 2003;	Calorific value of LPG	kJ per kg	45000	Chandrasekar and Kandpal, 2004
Image: series of the series	Efficiency of LPG stove	%	60	Chandrasekar and Kandpal, 2004;
Efficiency of electric geyser%90Chandrasekar and Kandpal, 2004Density of dieselkg per liter0.845SIAM, n.d.; BEE, 2011Calorific value of dieselkJ per kg42700Kandpal and Garg, 2003Price of subsidized diesel₹ per liter62.21IOCL, n.d.Price of unsubsidized diesel₹ per liter65.61PPAC, 2014Discount rate%10.95CERC, 2013Energy required for cooking in nural areas per person per dayper dayKandpal and Garg, 2003Number of persons per household in Uttarakhandnumber5ORGCC, n.d.Number of hours of lighting requirement per dayhr4Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in herosene in a kerosene (hurricane) lanternkg per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of electric-motor-%52Purohit and Kandpal, 2005				Ravindranath and Ramakrishna,
Density of dieselkg per liter0.845SIAM, n.d.; BEE, 2011Calorific value of dieselkJ per kg42700Kandpal and Garg, 2003Price of subsidized diesel₹ per liter62.21IOCL, n.d.Price of unsubsidized diesel₹ per liter65.61PPAC, 2014Discount rate%10.95CERC, 2013Energy required for cooking in rural areas per person per daykJ per person per day2130Kandpal and Garg, 2003Number of persons per household in Uttarakhandnumber5ORGCC, n.d.Number of hours of lighting an LPG lamphr4Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of electric-motor-%52Purohit and Kandpal, 2005				1997
Calorific value of dieselkJ per kg42700Kandpal and Garg, 2003Price of subsidized diesel₹ per liter62.21IOCL, n.d.Price of unsubsidized diesel₹ per liter65.61PPAC, 2014Discount rate%10.95CERC, 2013Energy required for cooking in rural areas per person per daykJ per person per day2130Kandpal and Garg, 2003Number of persons per household in Uttarakhandnumber5ORGCC, n.d.Number of hours of lighting requirement per dayhr4Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in kerosene in a kerosene (hurricane) lanternkg per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of electric-motor-%52Purohit and Kandpal, 2005	Efficiency of electric geyser	%	90	Chandrasekar and Kandpal, 2004
Price of subsidized diesel₹ per liter62.21IOCL, n.d.Price of unsubsidized diesel₹ per liter65.61PPAC, 2014Discount rate%10.95CERC, 2013Energy required for cooking in rural areas per person per daykJ per person per day2130Kandpal and Garg, 2003Number of persons per household in Uttarakhandnumber5ORGCC, n.d.Number of hours of lighting requirement per dayhr4Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in an LPG lampkg per hr0.03Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of (hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of electric-motor-%52Purohit and Kandpal, 2005	Density of diesel	kg per liter	0.845	SIAM, n.d.; BEE, 2011
Price of unsubsidized diesel₹ per liter65.61PPAC, 2014Discount rate%10.95CERC, 2013Energy required for cooking in rural areas per person per daykJ per person2130Kandpal and Garg, 2003Number of persons per household in Uttarakhandnumber5ORGCC, n.d.Number of hours of lighting requirement per dayhr4Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in kg per hrkg per hr0.03Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of (hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of electric-motor-%52Purohit and Kandpal, 2005	Calorific value of diesel	kJ per kg	42700	Kandpal and Garg, 2003
Discount rate%10.95CERC, 2013Energy required for cooking in rural areas per person per daykJ per person per day2130Kandpal and Garg, 2003Number of persons per household in Uttarakhandnumber5ORGCC, n.d.Number of hours of lighting requirement per dayhr4Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in an LPG lampkg per hr0.03Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of (hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of electric-motor-%52Purohit and Kandpal, 2005	Price of subsidized diesel	₹ per liter	62.21	IOCL, n.d.
Energy required for cooking in rural areas per person per dayZ130Kandpal and Garg, 2003Number of persons per household in Uttarakhandnumber5ORGCC, n.d.Number of hours of lighting requirement per dayhr4Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in an LPG lampkg per hr0.03Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of electric-motor-%52Purohit and Kandpal, 2005	Price of unsubsidized diesel	₹ per liter	65.61	PPAC, 2014
rural areas per person per dayper dayImage: constraint of the sense per sense per numberper daySource of the sense per sense per numberSource of the sense per sense	Discount rate	%	10.95	CERC, 2013
Number of persons per household in Uttarakhandnumber5ORGCC, n.d.Number of hours of lighting requirement per dayhr4Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in an LPG lampkg per hr0.03Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of kerosene in a kerosene (hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of electric-motor-%52Purohit and Kandpal, 2005	Energy required for cooking in	kJ per person	2130	Kandpal and Garg, 2003
household in UttarakhandImage: Construct of the second	rural areas per person per day	per day		
Number of hours of lighting requirement per dayhr4Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of LPG in an LPG lampkg per hr0.03Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of kerosene in a kerosene (hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of diesel pump%40Kandpal and Garg, 2003;Efficiency of electric-motor-%52Purohit and Kandpal, 2005	Number of persons per	number	5	ORGCC, n.d.
requirement per dayet al., 2009Rate of consumption of LPG in an LPG lampkg per hr0.03Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of kerosene in a kerosene (hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of diesel pump%40Kandpal and Garg, 2003Efficiency of electric-motor-%52Purohit and Kandpal, 2005	household in Uttarakhand			
Rate of consumption of LPG in an LPG lampkg per hr0.03Kandpal and Garg, 2003; Mahapatra et al., 2009Rate of consumption of kerosene in a kerosene (hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of diesel pump Sefficiency of electric-motor-%52Purohit and Kandpal, 2005	Number of hours of lighting	hr	4	Kandpal and Garg, 2003; Mahapatra
an LPG lampet al., 2009Rate of consumption of kerosene in a kerosene (hurricane) lanternliter per hr0.04Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of diesel pump%40Kandpal and Garg, 2003Efficiency of electric-motor-%52Purohit and Kandpal, 2005	requirement per day			et al., 2009
Rate of consumption of kerosene in a kerosene (hurricane) lanternliter per hr0.04 et al., 2009Kandpal and Garg, 2003; Mahapatra et al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of diesel pump%40Kandpal and Garg, 2003Efficiency of electric-motor-%52Purohit and Kandpal, 2005	Rate of consumption of LPG in	kg per hr	0.03	Kandpal and Garg, 2003; Mahapatra
kerosene in a kerosene (hurricane) lanternet al., 2009Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of diesel pump%40Kandpal and Garg, 2003Efficiency of electric-motor-%52Purohit and Kandpal, 2005	an LPG lamp			et al., 2009
(hurricane) lanternImage: Constraint of the solar PV system40Purohit and Kandpal, 2005Efficiency of diesel pump%40Kandpal and Garg, 2003Efficiency of electric-motor-%52Purohit and Kandpal, 2005	Rate of consumption of	liter per hr	0.04	Kandpal and Garg, 2003; Mahapatra
Efficiency of pump used with solar PV system%40Purohit and Kandpal, 2005Efficiency of diesel pump%40Kandpal and Garg, 2003Efficiency of electric-motor-%52Purohit and Kandpal, 2005	kerosene in a kerosene			et al., 2009
solar PV system40Kandpal and Garg, 2003Efficiency of diesel pump%52Purohit and Kandpal, 2005	(hurricane) lantern			
Efficiency of diesel pump%40Kandpal and Garg, 2003Efficiency of electric-motor-%52Purohit and Kandpal, 2005	Efficiency of pump used with	%	40	Purohit and Kandpal, 2005
Efficiency of electric-motor-%52Purohit and Kandpal, 2005	solar PV system			
	Efficiency of diesel pump	%	40	Kandpal and Garg, 2003
pumpset	Efficiency of electric-motor-	%	52	Purohit and Kandpal, 2005
	pumpset			

Table 6.1: General input parameters for financial analysis of DRESs in Uttarakhand (continued...)

6.3.1. Domestic Solar Water Heater

To assess the financial attractiveness of a DSWH in Uttarakhand, input data is presented in Table 6.2. For various combinations of capacity utilization factor (CUF), capital subsidy and subsidy on fuel, financial attractiveness of a DSWH has been assessed and the results are presented in Tables 6.3 - 6.4. Breakeven values of CUF and price of fuel substituted have also been estimated and the results of the same are presented in Tables 6.5 - 6.6.

Parameter	Unit	Value	Reference
Capital cost			
FPC	₹	24000	RAF, n.d.
ETC	₹	18000	SES, n.d.; SS, n.d.
Capital subsidy			
FPC	₹	13200	MNRE, 14c; UREDA, n.d.a
ETC	₹	7650	MNRE, 14c; UREDA, n.d.a
Useful life			
FPC	Years	20	AS, n.d.
ETC	Years	15	AS, n.d.
Annual operation and maintenance			
cost as a fraction of its capital cost			
FPC	Fraction	0.02	Chandrasekar and
			Kandpal, 2004
ETC	Fraction	0.02	Chandrasekar and
			Kandpal, 2004
Inlet temperature of water	°C	15	Assumption based on
			MNRE's specification
Outlet temperature of water	°C	60	MNRE, n.d.a
Specific heat of water	kJ per Kg °C	4.20	Nag, 2005
Rebate in electricity bill to	₹ per month	100	UPCL, 2013
consumers using 100 LPD DSWH			

Table 6.2: Input values for financial analysis of 100 liters per day (LPD) DSWH

Results of financial analysis of DSWH show that its usage is a financially viable option in all conditions (with/without capital subsidy on DSWH and subsidy of fuel price) with the prevailing rebate provision. As expected, its usage becomes financially more attractive for users not availing any kind of subsidy in the price of electricity or any other fuel used for water heating at household level. Also, both ETC and FPC are competitive and ETC type DSWH has marginal edge over FPC type. Estimated breakeven values of CUF and fuel prices also suggest financial viability of DSWH in Uttarakhand. However, in the absence of electricity bill rebate and capital subsidy on DSWH, higher CUF (around 0.70) is critical for its financial viability.

Type of	CUF (in	LCUE	Discounted	Payback F	Period (years))	NPV (₹)				IRR (%)			
DSWH	fraction)	(Rs/MJ)												
			Electricity	LPG	Kerosene	Biomass	Electricity	LPG	Kerosene	Biomass	Electricity	LPG	Kerosene	Biomass
	1			1	1	W	vithout capital	subsidy		1			1	1
ETC	0.40	0.60	11.72	6.63	7.80	7.63	2181.72	10554.46	7584.56	7954.41	13	21	18	18
	0.50	0.48	8.80	5.17	6.05	5.92	5712.89	16178.82	12466.45	12928.76	16	25	22	23
	0.60	0.40	7.10	4.25	4.95	4.85	9244.06	21803.17	17348.33	17903.10	20	30	26	27
	0.70	0.34	5.96	3.61	4.19	4.11	12775.23	27427.53	22230.21	22877.45	23	35	30	31
	0.80	0.30	5.15	3.14	3.64	3.57	16306.40	33051.89	27112.09	27851.79	26	39	34	35
FPC	0.40	0.83	38.15	11.10	14.00	13.55	-2597.63	6679.27	3388.66	3798.45	09	15	13	13
	0.50	0.66	17.02	8.10	9.84	9.58	1314.86	12910.99	8797.72	9309.96	12	19	16	17
	0.60	0.55	12.20	6.42	7.67	7.49	5227.36	19142.71	14206.79	14821.47	14	22	19	20
	0.70	0.47	9.66	5.33	6.32	6.18	9139.85	25374.43	19615.86	20332.99	16	25	22	23
	0.80	0.41	8.05	4.56	5.38	5.26	13052.35	31606.14	25024.92	25844.50	19	29	25	26
							With capital su	ıbsidy						
ETC	0.40	0.22	5.00	3.24	3.70	3.64	9831.72	18204.46	15234.56	15604.41	26	38	34	34
	0.50	0.17	4.07	2.63	3.01	2.95	13362.89	23828.82	20116.45	20578.76	31	46	41	41
	0.60	0.14	3.43	2.21	2.53	2.49	16894.06	29453.17	24998.33	25553.10	36	53	47	48
	0.70	0.12	2.97	1.91	2.19	2.15	20425.23	35077.53	29880.21	30527.45	41	61	54	55
	0.80	0.11	2.62	1.68	1.92	1.89	23956.40	40701.89	34762.09	35501.79	46	68	60	61
FPC	0.40	0.23	5.61	3.54	4.07	4.00	10602.37	19879.27	16588.66	16998.45	24	35	32	32
	0.50	0.18	4.50	2.85	3.27	3.21	14514.86	26110.99	21997.72	22509.96	29	43	38	39
	0.60	0.15	3.76	2.38	2.73	2.68	18427.36	32342.71	27406.79	28021.47	34	50	44	45
	0.70	0.13	3.23	2.04	2.35	2.31	22339.85	38574.43	32815.86	33532.99	38	57	51	51
	0.80	0.11	2.83	1.79	2.06	2.02	26252.35	44806.14	38224.92	39044.50	43	64	57	58

Table 6.3: Measures of financial performance of DSWH with subsidized fuel and rebate in electricity bill

Type of	CUF (in	LCUE	Discounted	Payback	Period (year	s)	NPV (₹)				IRR (%)						
DSWH	fraction)	(Rs/MJ)															
			Electricity	LPG	Kerosene	Biomass	Electricity	LPG	Kerosene	Biomass	Electricity	LPG	Kerosene	Biomass			
							Without capital subsidy										
ETC	0.40	0.60	5.21	3.63	2.02	1.11	15999.34	27239.40	57058.89	112415.63	25	34	58	100			
	0.50	0.48	4.10	2.87	1.61	0.89	22984.92	37034.99	74309.36	143505.28	31	42	71	124			
	0.60	0.40	3.38	2.38	1.34	0.74	29970.49	46830.58	91559.82	174594.93	37	50	84	148			
	0.70	0.34	2.88	2.03	1.14	0.63	36956.07	56626.17	108810.28	205684.57	42	57	98	172			
	0.80	0.30	2.51	1.77	1.00	0.55	43941.64	66421.76	126060.75	236774.22	48	65	111	196			
FPC	0.40	0.83	8.17	5.36	2.84	1.52	12712.13	25165.98	58205.62	119540.23	19	25	43	75			
	0.50	0.66	6.15	4.14	2.23	1.21	20452.06	36019.38	77318.93	153987.18	23	31	53	93			
	0.60	0.55	4.95	3.38	1.84	1.00	28192.00	46872.78	96432.24	188434.14	27	37	63	111			
	0.70	0.47	4.15	2.86	1.57	0.86	35931.93	57726.18	115545.54	222881.10	31	43	73	129			
	0.80	0.41	3.57	2.48	1.37	0.75	43671.86	68579.57	134658.85	257328.06	35	48	83	147			
							With capital subsidy										
ETC	0.40	0.22	2.65	1.92	1.11	0.62	23649.34	34889.40	64708.89	120065.63	45	61	101	175			
	0.50	0.17	2.14	1.55	0.89	0.50	30634.92	44684.99	81959.36	151155.28	55	74	124	216			
	0.60	0.14	1.80	1.30	0.75	0.42	37620.49	54480.58	99209.82	182244.93	64	87	147	258			
	0.70	0.12	1.55	1.12	0.64	0.36	44606.07	64276.17	116460.28	213334.57	74	100	170	300			
	0.80	0.11	1.36	0.98	0.56	0.31	51591.64	74071.76	133710.75	244424.22	83	113	193	341			
FPC	0.40	0.23	2.86	2.05	1.18	0.66	25912.13	38365.98	71405.62	132740.23	43	57	95	166			
	0.50	0.18	2.30	1.65	0.94	0.52	33652.06	49219.38	90518.93	167187.18	52	70	117	206			
	0.60	0.15	1.92	1.38	0.79	0.44	41392.00	60072.78	109632.24	201634.14	60	82	140	246			
	0.70	0.13	1.65	1.18	0.67	0.38	49131.93	70926.18	128745.54	236081.10	69	95	162	286			
	0.80	0.11	1.45	1.04	0.59	0.33	56871.86	81779.57	147858.85	270528.06	78	107	184	326			

Table 6.4: Measures of financial performance of DSWH with unsubsidized fuel and rebate in electricity bill

					With 1	rebate				Without rebate								
			Subsic	lized fuel		Unsubsidized fuel				Subsidized fuel					Unsubsidized fuel			
		Electricity	LPG	Kerosene	Biomass	Electricity	LPG	Kerosene	Biomass	Electricity	LPG	Kerosene	Biomass	Electricity	LPG	Kerosene	Biomass	
	ETC	0.34	0.21	0.24	0.24	0.17	0.19	0.07	0.04	0.58	0.37	0.42	0.41	0.29	0.21	0.12	0.07	
Without capital	FPC	0.47	0.29	0.34	0.33	0.24	0.23	0.10	0.05	0.71	0.45	0.51	0.51	0.36	0.26	0.15	0.08	
subsidy																		
With capital	ETC	0.12	0.08	0.09	0.09	0.06	0.12	0.02	0.01	0.37	0.23	0.27	0.26	0.19	0.13	0.08	0.04	
subsidy	FPC	0.13	0.08	0.09	0.09	0.07	0.12	0.03	0.01	0.37	0.23	0.27	0.27	0.19	0.13	0.08	0.04	

Table 6.5: Breakeven values of CUF (in fraction) for DSWH with/without rebate

Table 6.6: Breakeven values of fuel price for DSWH with/without rebate

	CUF				with r	rebate							withou	t rebate			
	(in	Without cap	Without capital subsidy With capital subsidy							Without cap	'y		With capital subsidy				
	fraction)	Electricity	LPG	Kerosene	Biomass	Electricity	LPG	Kerosene	Biomass	Electricity	LPG	Kerosene	Biomass	Electricity	LPG	Kerosene	Biomass
		(₹/kWh)	(₹/kg)	(₹/l)	(₹/kg)	(₹/kWh)	(₹/kg)	(₹/l)	(₹/kg)	(₹/kWh)	(₹/kg)	(₹/l)	(₹/kg)	(₹/kWh)	(₹/kg)	(₹/l)	(₹/kg)
ETC	0.40	1.94	16.21	8.65	0.96	0.70	5.83	3.11	0.35	3.35	27.95	14.92	1.66	2.11	17.57	9.38	1.04
	0.50	0.48	12.96	6.92	0.77	0.17	4.66	2.49	0.28	2.68	22.36	11.94	1.32	1.69	14.05	7.50	0.83
	0.60	1.30	10.80	5.77	0.64	0.47	3.88	2.07	0.23	2.24	18.63	9.95	1.10	1.41	11.71	6.25	0.69
	0.70	1.11	9.26	4.95	0.55	0.40	3.33	1.78	0.20	1.92	15.97	8.53	0.95	1.20	10.04	5.36	0.59
	0.80	0.97	8.10	4.33	0.48	0.35	2.91	1.56	0.17	1.68	13.97	7.46	0.83	1.05	8.78	4.69	0.52
FPC	0.40	2.68	22.35	11.93	1.32	0.74	6.18	3.30	0.37	4.09	34.09	18.20	2.02	2.15	17.92	9.57	1.06
	0.50	0.66	17.88	9.55	1.06	0.18	4.95	2.64	0.29	3.27	27.27	14.56	1.62	1.72	14.34	7.66	0.85
	0.60	1.79	14.90	7.96	0.88	0.49	4.12	2.20	0.24	2.73	22.73	12.14	1.35	1.43	11.95	6.38	0.71
	0.70	1.53	12.77	6.82	0.76	0.42	3.53	1.89	0.21	2.34	19.48	10.40	1.15	1.23	10.24	5.47	0.61
	0.80	1.34	11.17	5.97	0.66	0.37	3.09	1.65	0.18	2.05	17.04	9.10	1.01	1.08	8.96	4.79	0.53

6.3.2. Family Size Biogas Plant

Input data used for assessment of financial attractiveness of FSBP is presented in Table 6.7. Results of the assessment are presented in Table 6.8. The results indicate that Deenbandhu model of FSBP is financially more rewarding for the user. Also, for a user having access to cooking fuel(s) such as kerosene and LPG at subsidized rates, owning a Khadi and Village Industries Commission (KVIC) model biogas plant would not be financially viable and the household would incur loss as its NPV is negative even with the provision of capital subsidy on it. However, for the case of users purchasing cooking fuels at prevailing market prices, both KVIC and Deenbandhu model biogas plants are expected to be financially profitable. Breakeven values also favor investments in Deenbandhu model as the values are significantly lower for it compared to the KVIC model due to substantially higher capital cost of KVIC model biogas plant (Table 6.9).

Parameter	Unit	Value	Reference
Capital cost			
KVIC model	₹	32000	Project Officer of UREDA, Personal
			Communication, May 11, 2014
Deenbandhu model	₹	26000	Project Officer of UREDA, Personal
			Communication, May 11, 2014
Capital subsidy	₹	10000	Project Officer of UREDA, Personal
			Communication, May 11, 2014;
			UREDA, n.d.b
Useful life	Years	25	Singh and Sooch, 2004
Annual operation and maintenance cost as a			
fraction of its capital cost			
KVIC model	Fraction	0.07	Kandpal and Garg, 2003
Deenbandhu model	Fraction	0.045	Kandpal and Garg, 2003
Fraction of annual useful energy required for	Fraction	0.82	Assumption based on inputs from
domestic cooking met with biogas (f_{bp})			existing users
(considering 300 days of domestic cooking			
energy demand met with biogas per year)			

Table 6.7: Input values for financial analysis of 2 m³ FSBP

Scheme	Type of	LCUE	Discounted	l Payback	Period	NPV (₹)			IRR (%)		
	FSBP	(₹/MJ)	(years)								
			Biomass	LPG	Kerosene	Biomass	LPG	Kerosene	Biomass	LPG	Kerosene
			1		With su	bsidized fuel	1		•	•	
Without	KVIC	1.89	-	-	-	-23927.78	-20398.83	-24429.77	-2	1	-3
capital											
subsidy	Deenbandhu	1.33	-	-	-	-8883.51	-5354.56	-9385.50	6	8	6
With	KVIC	1.52	-	-	-	-13927.78	-10398.83	-14429.77	1	4	0
capital											
subsidy	Deenbandhu	0.96	19.28	12.16	21.36	1116.49	4645.44	614.50	12	15	11
		1			With uns	ubsidized fuel	-			1	
Without	KVIC	1.89	2.12	19.26	4.86	117853.78	2247.06	42720.01	55	12	28
capital	Deenbandhu	1.33	1.58	7.81	3.26	132898.04	17291.33	57764.28	72	19	38
subsidy											
With	KVIC	1.52	1.41	8.69	3.06	127853.78	12247.06	52720.01	81	18	40
capital	Deenbandhu	0.96	0.94	4.03	1.87	142898.04	27291.33	67764.28	117	32	62
subsidy											

Table 6.8: Measures of financial performance of FSBP (2 m³)

- Undefined numbers

Scheme	Type of FSBP	В	Breakeven value of number of days in a year					Breakeven value of fuel price		
		For subsidized fuel		For unsubsidized fuel			Biomass (₹/kg)	LPG (₹/kg)	Kerosene (₹/l)	
		Biomass	LPG	Kerosene	Biomass	LPG	Kerosene			
Without capital	KVIC	566**	500*	577**	91	287	163	3.02	50.92	27.19
subsidy	Deenbandhu	399**	353	406**	64	202	115	2.13	35.88	19.16
With capital	KVIC	455**	402**	463**	73	231	131	2.43	40.92	21.85
subsidy	Deenbandhu	288	254	293	46	146	83	1.53	25.88	13.82

Table 6.9: Breakeven values of number of days in a year during which FSBP satisfies full cooking need of the household (n_{dbpy}) and fuel price for replaced fuel

* Illogical values as these indicate more than 365 days cooking per year.

6.3.3. Improved Biomass Cookstove

Input data used for assessment of financial viability of improved biomass cookstove is presented in Table 6.10. The results of financial assessment of improved biomass cookstove (Table 6.11) indicate that improved cookstoves are financially rewarding for the user as the NPV and IRR values obtained for all scenarios (with/without capital subsidy or fuel subsidy) are very attractive. Even the breakeven values of fuelwood price and number of days of operation per year (Table 6.12) are much lower indicating its financial attractiveness. For example, even for subsidized fuel and without capital subsidy scenario, the estimated breakeven value of number of days of its utilization is less than three months per year. Such low breakeven value can accommodate uncertainties in improved biomass cookstove usage due to unavailability of usable firewood because of rain, forest fire, etc. From the results of breakeven analysis for the fuelwood price, it is noted that even for a negligibly small value of Rs 0.34/kg, the cumulative present value of net benefits accrued to the user breaks even with the cost. This implies that if an

improved biomass cookstove satisfies the perceived need of the user with the declared efficiency of utilization, then the low price of the biomass would not matter in its adoption.

Parameter	Unit	Value	Reference
Capital cost	₹	1794	Quote received from isquareD
			for Chulika Biomass Stove,
			Personal Communication, May
			20, 2014
Capital subsidy	₹	300	MNRE, n.d.b
Useful life	Years	5	MNRE, n.d.b
Annual operation and maintenance cost	Fraction	0.00	Kandpal and Garg, 2003
(excluding fuel cost) as a fraction of its			
capital cost			
Thermal efficiency			
Traditional biomass cookstove	%	10.00	Chandrasekar and Kandpal,
			2004; Kandpal and Garg, 2003
Improved biomass cookstove	%	24.10	MNRE, n.d.b
Fraction of annual useful energy required	Fraction	1.00	Assumption based on inputs
for domestic cooking met with biogas (f_{ic})			from existing users
(considering 365 days of domestic cooking			
energy demand met with improved biomass			
cookstove per year)			

Table 6.10: Input values for financial analysis of improved biomass cookstove

(natural draft type)

Scheme		LCUE	Discounted	NPV (₹)	IRR
		(₹/MJ)	payback		(%)
			period (Years)		
Subsidized fuel	Without capital	0.54	0.87	6622.10	125
	subsidy				
	With capital	0.46	0.72	6922.10	151
	subsidy				
Unsubsidized	Without capital	2.72	0.13	50806.62	792
fuel	subsidy				
	With capital	2.64	0.11	51106.62	951
	subsidy				

Table 6.11: Measures of financial performance of improved biomass cookstoves

Table 6.12: Breakeven values for fuelwood price and number of days of improved

biomass cookstove operation per year

Scheme	Fuelwood price	No. of days of operation per year					
	(₹/kg)	Subsidized fuelwood	Unsubsidized fuelwood				
Without capital subsidy	0.34	78	12				
With capital subsidy	0.28	65	10				

6.3.4. Dish Type (Parabolic) Solar Cooker

Relevant input data for the assessment of financial attractiveness of dish type solar cooker has been obtained from various sources and are presented in Table 6.13. Results of financial assessment (Table 6.14) indicate that community type solar cooker is more appealing compared to the household type solar cooker under all scenarios considered. Under subsidized fuel scenario, community solar cooker is found to be viable even without capital subsidy whereas household type needs capital subsidy to be viable. As expected, for unsubsidized fuel scenario, both household and community type solar cookers become financially attractive option. In Table 6.15, breakeven values also reflect the same pattern.

Parameter	Unit	Value	Reference
Capital cost			
Household type (1.5 m^2)	₹	8800	Project Officer of UREDA,
			Personal Communication, May
			11, 2014
Community type (4.0 m ²)	₹	30000	Project Officer of UREDA,
			Personal Communication, May
			11, 2014; MNRE, n.d.c
Capital subsidy			
Household type (1.5 m^2)	₹	5280	Project Officer of UREDA,
			Personal Communication, May
			11, 2014
Community type (4.0 m ²)	₹	16800	Project Officer of UREDA,
			Personal Communication, May
			11, 2014
Useful life of household and community	Years	15	MNRE, n.d.d
type solar cooker			
Annual operation and maintenance cost	Fraction	0.03	Project Officer of UREDA,
as a fraction of its capital cost for both			Personal Communication, May
household and community type solar			11, 2014
cooker			
Number of meals cooked by solar cooker	Number	250	Assumption based on inputs from
per year			existing users
Energy requirement in cooking per meal	kJ	983	Ravindranath and Ramakrishna,
per person			1997
Average number of persons for whom			
meal is cooked			
Household type	Number	5	Assumption based on inputs from
			existing users
Community type	Number	40	Assumption based on inputs from
			existing users

Table 6.13: Input values for financial analysis of household and community type solar cooker

Table 6.14: Measures of financial performance of solar cooker

Scheme	Type of solar	LCUE	Discounted Payback Period N		NPV (₹)			IRR (%)			
	cooker	(₹/MJ)	(years)								
			Biomass	LPG	Kerosene	Biomass	LPG	Kerosene	Biomass	LPG	Kerosene
				With	subsidized t	fuel					
Without	Household	1.21	64.79	18.67	-	-1843.42	-685.63	-2008.11	7	10	7
capital subsidy	Community	0.51	4.41	3.73	4.53	34392.10	43654.43	33074.56	29	34	28
With capital	Household	0.53	4.91	4.04	5.06	3436.58	4594.37	3271.89	27	31	26
subsidy	Community	0.24	1.70	1.47	1.74	51192.10	60454.43	49874.56	68	77	66
				With u	insubsidized	fuel				I	
Without	Household	1.21	1.34	5.70	2.65	44672.75	6744.11	20022.61	84	23	45
capital subsidy	Community	0.51	0.54	1.89	1.00	406521.46	103092.33	209320.36	202	61	111
With capital	Household	0.53	0.51	1.90	0.98	49952.75	12024.11	25302.61	211	61	114
subsidy	Community	0.24	0.23	0.78	0.43	423321.46	119892.33	226120.36	459	140	251

- Undefined number

Scheme	Type of solar cooker	Breake	Breakeven value of number of meals cooked per year					Breakeven value of fuel price		
		For subsidized fuel		For unsubsidized fuel			Biomass (₹/kg)	LPG (₹/kg)	Kerosene (₹/l)	
		Biomass	LPG	Kerosene	Biomass	LPG	Kerosene			
Without capital	Household	302	267	308	48	153	87	2	33	17
subsidy	Community	129	114	131	21	65	37	1	14	7
With capital	Household	153	135	156	24	78	44	1	17	9
subsidy	Community	69	61	71	11	35	20	0	8	4

Table 6.15: Breakeven values of number of meals cooked by solar cooker in a year (n_{mcy}) and breakeven values of fuel price for replaced fuel

6.3.5. Solar Lantern

Input data used for assessment of financial viability of solar lantern for potential users in Uttarakhand has been obtained from relevant sources and the same are presented in Table 6.16. Results of financial assessment (Table 6.17) indicate that solar lanterns (both CFL and LED based) are viable under all scenarios (with/without capital subsidy and with subsidized/unsubsidized fuel being replaced). However, LED based solar lanterns are found to be financially more rewarding. The same trend is reflected by the breakeven values in Table 6.18.

Parameter	Unit	Value	Reference
Capital cost			
7 W CFL based	₹	2700	MNRE, 2013a; Project Officer
			of UREDA, Personal
			Communication, May 11, 2014
5 W LED based	₹	2250	MNRE, 2013a; Project Officer
			of UREDA, Personal
			Communication, May 11, 2014
Capital subsidy			
7 W CFL based	₹	810	MNRE, 2014b; Project Officer
			of UREDA, Personal
			Communication, May 11, 2014
5 W LED based	₹	675	MNRE, 2014b; Project Officer
			of UREDA, Personal
			Communication, May 11, 2014
Useful life (both CFL and LED based solar	Years	20	Kandpal and Garg, 2003
lantern)			
Annual operation and maintenance cost as a	Fraction	0.075	Kandpal and Garg, 2003
fraction of its capital cost (both CFL and			
LED based solar lantern)			
Fraction of annual lighting energy demand	Fraction	0.82	Assumption based on inputs
met with solar lantern (f_{sl}) (considering 300			from existing users
days annual lighting energy demand met			
with solar lantern per year)			

Table 6.16: Input values for financial analysis of solar lantern

Scheme	Type of	Discounted Pay	yback	NPV (₹)		IRR (%)				
	solar	Period								
	lantern	(years)								
		Kerosene	LPG	Kerosene	LPG	Kerosene	LPG			
With subsidized fuel										
Without	CFL	9.32	3.85	1108.56	4462.64	17	33			
capital	LED	6.34	2.96	1828.21	5182.29	22	41			
subsidy										
With capital	CFL	5.48	2.53	1918.56	5272.64	25	47			
subsidy	LED	3.97	1.97	2503.21	5857.29	32	59			
		With ur	subsidized	l fuel		I				
Without	CFL	1.39	1.82	14856.79	10974.60	81	63			
capital	LED	1.13	1.46	15576.43	11694.24	99	78			
subsidy										
With capital	CFL	0.95	1.24	15666.79	11784.60	116	91			
subsidy	LED	0.77	1.00	16251.43	12369.24	142	111			

Table 6.17: Measures of financial performance of solar lantern

Table 6.18: Breakeven values of number of days of solar lantern usage per year (n_{dsly}) and

breakeven values of fuel price for replaced fuel

Scheme	Type of solar	Breakeven val lantern usage	v	r solar	Breakeven values of fuel price		
	lantern	For subsidized fuel For unsul			zed fuel	Kerosene	LPG
		Kerosene	LPG	Kerosene	LPG	(₹/l)	(₹/kg)
Without	CFL	239	148	68	85	11.26	15.01
capital subsidy	LED	199	123	56	71	9.38	12.51
With	CFL	194	120	55	69	9.15	12.20
capital subsidy	LED	162	100	46	57	7.62	10.16

6.3.6. Solar Home System

Assessment of financial viability of solar home system has been undertaken by using relevant input data (Table 6.19). In Uttarakhand, MNRE Model II solar home system of 37 W_p has been distributed that powers 2 CFLs. Results of financial analysis of solar home system for potential users in Uttarakhand are presented in Table 6.20. Results reflect that SHS is financially viable under all scenarios except when it is adopted without capital subsidy to replace subsidized kerosene usage for lighting. As expected, an investment in an SHS would be financially more attractive if it replaces LPG lamps. Estimated breakeven values (Table 6.21) also indicate that apart from the scenario where an SHS with no capital subsidy replaces lamps energized by subsidized kerosene, an SHS is financially attractive in all other scenarios.

Parameter	Unit	Value	Reference
Capital cost	₹	12650	Quote from Tata BP Solar,
			Personal Communication, July
			12, 2014
Capital subsidy	₹	2997	MNRE, 2014b; Project
			Officer of UREDA, Personal
			Communication, May 11,
			2014
Useful life	Years	20	Mahapatra et al., 2009
Annual operation and maintenance cost as a	Fraction	0.02	Kandpal and Garg, 2003
fraction of its capital cost			
Fraction of annual lighting energy demand	Fraction	1.00	Assumption based on inputs
met with solar home system (f_{shs})			from existing users
(considering 365 days annual lighting energy			
demand met with solar home system per			
year)			
Number of CFLs powered by solar home	Number	2	MNRE, 2012
system			

Table 6.19: Input values for financial analysis of solar home system (Model II, 37 W_p)

Scheme		Discounted		NPV (₹)		IRR (%)	
		Payback Pe	eriod				
		(years)					
		Kerosene	LPG	Kerosene	LPG	Kerosene	LPG
Subsidized fuel	Without capital subsidy	43.95	8.17	-1467.03	6694.57	9	18
	With capital subsidy	13.54	5.52	1529.97	9691.57	13	25
Unsubsidized fuel	Without capital subsidy	2.74	3.63	31986.99	22540.32	44	35
	With capital subsidy	2.02	2.64	34983.99	25537.32	58	46

Table 6.20: Measures of financial performance of solar home system

Table 6.21: Breakeven values of number of days of solar home system usage per year

	(n _{dshsy})							
Scheme	Breakeven	values	of number o	Breakeven values of fuel price for				
	home syste	em usag	e per year	replaced fuel				
	For subsid	ized	For unsub.	sidized fuel	Kerosene (₹/l)	LPG (₹/kg)		
	fuel							
	Kerosene	LPG	Kerosene	LPG				
Without	406*	251	115	144	15.72	20.96		
capital								
subsidy								
With	323	199	91	115	12.51	16.68		
capital								
subsidy								

* Illogical value as it indicates more than 365 days of solar home system usage per year

6.3.7. Solar PV Pump

Input data used for financial analysis of community solar PV pump is presented in Table 6.22 and the results of the analysis are presented in Table 6.23. Also,

breakeven values of number of days of operation of solar PV pump per year, number of persons per village and fuel price are presented in Table 6.24. Solar PV pump for community use is found to be viable under all scenarios. The results of

Parameter	Unit	Value	Reference
Capital cost	₹	290700	MNRE, 2013a; Project Officer
			of UREDA, Personal
			Communication, May 11, 2014
Capital subsidy	₹	87210	MNRE, 2014b; Project Officer
			of UREDA, Personal
			Communication, May 11, 2014
Useful life	Years	20	Kandpal and Garg, 2003
Annual operation and maintenance cost as	Fraction	0.01	Purohit and Michaelowa, 2008
a fraction of its capital cost			
Volume of water required per person per	m ³	0.07	Kandpal and Garg, 2003
day for domestic use			
Numbers of persons in the village	Number	750	Assumption based on data
			from ORGCC (n.d.)
Number of persons per household in	Number	5	ORGCC, n.d.
Uttarakhand			
Total water requirement of village for	m ³	52.5	Kandpal and Garg, 2003
domestic use			
Water supply capacity of a 1800 W _p solar	m ³	57.0	MNRE, 2013
pump with a head of 30 m			
Head of pump	m	30	MNRE, 2013
Fraction of annual water pumping energy	Fraction	0.68	Assumption based on inputs
requirement met by solar pump (f_{sp})			from existing users
(considering 250 days water pumping			
energy requirement met by solar pump)			

Table 6.22: Input values for financial analysis of 1800 W_p submersible solar PV pump for community use

financial analysis also indicate that usage of a solar pump would lead to more savings if it replaces a diesel pump. Breakeven values of number of persons per

Scheme		LCUE	Discounted Payback Period		NPV (₹)		IRR (%)		
		(₹/MJ)	(years)						
			Electricity	Diesel	Electricity	Diesel	Electricity	Diesel	
Subsidized fuel	Without capital subsidy	38.30	0.52	0.07	4502858.09	35019023.45	206	1520	
	With capital subsidy	27.66	0.36	0.05	4590068.09	35106233.45	295	2172	
Unsubsidized fuel	Without capital subsidy	38.30	0.12	0.07	19610042.35	36950096.04	857	1603	
	With capital subsidy	27.66	0.09	0.05	19697252.35	37037306.04	1224	2291	

Table 6.23: Measures of financial performance of solar PV pump

Table 6.24: Breakeven values of number of days of solar PV pump usage per year (n_{dspy}) , number of persons in a village, and fuel

price for replaced fuel

Scheme	Breakeven vo	nber of days oj	Breakeven ve	alues of n	umber of perso	Breakeven values of fuel price for				
	PV pump usa		village			replaced fuel				
	For subsidized For unsubsidized			lized	For subsidize	ed	For unsubsid			
	fuel		fuel		fuel		fuel			
	Electricity	Diesel	Electricity	Diesel	Electricity	Diesel	Electricity	Diesel	<i>Electricity (₹/kWh)</i>	Diesel (₹/l)
Without capital subsidy	16	2	4	2	13	2	3	2	0.07	0.55
With capital subsidy	12	2	3	2	9	1	2	1	0.05	0.40

village suggest that when a solar PV pump replaces a diesel pump, even usage of solar pump by one or two person (or a household) would be financially viable. From the results, it can be inferred that if a household can afford solar PV pump, it may adopt it as its usage would be financially rewarding for the household.

6.3.8. Solar Dryer

Based on the input values for solar dryer presented in Table 6.25, financial assessment has been done and the results are presented in Tables 6.26 - 6.27. For investors having access to the fuel(s) used for drying at subsidized rates, the investment in the solar dryer (both household and community size) is financially

Parameter	Unit	Value	Reference
Capital cost			
Household type (capacity of solar dryer	₹	25340	Project Officer of UREDA,
- 15 kg)			Personal Communication, May
			11, 2014
Community type (capacity of solar	₹	60000	Project Officer of UREDA,
dryer - 50 kg)			Personal Communication, May
			11, 2014; SSSPL, 2014
Capital subsidy			
Household type	₹	15204	Project Officer of UREDA,
			Personal Communication, May
			11, 2014
Community type	₹	34610	Project Officer of UREDA,
			Personal Communication, May
			11, 2014
Useful life (both household and	Years	10	Sanchavat et al., 2012
community type solar dryer)			
Annual operation and maintenance cost	Fraction	0.02	Sanchavat et al., 2012
as a fraction of its capital cost (both			
household and community type solar			
dryer)			
Number of loadings per year			

Table 6.25: Input values for financial analysis of solar dryer (household and community type)

Parameter	Unit	Value	Reference
Household type	Number	15	Project Officer of UREDA,
			Personal Communication, May
			11, 2014
Community type	Number	50	Project Officer of UREDA,
			Personal Communication, May
			11, 2014
Initial moisture content in raw chilli	Fraction	0.80	Kumar and Kandpal, 2005
Final moisture content in dried chilli	Fraction	0.08	Kumar and Kandpal, 2005
Specific heat of wet crop (with high	kJ per kg	4.20	Assumption
initial moisture content, assumed same	°C		
as that of water)			
Drying temperature of chilli	°C	60	Kumar and Kandpal, 2005
Ambient temperature	°C	25	Assumption
Enthalpy of evaporation of water at the	kJ per kg	2257	Nag, 2005
drying temperature (assumed same as			
enthalpy of evaporation at 100 °C)			

Table 6.25: Input values for financial analysis of solar dryer (household and community type) (continued...)

unattractive. However, if the investor needs to purchase fuel(s) at market (unsubsidized) price, investment in community size solar dryer has been found to be financially viable. Community solar dryers replacing conventional non-electric dryers working on unsubsidized biomass, LPG or kerosene are found to be financially more rewarding. Household solar dryers are found to be financially viable only when the same receive capital subsidy and replace usage of unsubsidized biomass for drying.

Scheme	Type of solar dryer	LCUE (₹/MJ)	Discounted (years)	l Payback	Period		NPV (×10			IRR (%)				
			Biomass	LPG	Kerosene	Electricity	Biomass	LPG	Kerosene	Electricity	Biomass	LPG	Kerosene	Electricity
						With	subsidized fu	ıel				1		.1
Without capital	Household	11.15	-	-	-	-	-25.79	-25.46	-25.84	-26.53	-	-	-	-
subsidy	Community	2.38	-	-	-	-	-38.85	-35.16	-39.38	-47.04	-8	-6	-9	-15
With capital subsidy	Household	3.75	-	-	-	-	-10.59	-10.25	-10.63	-11.32	-	-	-	-
	Community	0.83	14.39	10.40	15.28	-	-4.24	-0.55	-4.77	-12.43	7	10	6	-3
						With u	nsubsidized	fuel						
Without capital	Household	11.15	-	-	-	-	-12.45	-23.33	-19.52	-24.76	-3	-26	-14	-37
subsidy	Community	2.38	2.50	15.46	5.36	-	109.35	-11.49	30.81	-27.44	47	6	22	-1
With capital subsidy	Household	3.75	6.83	-	-	-	2.75	-8.12	-4.32	-9.56	17	-16	0	-29
	Community	0.83	0.98	3.97	1.92	6.75	143.96	23.12	65.43	7.17	113	30	60	17

Table 6.26: Measures of financial performance of solar dryer

- Undefined numbers

Scheme	Type of solar		Breakeven values of number of loadings per year							Breakeven values of fuel price for replaced fuel			
	dryer	For subsid	lized fue	l		For unsub	osidized	fuel		Biomass	LPG	Kerosene	Electricity
		Biomass	LPG	Kerosene	Electricity	Biomass	LPG	Kerosene	Electricity	(₹/kg)	(₹/kg)	(₹/l)	(₹/kWh)
Without	Household	167	148	170	236	27	85	48	119	17.84	301.08	160.78	36.13
capital	Community	119	105	121	167	19	60	34	85	3.80	64.16	34.26	7.70
subsidy													
With capital	Household	78	69	79	109	12	39	22	55	8.27	139.50	74.49	16.74
subsidy	Community	58	51	59	81	9	29	17	41	1.84	31.06	16.58	3.73

Table 6.27: Breakeven values of number of loadings per year (with drying time of 8 hours required per loading for chilli) and breakeven values of fuel price for replaced fuel

6.4. Concluding Remarks

Results of financial assessment indicate that improved cookstoves, DSWH and solar lanterns are viable under all scenarios in Uttarakhand. Improved cookstoves, DSWH and solar lanterns are used for distinct tasks namely cooking, water heating and lighting and hence can be promoted widely for these tasks among its potential adopters. It is also reflected in results that these three DRESs are viable even without capital subsidy and hence can be promoted without them in the state. SHS is also found to be viable under all scenarios except when an SHS with no capital subsidy replaces subsidized kerosene usage for lighting. Hence, from these outcomes, it may be inferred that the relevant DRES promotion agencies can suitably modify their capital subsidy schemes and invest the resultant savings in improving awareness and aftersales services of these DRESs. Such steps would accelerate the diffusion of these DRESs in Uttarakhand. As other DRESs (dish type solar cooker, solar PV pump and solar dryer) are not so financially attractive under household mode compared to their community counterparts, it is recommended that these DRESs may be promoted initially for community usage. In community usage, its usage and benefits

can be demonstrated and then with improved distribution and aftersales facilities, households may be motivated to adopt them. Results of financial analysis also indicate that with current government subsidies on energy sources (kerosene, LPG, electricity and firewood), provision of capital subsidy is vital for most of the DRESs to be financially viable. However, under unsubsidized fuel scenario, almost all DRES considered in the study are found to be viable even without capital subsidy. Thus, as discussed in several other studies, subsidies on conventional energy sources are found to be a major barrier to the diffusion of DRESs. Removal of such subsidies would not only minimize the need to provide capital subsidy on DRESs resulting in reduced subsidy burden on government, it would also promote DRESs adoption leading to sustainable development.

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1. Conclusions

In this study, an assessment of the utilization potential of decentralized renewable energy systems (DRESs) in the state of Uttarakhand in India has been carried out. A review and analysis of demographic, socio-economic, resource availability and climatic characteristics of Uttarakhand alongwith relevant characteristics of the DRESs considered has indicated significant potential of several solar and biomass based DRESs in the state. Subsequent study has reflected the following issues or research gaps: (a) unavailability of estimates for potential of DRESs in Uttarakhand, and (b) unavailability of information on barriers to the dissemination of DRESs in Uttarakhand. Based on the above research gaps, the following objectives were framed for the study:

- i. To estimate the potential of utilization of DRESs in Uttarakhand with the factors affecting its value internalized in the approach used for estimation
- ii. To assess the time-trend of dissemination of DRESs in Uttarakand and to estimate the time required for the cumulative dissemination to reach their estimated potential
- To identify and assess the barriers impeding the dissemination of DRESs in Uttarakhand

The study makes use of several tools for analysis that includes: (a) chain ratio method for estimation of utilization potential of DRESs, (b) engineering economics for estimating the values of several measures of financial performance such as NPV, IRR, and break-even value, (c) logistic growth model for studying the time trend of diffusion of DRESs, and (d) factor analysis (using SPSS software) of data collected through questionnaire based survey for assessment of

barriers. The main findings of the study have been presented in the following paragraphs.

There is very large potential for domestic solar water heaters (DSWHs), solar lanterns and improved biomass cookstoves in the state of Uttarakhand (Table 7.1). Also, there is significant potential for solar home systems, solar cookers, solar dryers and family size biogas plants. It is worth mentioning that the actual utilization potential of a DRES would be directly dependent on the effective cost of the DRES to the user as against his/her purchasing power. Therefore, the estimates of utilization potential would also vary with the provision of incentives such as capital subsidy or soft loan or any other suitable incentive. Results also indicate that for large scale dissemination of DRESs, soft loan is a superior option compared to capital subsidy as it has bigger impact on improving the purchasing power of households.

DRES	Estimated potential						
	with capital	with soft loan					
	subsidy						
Domestic solar water heater	113284	292086					
Solar home system	12157	78055					
Solar lantern	247120	181222					
Solar cooker	53934	53934					
Solar dryer	63250	63250					
Solar PV pump	107	107					
Family size biogas plant	61956	85786					
Improved biomass cookstove	208757	208757					

Table 7.1: Summary of potential of DRESs in Uttarakhand

Assessment of the time-trend of diffusion of DRESs in Uttarakhand has indicated that the promotion of various DRESs (except solar water heater) has been highly inconsistent over the years. Only solar water heater has received persistent subsidy support since the formation of the state reflected by sustained growth in annual subsidy allocated for its promotion. The same trend is reflected in the cumulative annual dissemination of solar water heaters in Uttarakhand. A reasonably strong positive correlation between diffusion achieved and the extent of subsidy on DRESs essentially implies subsidy driven programmes and direct dependence of diffusion on subsidy. Among all DRESs, the correlation coefficient is highest for solar lanterns (1.00) and solar water heaters (0.91) reflecting strong dependence of their diffusion on the provision of subsidy. Private equity leveraged by the government expenditure on capital subsidy is significantly low (as the ratio of private equity leveraged to capital subsidy for all DRESs has been \leq 1) reflecting ineffective use of public finance.

A preliminary study of the time trend of diffusion of DRESs in Uttarakhand based on the logistic growth curve indicates that as per the prevailing trend a substantially long time period would be needed for the cumulative dissemination of DRESs to reach the utilization potential estimated in the study. For most of the household level DRESs, it is expected to take more than 200 years for their cumulative dissemination to reach their estimated utilization potential.

A survey of adopters and non-adopters of DRESs in Uttarakhand identifies high capital cost, lack of access to capital / loan, availability of cheaper alternative fuel, unavailability of trained manpower for installation and maintenance, lack of user training for maintenance, unavailability of retail shops, and unavailability of spares as the major barriers. Other relevant barriers are inappropriateness of technology, poor resource availability, lack of adequate awareness, and lack of socio-cultural acceptability. Lack of adequate awareness has been considered more critical by the non-adopters whereas adopters of DRESs that require regular maintenance services such as solar home system and family size biogas plant consider unavailability of trained manpower for installation and maintenance and unavailability of spare parts as more critical barriers. Also, survey of the status of adopted DRESs indicates that a satisfied DRES adopter has recommended it to

others and most (about 85%) of such recommendations have resulted in adoptions. The survey responses also revealed that in rural areas of Uttarakhand, Panchayat Pradhan (elected representative of village in India) has been the main source of awareness to the villagers.

Results of financial assessment indicate that improved cookstoves, DSWHs, solar lanterns and solar home systems are financially the most attractive DRESs for promotion in the state. These are found to be financially viable under almost all scenarios even without capital subsidy. In case of dish type solar cookers, solar PV pumps and solar dryers, community usage has been found to be more viable compared to their household applications. The results obtained reaffirm the need for providing a level playing platform to DRESs either by withdrawal of direct and indirect subsidies being given on conventional energy supply or by providing suitable incentives to one or more of the stakeholders involved in the diffusion of DRESs.

Based on the results and conclusions of the study, the following policy related inferences and/or suggestions can be made:

- i. Institutional support should be provided to conduct awareness campaigns regarding the utility of DRESs and relevant government financial support schemes. Suitable incentive schemes such as soft loan should be developed to minimize the impact of high capital cost barrier.
- ii. There is an urgent need to ensure availability of trained manpower for installation and maintenance and availability of spare parts. This would ensure proper functioning of DRES and prevent system failure. With proper functioning of DRES, a satisfied adopter may turn as a promoter of DRESs among the neighborhood.
- iii. The Panchayat Pradhan may be given a prominent role towards the promotion of DRESs in rural areas.

iv. To begin with, dissemination of the DRESs that are viable under almost all scenarios even without any capital subsidy (solar lanterns, solar home systems, DSWHs and improved cookstoves) need to be prioritized.

7.2. Limitations of the Study and Recommendations for Further Work

The study suffers from the limitations of data availability, restricted scope of the study (only household and community level applications), dynamics in the costs of various DRESs as well as in the policies of the state and central government.

The following additional studies are needed to develop an extensive strategy for large scale dissemination of DRESs in the state of Uttarakhand:

- i. Effect of likely reduction in the costs of DRESs in future and its impact on their financial attractiveness
- ii. Impact of likely extension of conventional grid on the desirability of some of the DRESs such as solar home systems and solar lanterns
- iii. Potential applications of DRESs in commercial and industrial sector
- iv. Possibility of benefits of carbon mitigation benefits (such as Programmatic CDM) whenever and wherever applicable
- v. In addition to logistic growth model, usage of other growth models (Bass model, Gompertz model and Pearl model) for studying diffusion of DRESs

REFERENCES

- AD, n.d.. Agriculture Department (AD), Government of Uttarakhand, Dehradun. http://agriculture.uk.gov.in/> [accessed 06.12.2014]
- Adams, P.W., Hammond, G.P., McManus, M.C., Mezzullo, W.G., 2011. Barriers to and drivers for UK bioenergy Development. Renewable and Sustainable Energy Reviews 15, 1217-1227.
- Adhikari, S., Mithulananthan, N., Dutta, A., Mathias, A.J., 2008. Potential of sustainable energy technologies under CDM in Thailand: opportunities and barriers. Renewable Energy 33, 2122-2133.
- Agarwal, B., 1983. Diffusion of rural innovations: some analytical issues and the case of wood-burning stoves. World Development 11, 359-376.
- Ahlborg, H., Hammar, L., 2011. Drivers and barriers to rural electrification in Tanzania and Mozambique – grid extension, off-grid and renewable energy sources. World Renewable Energy Congress 2011, Sweden.
- Al-Badi, A.H., Malik, A.S., Gastli, A., 2009. Assessment of renewable energy resources potential in Oman and identification of barrier to their significant utilization. Renewable and Sustainable Energy Reviews 13, 2734-2739.
- Al-Badi, A.H., Malik, A.S., Gastli, A., 2011. Sustainable energy usage in Oman opportunities and barriers. Renewable and Sustainable Energy Reviews 15, 3780–3788.
- Alit, R., 1990. Barriers and incentives: experience of small scale developments. Solar and Wind Technology 7, 93-96.
- Allen, S.R., Hammond, G.P., McManus, M.C., 2008. Prospects for and barriers to domestic micro-generation: a United Kingdom perspective. Applied Energy 85, 528-544.
- APF, n.d.. Azim Premji Foundation (APF). < azimpremjifoundation.org/uttara khand> [accessed 12.10.2014]

- Arjunan, T.V., Aybar, H.S., Nedunchezhian, N., 2009. Status of solar desalination in India. Renewable and Sustainable Energy Reviews 13, 2408-2418.
- AS, n.d. Aditya Solar Energy (P) Limited. Hyderabad. http://www.adityasolar.in/swh.html> [accessed 25.07.2014]
- Bakthavatsalam, V., 1999. Renewable energy financing: India's experience. Renewable Energy 16, 1160-1166.
- Balcombe, P., Rigby, D., Azapagic, A., 2013. Motivations and barriers associated with adopting microgeneration energy technologies in the UK. Renewable and Sustainable Energy Reviews 22, 655-666.
- Barnett, A., 1990. The diffusion of energy technology in the rural areas of developing countries: a synthesis of recent experience. World Development 18, 538-553.
- Barua, D.C., 2001. Strategy for promotions and development of renewable technologies in Bangladesh: experience from Grameen Shakti. Renewable Energy 22, 205-210.
- Bass, F., 1969. A New Product Growth Model for Consumer Durables. Manage Sci 15, 215-227.
- Beck, F., Martinot, E., 2004. Renewable Energy Policies and Barriers. In: Cleveland CJ, editor. Encyclopedia of energy. Academic Press, Elsevier Science, New York, 365-383.
- BEE, 2011. Consultation Paper on Passenger Car Fuel Economy Labeling and Standards Framework. Bureau of Energy Efficiency (BEE), Government of India. New Delhi.
- Bhatia, R., 1990. Diffusion of renewable energy technologies in developing countries: a case study of biogas engines in India. World Development 18, 575-590.
- Bhattacharya, S.C., Jana, C., 2009. Renewable energy in India: historical developments and prospects. Energy 34, 981-991.

- Boyle, S., 1994. Making a renewable energy future a reality: case studies in successful renewable energy development. Renewable Energy 5, 1322-1333.
- CEA, 2015. Progress Report of Village Electrification as on 31.05.2015. Central Electricity Authority (CEA), Ministry of Power, Government of India. New Delhi.
- CERC, 2013. Determination of Generic Levelized Generation Tariff for Financial Year 2013-14 for Renewable Energy Sources. Central Electricity Regulatory Commission (CERC), Government of India. <http://www.cercind.gov.in/2013/orders/SO243.pdf> [accessed on 25.12.2014]
- CGPL, n.d.. National Biomass Resource Atlas. Combustion Gasification and Propulsion Laboratory (CGPL), Indian Institute of Science. Bangalore. < http://lab.cgpl.iisc.ernet.in/Atlas/Tables/Tables.aspx> [accessed 20.04.2014]
- CGWB, 2013. Ground Water Level Scenario in India Pre-Monsoon 2013. Central Ground Water Board (CGWB), Ministry of Water Resources, Government of India. New Delhi.
- Chandrasekar, B., Kandpal, T.C., 2004. Techno-economic Evaluation of Domestic Solar Water Heating Systems in India. Renewable Energy 29(3), 319-332.
- Chandrasekar, B., Kandpal, T.C., 2007. An opinion survey based assessment of renewable energy technology development in India. Renewable and Sustainable Energy Reviews 11, 688-701.
- Charters, W.W.S., 2001. Developing markets for renewable energy technologies. Renewable Energy 22, 217-222.
- Chaudhuri, S.P.G., 2007. Renewable Energy in the Sunderbans. TERI Press, New Delhi.
- Chauhan, M., 2010. A Perspective on Watershed Development in the Central Himalayan State of Uttarakhand, India. International Journal of Ecology and Environmental Sciences 36(4), 253-269.

- Churchill, G. A., Iacobucci, D., 2002. Marketing Research Methodological Foundations (8th ed.), Thomson South-Western. Mason.
- DAH, 2007. District Wise 18th Livestock Census 2007 (Rural & Urban) of Uttarakhand. Department of Animal Husbandry (DAH), Government of Uttarakhand. Dehradun.
- DES, 2013. Gross State Domestic Product at Factor Cost by Industry: 2004-05 to 2012-13 at Current Prices. Directorate of Economics and Statistics (DES), Government of Uttarakhand. Dehradun.
- DES, 2014. Uttarakhand at a Glance (2013-14), Directorate of Economics and Statistics (DES), Government of Uttarakhand. Dehradun.
- DFCS, 2015. Commodities Rates. Department of Food and Civil Supplies (DFCS), Government of Uttarakhand. Dehradun. http://fcs.uk.gov.in/files/UsefulInformation/UsefulICommodityRates.pdf> [accessed on 23.01.2015]
- DIPP, 2003. New Industrial Policy and other concessions for the state of Uttaranchal and the state of Himachal Pradesh. Department of Industrial Policy and Promotion (DIPP), Ministry of Commerce and Industry, Government of India. New Delhi. http://dipp.nic.in/English/Schemes/ Special_Category/Himachal_Uttranchal/indpol_uthp.htm> [accessed 24.07.2015]
- Dorf, R.C., 1984. Managerial and economic barriers and incentives to the commercialization of solar energy technologies. Engineering Management International 2, 17-31.
- DoS, n.d.. Department of Statistics (DoS), Eberly College of Science, The Pennsylvania State University. http://sites.stat.psu.edu/~jls/stat100/lectures/lec16.pdf> [accessed 15.12.2014]
- Doukas, H., Karakosta, C., Psarras, J., 2009. RES technology transfer within the new climate regime: A "helicopter" view under the CDM. Renewable and Sustainable Energy Reviews 13, 1138-1143.

- ENVIS, n.d.. Environmental Information System (ENVIS), Uttarakhand Environment Protection & Pollution Control Board, Government of Uttarakhand, Dehradun. http://utrenvis.nic.in/data%5Cstate%20profile %20demography.pdf> [accessed 01.07.2015]
- Finney, K.N., Sharifi, V.N., Swithenbank, J., 2012. The negative impacts of the global economic downturn on funding decentralized energy in the UK. Energy Policy 51, 290-300.
- Foxon, T.J., Gross, R., Chase, A., Howes, J., Arnall, A., Anderson, D., 2005. UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures. Energy Policy 33, 2123-2137.
- Fthenakis, V., Mason, J.E., Zweibel, K., 2009. The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US. Energy Policy 37, 387-399.
- George, D., Mallery, P., 2003. SPSS for Windows Step by Step: A Simple Guide and Reference (4th ed.). Allyn and Bacon, Boston.
- GNESD, 2007. Renewable energy technologies and poverty alleviation: overcoming barriers and unlocking potentials. Global Network on Energy for Sustainable Development (GNESD), Copenhagen.
- GoU, n.d.. State profile. Government of Uttarakhand (GoU). [accessed 24.07.2015]">http://uk.gov.in/pages/display/115-state-profile>[accessed 24.07.2015]
- GoU, 2008. Policy for Harnessing Renewable Energy Sources in Uttarakhand with Private Sector/Community Participation (Annexure of G.O. No.263/I (2)/2008-04 (8)-96/2001). Government of Uttarakhand (GoU).
- GoU, 2011. Uttarakhand State Action Plan for Climate Change. Government of Uttarakhand (GoU).
- GP, n.d.. Geoplaner. <www.geoplaner.com> [accessed 20.10.2014]
- Green, D., 1999. Cross cultural technology transfer of sustainable energy systems: a critical analysis. Renewable Energy 16, 1133-1137.

- Green, D., 2004. Thailand's solar white elephants: an analysis of 15 yr of solar battery charging programmes in northern Thailand. Energy Policy 32, 747-760.
- GTZ, n.d.. Biogas Digest, Volume I, Biogas Basics. Information and Advisory Service on Appropriate Technology, GATE in Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ). GmbH (German Agency for Technical Cooperation). Eschborn.
- Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., Tatham, R. L., 2006.Multivariate Data Analysis. Pearson University Press, New Jersey.
- Hiremath, R.B., Kumar, B., Balachandra, P., Ravindranath, N.H., Raghunandan,
 B.N., 2009. Decentralised renewable energy: scope, relevance and applications in the Indian context. Energy for Sustainable Development 13, 4-10.
- Huacuz, J., 2001. RE in Mexico barriers and strategies. Refocus 2(1), 18-19.
- IMD, n.d.. India Meterological Department (IMD), Ministry of Earth Sciences, Government of India. New Delhi. http://www.imd.gov.in/section/nhac/dynamic/FAQ_monsoon.htm> [accessed 11.06.2014]
- Indane, n.d..Product Prices. Indane, Indian Oil Corporation Limited, Government of India. New Delhi. https://indane.co.in/tarrifs_price.php> [accessed 15.01.2015]
- IOCL, n.d.. Indian Oil Corporation Limited (IOCL), Government of India. New Delhi. https://iocl.com/Products/HighSpeedDiesel.aspx [accessed 10.07.2014]
- Islam, M. N., Haque, M.M., 1994. Technology, Planning and Control. World University Service Press, Dhaka.
- Israel, G.D., 2013. Determining Sample Size (PEOD6). Agricultural Education and Communication Department, IFAS Extension, University of Florida. Florida. https://edis.ifas.ufl.edu/pdffiles/PD/PD00600.pdf [accessed 01.05.2014]

- Jagadeesh, A., 2000. Wind energy development in Tamil Nadu and Andhra Pradesh, India institutional dynamics and barriers a case study. Energy Policy 28, 157-168.
- Jäger-Waldau, A., 2007. Photovoltaics and renewable energies in Europe. Renewable and Sustainable Energy Reviews 11, 1414-1437.
- Jarach, M., 1989. An overview of the literature on barriers to the diffusion of renewable energy sources in Agriculture. Applied Energy 32, 117–131.
- Joseph, S., Burton, R., 1990. Small is usable: lessons from alternative energy projects. Solar and Wind Technology 7, 89-91.
- Junfeng, L., Li, Z., Runqing, H., Zhengmin, Z., Jingli, S., Yangin, S., 2002. Policy analysis of the barriers to renewable energy development in the People's Republic of China. Energy for Sustainable Development 6, 11-20.
- Kaiser, H. F., 1974. An Index of Factorial Simplicity. Psychometrika 39(1), 31-36.
- Kaldellis, J.K., 2005. Social attitude towards wind energy applications in Greece. Energy Policy 33, 595-602.
- Kandpal, T.C., Garg, H.P., 2003. Financial Evaluation of Renewable Energy Technologies. Macmillan India Limited, New Delhi.
- Kassenga, G.R., 1997. Promotion of renewable energy technologies in Tanzania. Resources, Conservation and Recycling 19, 257-263.
- Kennedy, M., Basu, B., 2013. A study on the implementation of renewable heating technologies in the domestic sector in Ireland with implications on consumers' decision-making. Journal of Cleaner Production 44, 133-142.
- Kennedy, M., Basu, B., 2013a. Overcoming barriers to low carbon technology transfer and deployment: an exploration of the impact of projects in developing and emerging economies. Renewable and Sustainable Energy Reviews 26, 685-693.
- Kinab, E., Elkhoury, M., 2012. Renewable energy use in Lebanon: barriers and solutions. Renewable and Sustainable Energy Reviews 16, 4422-4431.

- Krupa, J., 2012. Identifying barriers to aboriginal renewable energy deployment in Canada. Energy Policy 42, 710–714.
- Kumar, A., Kandpal, T.C., 2005. Solar drying and CO₂ emissions mitigation: potential for selected cash crops in India. Solar Energy 78, 321-329.
- Lidula, N.W.A., Mithulananthan, N., Ongsakul, W., Widjaya, C., Henson, R., 2007. ASEAN towards clean and sustainable energy: potentials, utilization and barriers. Renewable Energy 32, 1441-1452.
- Liu, S.Y., Perng, Y.H., Ho, Y.F., 2013. The effect of renewable energy application on Taiwan buildings: what are the challenges and strategies for solar energy exploitation?. Renewable and Sustainable Energy Reviews 28, 92-106.
- Lundquist, J.K., Purkayastha, A., Martin, C.S., Newsom, R., 2014. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements. Technical Report NREL/TP-5000-61103. National Renewable Energy Laboratory. Colorado. http://www.nrel.gov/docs/fy14osti/61103.pdf> [accessed 06.08.2014]
- Mahapatra S., Chanakya, H. N., Dasappa, S., 2009. Evaluation of Various Energy Devices for Domestic Lighting in India: Technology, Economics and CO₂ emissions. Energy for Sustainable Development 13(4), 271-279.
- Margolis, R., Zuboy, J., 2006. Nontechnical barriers to solar energy use: review of recent literature. National Renewable Energy Laboratory, Colorado.
- Martin, N.J., Rice, J.L., 2012. Developing renewable energy supply in Queensland, Australia: a study of the barriers, targets, policies and actions. Renewable Energy 44, 119-127.
- Martinot, E., 1998. Energy efficiency and renewable energy in Russia transaction barriers, market intermediation, and capacity building. Energy Policy 26, 905–915.
- Martinot, E., 1999. Renewable energy in Russia: markets, development and technology transfer. Renewable and Sustainable Energy Reviews 3, 49-75.

- McCormick, K., Kaberger, T., 2007. Key barriers for bioenergy in Europe: economic conditions, know-how and institutional capacity, and supply chain co-ordination. Biomass and Bioenergy 31, 443-452.
- MEDA, n.d.. Maharashtra Energy Development Agency (MEDA), Government of Maharashtra. Pune. http://www.mahaurja.com/SP_MassCooking.html [accessed 15.12.2014]
- Mezher, T., Dawelbait, G., Abbas, Z., 2012. Renewable energy policy options for Abu Dhabi: drivers and barriers. Energy Policy 42, 315–328.
- MHRD, 2013. Appraisal Note, Annual Work Plan and Budget 2013-14 for Mid Day Meal Scheme in Uttarakhand. Ministry of Human Resource Development (MHRD), Government of India. New Delhi. http://mdm.nic.in/Files/PAB/PAB2013-14/Uttrakhand/Appraisal-Note-Uttarakhand-2013-14.pdf> [accessed 14.10.2014]
- Michalena, E., Angeon, V., 2009. Local challenges in the promotion of renewable energy sources: the case of Crete. Energy Policy 37, 2018-2026.
- Mills, B.F., Schleich, J., 2009. Profits or preferences ? Assessing the adoption of residential solar thermal technologies. Energy Policy 37, 4145-4154.
- Mirza, U.K., Maroto-Valer, M.M., Ahmad, N., 2003. Status and outlook of solar energy use in Pakistan. Renewable and Sustainable Energy Reviews 7: 501-514.
- Mirza, U.K., Ahmad, N., Harijan, K., Majeed, T., 2009. Identifying and addressing barriers to renewable energy development in Pakistan. Renewable and Sustainable Energy Reviews 13, 927-931.
- Mittal, S., Tripathi, G., Sethi, D., 2008. Development Strategy for the Hill Districts of Uttarakhand. Indian Council for Research on International Economic Relations. New Delhi.
- MNRE, n.d.. Ministry of New and Renewable Energy (MNRE), Government of India. New Delhi. <www.mnre.gov.in/sec/solar-assmnt.htm> [accessed 10.10.2014]

- MNRE, n.d.a. Solar Water Heating Systems. Ministry of New and Renewable Energy (MNRE), Government of India. New Delhi. http://mnre.gov.in/filemanager/UserFiles/brief_swhs.pdf> [accessed 24.04.2014]
- MNRE, n.d.b. National Biomass Cookstoves Programme. Ministry of New and Renewable Energy (MNRE), Government of India. New Delhi. http://www.mnre.gov.in/schemes/decentralized-systems/national-biomasscookstoves-initiative/> [accessed 27.04.2014]
- MNRE, n.d.c. Dish Cooker Range Manufactured by M/s Essential Equipments Dhule. Ministry of New and Renewable Energy (MNRE), Government of India. New Delhi. http://mnre.gov.in/filemanager/UserFiles/Essential_Solar_Dish_Cookers.pdf> [accessed 22.07.2014]
- MNRE, n.d.d. Minimum Technical Specifications of Dish Solar Cookers. Ministry of New and Renewable Energy (MNRE), Government of India. New Delhi. < http://mnre.gov.in/file-manager/UserFiles/specifications_ dish_solar_cookers.pdf> [accessed 22.07.2014]
- MNRE, 2010. Scheme and Framework for Promotion of Solar Water Heating Systems by Utilities and Regulators. Ministry of New and Renewable Energy (MNRE), Government of India. New Delhi. http://mnre.gov.in/filemanager/UserFiles/abps_SWHS_uandr_report.pdf> [accessed 11.12.2014]
- MNRE, 2011. Market Assessment of Solar Water Heating Systems in the Himalayan Region. Ministry of New and Renewable Energy (MNRE), Government of India. New Delhi. http://mnre.gov.in/filemanager/UserFiles/undp_swhs_himalayan.pdf> [accessed 20.12.2014]
- MNRE, 2012. Technical Specifications for Compact Fluorescent Lamp (CFL) Based Solar Photovoltaic Lighting Systems. Ministry of New and Renewable Energy (MNRE), Government of India. New Delhi <http://mnre.gov.in/file-manager/UserFiles/cfl_spls_2012_13.pdf> [accessed 02.06.2014]

- MNRE, 2013. Technical Specification of Solar PV Water Pumping Systems. Ministry of New and Renewable Energy (MNRE), Government of India. New Delhi.
- MNRE, 2013a. Amendment in the Benchmark Cost for "Off-grid and Decentralized Solar Applications Programme" being Implemented under JNNSM during 2013-14. Ministry of New and Renewable Energy (MNRE), Government of India. New Delhi.
- MNRE, 2014. State-wise Numbers and Aggregate Capacity of SHP Projects (upto 25 MW). Ministry of New and Renewable Energy (MNRE), Government of India. New Delhi. http://mnre.gov.in/file-manager/UserFiles/SHP-potential.pdf> [accessed 22.09.2014]
- MNRE, 2014a. Annual Report 2013-14. Ministry of New and Renewable Energy (MNRE), Government of India. New Delhi.
- MNRE, 2014b. Operational Guidelines for Implementation of Off-grid and Decentralized Solar Applications, Sub-scheme "Off-grid and Decentralized Solar PV Applications" during 12th Plan Period. Ministry of New and Renewable Energy (MNRE), Government of India. New Delhi.
- MNRE, 2014c. Implementation of "Off-grid and Decentralized Solar Applications" Scheme in the 2nd Phase of the Jawaharlal Nehru National Solar Mission during 12th Plan Period including 2014-15: Guidelines for "Off-grid and Decentralized Solar Thermal Application Scheme. Ministry of New and Renewable Energy (MNRE), Government of India. New Delhi.
- MoEF, n.d.. Ministry of Environment and Forests (MoEF), Government of India. New Delhi. <envfor.nic.in/modules/divisions/desertification-cell/contents/ Uttarakhand.pdf> [accessed 11.07.2014]
- MoI, n.d.. Maps of India (MoI). <www.mapsofindia.com> [accessed 03.08.2014]
- Mondal, M.A.H., Kamp, L.M., Pachova, N.I., 2010. Drivers, barriers and strategies for implementation of renewable energy technologies in rural

areas in Bangladesh – an innovation system analysis. Energy Policy 38, 4626-4634.

- MoT, 2012. Identification of Tourism Circuits across India, Interim Report Uttarakhand. Ministry of Tourism (MoT), Government of India. New Delhi. <http://tourism.gov.in/writereaddata/CMSPagePicture/file/marketresearch/T entavely%20Identified%20circuit%20for%20various%20states/new/Uttarak hand.pdf> [accessed 05.09.2014]
- Muntasser, M.A., Bara, M.F., Quadri, H.A., El-Tarabelsi, R., La-azebi, I.F., 2000. Photovoltaic marketing in developing countries. Applied Energy 65, 67-72.
- Mwirigi, J.W., Makenzi, P.M., Ochola, W.O., 2009. Socio-economic constraints to adoption and sustainability of biogas technology by farmers in Nakuru Districts, Kenya. Energy for Sustainable Development 13, 106-115.
- Nag, P. K., 2005. Engineering Thermodynamics. Tata McGraw-Hill Education, New Delhi.
- Nalan, Ç.B., Murat, Ö., Nuri, Ö., 2009. Renewable energy market conditions and barriers in Turkey. Renewable and Sustainable Energy Reviews 13, 1428-1436.
- NASA, n.d.. Atmospheric Science Data Centre, National Aeronautics and Space Administration (NASA). https://eosweb.larc.nasa.gov [accessed 24.06.2014]
- Negro, S.O., Alkemade, F., Hekkert, M.P., 2012. Why does renewable energy diffuse so slowly? A review of innovation system problems. Renewable and Sustainable Energy Reviews 16, 3836-3846.
- Nijaguna, B.T., 2002. Biogas Technology. New Age International (P) Limited Publishers, New Delhi.
- Njuguna, D.G., 1997. Diffusion of bio-climatic building design techniques in Kenya: impediments and opportunities. Habitat International 21, 347-359.
- Nouni, M.R., Mullick, S.C., Kandpal, T.C., 2008. Providing Electricity Access to Remote Areas in India: An Approach towards Identifying Potential Areas for

Decentralized Electricity Supply. Renewable and Sustainable Energy Reviews 12, 1187-1220.

- NP, n.d.. Native Planet (NP). < http://www.nativeplanet.com/uttarakhand/> [accessed on 02.02.2014]
- NSSO, 2006. Livestock Ownership across Operational Landholding Classes in India 2002-03. National Sample Survey Office (NSSO), Ministry of Statistics and Programme Implementation, Government of India. New Delhi.
- NSSO, 2010. Migration in India 2007-2008. National Sample Survey Office (NSSO), Ministry of Statistics and Programme Implementation, Government of India. New Delhi.
- NSSO, 2014. Household Consumption of Various Goods and Services in India 2011-12. National Sample Survey Office (NSSO), Ministry of Statistics and Programme Implementation, Government of India. New Delhi.
- NSSO, 2014a. Level and Pattern of Consumer Expenditure, 2011-12. National Sample Survey Office (NSSO), Ministry of Statistics and Programme Implementation, Government of India. New Delhi.
- Ohunakin, O.S., Adaramola, M.S., Oyewola, O.M., Fagbenle, R.O., 2014. Solar energy applications and development in Nigeria: drivers and barriers. Renewable and Sustainable Energy Barriers 32, 294-301.
- Oikonomou, E.K., Kilias, V., Goumas, A., Rigopoulos, A., Karakatsani, E., Damasiotis, M., et al., 2009. Renewable energy sources (RES) projects and their barriers on a regional scale: the case study of wind parks in the Dodecanese islands, Greece. Energy Policy 37, 4874-4883.
- Oliver, M., Jackson, T., 1999. The market for solar photovoltaics. Energy Policy 27, 371–385.
- ORGCC, n.d.. Census of India 2011. Office of the Registrar General and Census Commissioner (ORGCC), Ministry of Home Affairs, Government of India, New Delhi.

- Owen, A.D., 2006. Renewable energy: Externality costs as market barriers. Energy Policy 34, 632-642.
- Painuly, J.P., 2001. Barriers to renewable energy penetration; a framework for analysis. Renewable Energy 24, 73-89.
- Pande, P.C., Singh, A., Ansari, S., Vyas, S.K., Dave, B.K., 2003. Design development and testing of a solar PV pump based drip system for orchards. Renewable Energy 28, 385-396.
- Pathak, H., Jain, N., Bhatia, A., Mohanty, S., Gupta, N., 2009. Global Warming Mitigation Potential of Biogas Plants in India. Environ Monit Assess 157, 407-418.
- Patlitzianas, K.D., Doukas, H., Psarras, J., 2006. Enhancing renewable energy in the Arab States of the Gulf: constraints & efforts. Energy Policy 34, 3719-3726.
- Pegels, A., 2010. Renewable energy in South Africa: Potentials, barriers and options for support. Energy Policy 38, 4945-4954.
- Perlack, R.D., Jones, H.G., Waddle, D.B., 1990. A survey of renewable energy technologies for rural applications. Energy 15, 1119-1127.
- Philibert, C., 2006. Barriers to technology diffusion: the case of solar thermal technologies. Organisation for Economic Co-operation and Development, International Energy Agency, Paris.
- Pillai, I.R., Banerjee, R., 2009. Renewable energy in India: status and potential. Energy 34, 970-980.
- Planning Commission, 2009. Uttarakhand Development Report. Planning Commission, Government of India. New Delhi.
- Planning Commission, 2011. Annual Report 2011-12 on the Working of State Power Utilities and Electricity Departments. Planning Commission, Government of India. New Delhi.

- Pohekar, S.D., Kumar, D., Ramachandran, M., 2005. Dissemination of cooking energy alternatives in India – a review. Renewable and Sustainable Energy Reviews 9, 379-393.
- Pohekar, S.D., Ramachandran, M., 2006. Utility assessment of parabolic solar cooker as a domestic cooking device in India. Renewable Energy 31, 1827-1838.
- Pohl, C., Gisler, P., 2003. Barriers and opportunities in realising sustainable energy concepts – an analysis of two Swiss case studies. Energy Policy 31, 175-183.
- Pokharel, S., 2003. Promotional issues on alternative energy technologies in Nepal. Energy Policy 31, 307-318.
- PPAC, 2014. Price Build-up of Diesel at Delhi Retail Outlets. Petroleum Planning and Analysis Cell (PPAC), Government of India. New Delhi. http://ppac.org.in/writereaddata/Price%20Build%20Up%20for%20Sensitive%20Products.pdf> [accessed 10.07.2014]
- Prasertsan, S., Sajjakulnukit, B., 2006. Biomass and biogas energy in Thailand: potential, opportunity and barriers. Renewable Energy 31, 599-610.
- Puri, S., 2006. Bridging the divide the role of renewable energy based rural electrification in India. Refocus 7(4), 740-42.
- Purohit, P., 2009. CO₂ emissions mitigation potential of solar home systems under clean development mechanism in India. Energy 34, 1014-1023.
- Purohit, P., Kandpal, T.C., 2005. Renewable Energy Technologies for Irrigation
 Water Pumping in India: Projected Levels of Dissemination, Energy
 Delivery and Investment Requirements using Available Diffusion Models.
 Renewable and Sustainable Energy Reviews 9(6), 592-607.
- Purohit, P., Michaelowa, A., 2008. CDM potential of SPV pumps in India. Renewable and Sustainable Energy Reviews 12, 181-199.
- Qiu, D., Gu, S., Catania, P., Huang, K., 1996. Diffusion of improved biomass stoves in China. Energy Policy 24, 463-469.

- Quadir, S.A., Mathur, S.S., Kandpal, T.C., 1995. Barriers to dissemination of renewable energy technologies for cooking. Energy Convers Manag 36, 1129–1132.
- Radulovic, V., 2005. Are new institutional economics enough? Promoting photovoltaics in India's agricultural sector. Energy Policy 33, 1883-1899.
- RAF, n.d.. Roop Arinna Fabricators Private Limited (RAF). Gurgaon. ">http://www.arinnasun.com/benefits.php?id=Government%20Subsidy">http://www.arinnasun.com/benefits.php?id=Government%20Subsidy">http://www.arinnasun.com/benefits.php?id=Government%20Subsidy">http://www.arinnasun.com/benefits.php?id=Government%20Subsidy">http://www.arinnasun.com/benefits.php?id=Government%20Subsidy">http://www.arinnasun.com/benefits.php?id=Government%20Subsidy">http://www.arinnasun.com/benefits.php?id=Government%20Su
- Ramachandra, T.V., Jain, R., Krishnadas, G., 2011. Hotspots of Solar Potential in India. Renewable and Sustainable Energy Reviews 15(6), 3178-3186.
- Rao, K.U., Kishore, V.V.N., 2010. A review of technology diffusion models with special reference to renewable energy technologies 14, 1070-1078.
- Ravindranath, N. H., Ramakrishna, J., 1997. Energy Options for Cooking in India. Energy Policy 25(1), 63-75.
- Rebane, K.L., Barham, B.L., 2011. Knowledge and adoption of solar home systems in rural Nicaragua. Energy Policy 39, 3064-3075.
- Reddy, S., Painuly, J.P., 2004. Diffusion of renewable energy technologies barriers and stakeholders' perspectives. Renewable Energy 29, 1431-1447.
- Rijal, K., 1986. Resource potential and economic evaluation of bio-gas utilization in Nepal. Energy 11, 545-550.
- Rijal, K., 1986a. Evaluation of small hydel units in Nepal. Energy 11, 265-269.
- Rijal, K., 1999. Renewable energy policy options for mountain communities: experiences from China, India, Nepal and Pakistan. Renewable Energy 16, 1138–1142.
- Roessner, J.D., 1984. Commercializing solar technology: the government role. Research Policy 13, 235-246.
- Rogers E.M., 2003. Diffusion of Innovations. 5th ed. Free Press, New York.
- Rosch, C., Kaltschmitt, M., 1999. Energy from biomass do non-technical barriers prevent an increased use?. Biomass and Bioenergy 16, 347-356.

- Ruble, I., El-Khoury, P., 2013. Lebanon's market for domestic solar water heaters: achievements and barriers. Energy for Sustainable Development 17, 54-61.
- Sagie, D., Feinerman, E., Aharoni, E., 2001. Potential of solar desalination in Israel and in its close vicinity. Desalination 139, 21-33.
- Sahir, M.H., Qureshi, A.H., 2008. Assessment of new and renewable energy resources potential and identification of barriers to their significant utilization in Pakistan. Renewable and Sustainable Energy Reviews 12: 290– 298.
- Sanchavat, H., Kothari, S., Sharma, D., Jain, N. K., Sharma, G. P., 2012. Performance and Economic Evaluation of Biomass and Solar Energy System for Turmeric Processing. International Journal of Hill Farming 25(2), 1-5.
- SES, n.d.. Samved Energy Systems (SES). Pune. <http://www.svamsystems.in/pdf/LatestPriceList.pdf> [accessed 15.02.2014]
- SIAM, n.d.. Society of Indian Automobile Manufacturers (SIAM). < http://www.siamindia.com/>
- Sidiras, D.K., Koukios, E.G., 2004. Solar systems diffusion in local markets. Energy Policy 32, 2007-2018.
- Singh, K., Singh H.S., n.d.. Forage Resource Development in Uttarakhand. Uttarakhand Livestock Development Board, Government of Uttarakhand, Dehradun. http://uldb.org/pdf/Forage%20Resources_FDP_.pdf> [accessed 20.07.2015]
- Singh, K.J., Sooch, S.S., 2004. Comparative study of economics of different models of family size biogas plants for state of Punjab, India. Energy Conversion and Management 45, 1329-1341.
- Sovacool, B.K., 2009. The cultural barriers to renewable energy and energy efficiency in the United States. Technology in Society 31, 365-373.

- Srinivasan, S., 2006. Transforming solar thermal policy support for the evolving solar water heating industry. Refocus 7(2), 46-49.
- Srinivasan, S., 2008. Positive externalities of domestic biogas initiatives: implications for financing. Renewable and Sustainable Energy Reviews 12: 1476-1484.
- SS, n.d.. Shri Solar Energy Products (P) Limited (SS). Dehradun. http://www.shrisolar.com/HEATERPRICE.PDF> [accessed 15.02.2014]
- SSSPL, 2014. Price List. Su Solartech Systems (P) Limited (SSSPL). http://www.susolartech.com/Page%207.pdf> [accessed 20.10.2014]
- Stangeland, A., 2007. The potential and barriers for renewable energy. Bellona Foundation, Oslo.
- TERI, 2008. Briefing Note of Sustainable Development, Climate Change, and Natural Resources Management: Status, Issues, and Way Forward, Uttarakhand Sustainable Development Summit. The Energy and Resources Institute (TERI). New Delhi. http://www.teriin.org/events/docs/usds_brochure.pdf> [accessed 12.08.2014]
- Trainer, F.E., 1984. The limitations of alternative energy sources. Conservation and Recycling 7, 27-42.
- UFDC, n.d.. Citizen Charter. Uttarakhand Forest Development Corporation (UFDC), Government of Uttarakhand. Dehradun. <http://www.uafdc.in/citizencharter.html> [accessed 24.11.2014]
- UPCL, 2013. Order on Retail Tariff for Uttarakhand Power Corporation Limited (UPCL) for Financial Year 2013-14 (Public Notice). https://www.upcl.org/wss/downloads/TariffMay_2564.pdf accessed on 23.1.2014> [accessed 23.01.2014]
- UPCL, 2014. List of Un-electrified Villages in Uttarakhand as on 31.03.2014. Uttarakhand Power Corporation Limited (UPCL), Government of Uttarakhand. Dehradun.

- UPCL, 2015. Daily System Energy Report. Uttarakhand Power Corporation Limited (UPCL), Government of Uttarakhand. Dehradun. https://www.upcl.org/wss/ViewDailySupplyPos.htm [accessed 20.01.2015]
- UREDA, n.d.. Website of Uttarakhand Renewable Energy Development Agency (UREDA), Government of Uttarakhand. Dehradun. < http://www.ureda.uk.gov.in/> [accessed 11.08.2014]
- UREDA, n.d.a. Solar Water Heater. Uttarakhand Renewable Energy Development Agency (UREDA), Government of Uttarakhand. Dehradun. <http://ureda.uk.gov.in/pages/display/135-solar-water-heater> [accessed 24.06.2014]
- UREDA, n.d.b. Family Size Biogas Plant. Uttarakhand Renewable Energy Development Agency (UREDA), Government of Uttarakhand. Dehradun. <http://www.ureda.uk.gov.in/pages/display/139-family-size-biogas-plant> [accessed 25.06.2014]
- UREDA, 2005. Annual Report 2004-05. Uttarakhand Renewable Energy Development Agency (UREDA), Government of Uttarakhand. Dehradun.
- UREDA, 2007. Annual Report 2006-07. Uttarakhand Renewable Energy Development Agency (UREDA), Government of Uttarakhand. Dehradun.
- UREDA, 2011. Beneficiary List of Dish Type Solar Cookers Installed during 2010-11 under Mid-Day Meal Programme in the Government Primary Schools. Uttarakhand Renewable Energy Development Agency (UREDA), Government of Uttarakhand. Dehradun.
- UREDA, 2011a. Annual Report 2010-11. Uttarakhand Renewable Energy Development Agency (UREDA), Government of Uttarakhand. Dehradun.
- UREDA, 2012. Beneficiary List of Dish Type Solar Cookers Installed during 2011-12 under Mid-Day Meal Programme in the Government Primary Schools. Uttarakhand Renewable Energy Development Agency (UREDA), Government of Uttarakhand. Dehradun.

- UREDA, 2012a. Annual Report 2011-12. Uttarakhand Renewable Energy Development Agency (UREDA), Government of Uttarakhand. Dehradun.
- UREDA, 2015. About Us. Uttarakhand Renewable Energy Development Agency (UREDA), Government of Uttarakhand. Dehradun. < http://www.ureda.uk. gov.in/ pages/ display/2- about-us> [accessed 29.07.2015]
- UTDB, n.d.. Uttarakhand Tourism Development Board (UTDB), Government of Uttarakhand. Dehradun. <www.uttarakhandtourism.gov.in> [accessed 10.06.2014]
- van der Gaast, W., Begg, K., Flamos, A., 2009. Promoting sustainable energy technology transfers to developing countries through the CDM. Applied Energy 86, 230-236.
- Verbruggen, A., Fischedick, M., Moomaw, W., Weir, T., Nadaï, A., Nilsson, L.J., et al., 2010. Renewable energy costs, potentials, barriers: conceptual issues. Energy Policy 38, 850-861.
- Wade, M. V., 2006. Likert Type Scale Response Anchors. Journal of Clemson University 257(6), 50-58.
- Wamukonya, N., 2007. Solar home system electrification as a viable technology option for Africa's development. Energy Policy 35, 6-14.
- Wang, Q., Chen, Y., 2010. Barriers and opportunities of using the clean development mechanism to advance renewable energy development in China. Renewable and Sustainable Energy Reviews 14, 1989-1998.
- WBI and DEA, 2013. Uttarakhand Decentralizes Rural Water Supply, (Uttarakhand Rural Water Supply and Sanitation Project). The World Bank in India (WBI) and Department of Economic Affairs (DEA), Ministry of Finance, Govertment of India.
- WMD, n.d.. Uttarakhand State Perspective and Strategic Plan 2009-2027.Watershed Management Directorate (WMD), Government of Uttarakhand.Dehradun.

- Yamane, T., 1967. Statistics: An Introductory Analysis (2nd ed.). Harper and Row, New York.
- Zhang, X., Shen, L., Chan, S.Y., 2012. The diffusion of solar energy use in HK: what are the barriers?. Energy Policy 41, 241-249.
- Zyadin, A., Halder, P., Kahkonen, T., Puhakka, A., 2014. Challenges to renewable energy: a bulletin of perceptions from international academic arena. Renewable Energy 69, 82-88.

APPENDIX I

The following example presents the method used in the study to estimate the fraction of rural households in Uttarakhand having the purchasing power to adopt DSWH:

- As per NSSO (2014), monthly per capita expenditure in rural Uttarakhand (MPCE_(r)) = ₹ 1725.77
- ii. As per NSSO (2014), MPCE on durable goods in rural Uttarakhand (MPCE_{dg(r)}) = ₹ 86.70
- iii. Fraction of MPCE spent on durable goods in rural Uttarakhand,

$$f_{dg} = \frac{MPCE_{dg(r)}}{MPCE_{(r)}} = 0.05$$

- iv. Cost of subsidized DRES (ETC type 100 LPD DSWH) (C_{DRES}) = ₹ 10350
 (Project Officer of UREDA, Personal Communication, May 11, 2014)
- v. As per ORGCC (n.d.), average household size in rural Uttarakhand, $(AHS_{(r)}) = 5$
- vi. The minimum MPCE required to adopt the subsidized DRES by a household,

$$MPCE_{min} = \frac{c_{DRES}}{f_{dg} \times AHS_{(r)} \times 12} = ₹ 3450$$

vii. As per the classes mentioned in NSSO (2014a), fraction of rural households having average MPCE \geq MPCE_{min}

 $(f_{ppdswh(r)}) = 0.07$

Similarly, the same method has been used in all cases to estimate the fraction of Uttarakhand households having the purchasing power to adopt various DRESs.

APPENDIX II

Serial no. _____

Questionnaire for 'Assessment of Barriers to the Adoption of Decentralized Renewable Energy Systems in the State of Uttarakhand, India'

Dear Sir/Madam,

Greetings!

The enclosed questionnaire aims at seeking information to facilitate an assessment of barriers to the adoption of decentralized renewable energy systems in the state of Uttarakhand, India. Decentralized renewable energy systems (DRESs) are suitable for distributed applications at household level. Examples of DRES are family size biogas plants (FSBPs), solar lantern, solar home systems, improved biomass cook stoves, solar water heaters (SWHs), etc. A barrier to the adoption of DRES may be defined as a factor that adversely affects its adoption and consequently hampering its widespread diffusion. Barriers to DRES may include technical, economic, social or institutional issues. This questionnaire seeks to collect information from the households in areas of Uttarakhand with significant adoption of DRES. Information is sought from both the adopter and non-adopter households to assess the barriers to DRES in some such areas of Uttarakhand. It is worth mentioning that the information shared with the enumerator is strictly confidential and will only be used for the purpose of doctoral research being undertaken under the aegis of University of Petroleum and Energy Studies. I would like to express sincere gratitude to you for your precious time and valuable inputs.

Mohammed Yaqoot, Assistant Professor (SG) Department of Power and Infrastructure College of Management and Economic Studies University of Petroleum and Energy Studies Bidholi, Dehradun, Uttarakhand, India – 248007 E-mail – myaqoot@gmail.com Telephone - +91-9634413977

Note from the enumerators: In addition to the interview, we shall greatly appreciate receiving any further relevant inputs by e-mail or telephone. For such inputs, please feel free to contact the following enumerators:

- Yashashwi Gyanpuri E-mail – yashaswi.gyanpuri88@gmail.com Telephone - +91-8126930737
- 2. Rohit Pratap Singh E-mail – r.p.singh0553@gmail.com Telephone - +91-8126673268
- Bidyut Bikash Das E-mail – dasbidyutbikash0@gmail.com Telephone - +91-8126710065
- 4. Vipul Kumar E-mail - vipul28227@gmail.com Telephone - +91-7830319932

Serial no. _____

Questionnaire

1. Name:

2. Address:

House no.:	Street:
Village/Colony:	Post office:
Block/Town/City:	District:

- 3. Landline no. / Mobile no.:
- 4. E-mail address (if available):
- 5. Is the household electrified: Yes / No

If yes, kindly indicate average hours of power cut per day:

- 6. Total no. of persons in the household:
- 7. Education and profession of the elder members of the household:

Name of member	Gender	Education	Profession
	(M/F)		
1.		Non-graduate / Graduate / Post-graduate	
2.		Non-graduate / Graduate / Post-graduate	
3.		Non-graduate / Graduate / Post-graduate	
4.		Non-graduate / Graduate / Post-graduate	
5.		Non-graduate / Graduate / Post-graduate	

8. Education of the younger members (children) of the household:

Name of member	Gender	Current education institution
	(M/F)	
1.		Kindergarten / School / College / Any other (please specify)
2.		Kindergarten / School / College / Any other (please specify)
3.		Kindergarten / School / College / Any other (please specify)
4.		Kindergarten / School / College / Any other (please specify)
5.		Kindergarten / School / College / Any other (please specify)

- 9. Annual income of the household (in lakh):
- 10. Current energy use pattern (note: in case of multiple fuel usage for an end use, please tick all options being used)

a) Fuel and	technology	usage for	various	end u	ises
<i>a)</i> i <i>a</i> ci <i>a</i> i <i>a</i>	ceeimorog j	abage for	10000	01104 (4000

End use	Technology used	Fuel used
Cooking	LPG stove	• LPG
	Kerosene stove	• Kerosene
	Biomass stove (traditional)	• Biomass
	Biomass stove (improved)	• Biomass
	Electric heater	• Electricity
	Induction stove	• Electricity
	Microwave	• Electricity
	• Family size biogas plant	• Cow dung
	Solar cooker	• Solar
	• Any other (please specify)	
Lighting	Incandescent bulb, Fluorescent tubelight, CFL, LED	Electricity
	Diesel generator	• Diesel
	Kerosene lamp	• Kerosene
	Solar lantern	• Solar
	Solar home system	• Solar
	Family size biogas plant	• Cow dung
	Candle	• Wax
	• Any other (please specify)	
Water	Electric geyser	Electricity
heating	Electric immersion rod	• Electricity
	LPG stove	• LPG
	Kerosene stove	• Kerosene
	Biomass stove (traditional)	• Biomass
	Biomass stove (improved)	• Biomass
	Family size biogas plant	• Cow dung
	Solar water heater	• Solar
	• Any other (please specify)	
Water	Electric pump	Electricity
pumping	Solar water pump	• Solar
	• Any other (please specify)	

b) Expenditure on energy usage

Fuel	Monthly fuel consumption	Monthly expenditure	Fraction of	f fuel used for vari	ous end uses	(in %)
	(if possible)	(₹)	Cooking	Water heating	Lighting	Water pumping
LPG	kg					
Kerosene	liter					
Biomass	kg					
Electricity	kWh					
Diesel	liter					
Cow dung	kg					
Any other (please specify)						

11. Are you aware of the following DRES?

DRES	Awareness	If yes, please tick the appropriate option indicating level of awareness
Family size biogas plant	Yes / No	Only know about it / Have seen its function / Have used it
Solar Lantern	Yes / No	Only know about it / Have seen its function / Have used it
Solar Home System	Yes / No	Only know about it / Have seen its function / Have used it
Solar water heater	Yes / No	Only know about it / Have seen its function / Have used it
Improved biomass cookstove	Yes / No	Only know about it / Have seen its function / Have used it
Solar cooker	Yes / No	Only know about it / Have seen its function / Have used it
Solar pump	Yes / No	Only know about it / Have seen its function / Have used it
Any other (please specify)	Yes / No	Only know about it / Have seen its function / Have used it

If the respondent is not aware of any DRES, please collect the following information prior to terminating the interview, otherwise proceed to the next question (question no. 12).

a) Does the household have livestock: Yes/No

If 'Yes', please indicate

- i. No. of cattle (cow/buffalo):
- ii. No. of goat:

- iii. No. of pig:
- iv. Any other (please specify):
- b) Availability of land adjacent to the household (in bigha):
- c) Biomass (non-fodder, non-fertilizer) availability to the household:
 - i. Is biomass available to the household: Yes / No
 - ii. If 'Yes', amount of biomass available in kg/day:
 - iii. Source(s) of biomass:
- d) No. of rainy months in a year:
- e) Source(s) of information to the household (please tick all the applicable options):
 - i. Radio
 - ii. TV
 - iii. Newspaper
 - iv. Internet
 - v. Mobile
 - vi. Any other (please specify)

END

- 12. If the respondent is aware of any DRES, the source of awareness (note: in case of multiple sources of awareness, please tick all):
 - a) Advertisement (Print / Radio/ TV)
 - b) Workshop / seminar / demonstration by a nodal agency or any other organization
 - c) Door to door awareness campaign(s)
 - d) Opportunity to witness use of DRES in the vicinity
 - e) Children
 - f) Friends and relatives
 - g) Any other (please specify)

- 13. Have you ever adopted any DRES (FTBP, Solar lantern, Solar home system, etc): Yes / No
- If 'Yes', please respond to the queries for 'Adopters'.
- If 'No', please respond to the queries for 'Non-adopters'.

Feedback from the Adopters of DRES

14. Information on the adoption of DRES

DRES	Specification	Year of	Total cost	Type of subsidy	Extent of	Whether the	If not in use, reasons for discontinuance
adopted		adoption	of system	availed	subsidy	system is in	
			(₹)	(if any)	availed (if	use?*	
					any) (₹)		
				Capital		Yes / No	Dissatisfied with performance
				subsidy			• System failure and lack of repair
				Soft loan			facility
				• Any other			• Unavailability of spare parts
				(please			• Useful life over
				specify)			• Any other (please mention)
				Capital		Yes / No	Dissatisfied with performance
				subsidy			• System failure and lack of repair
				• Soft loan			facility
				• Any other			• Unavailability of spare parts
				(please			• Useful life over
				specify)			• Any other (please mention)
				Capital		Yes / No	Dissatisfied with performance
				subsidy			• System failure and lack of repair
				• Soft loan			facility
				• Any other			• Unavailability of spare parts
				(please			• Useful life over
				specify)			• Any other (please mention)

* Preferably, the enumerator is advised to witness the functioning of the DRES.

- 15. Once being aware, who motivated you to adopt:
 - a) Promoting agents
 - b) Children
 - c) Friends, relatives, colleagues
 - d) Self-motivated (through advertisements/workshops/conferences)
 - e) Any other (please specify)

16. Brief inputs of the adopter regarding their experiences on the use of DRES:

DRES adopted	Favorable experiences	Unfavorable experiences	Overall opinion
			 Poor Acceptable Very good
			PoorAcceptableVery good
			 Poor Acceptable Very good

17. In your opinion, are there any barriers to large scale adoption of the DRES adopted by you: Yes / No

If the answer is 'Yes', please go to the next question (question no. 16).

If the answer is 'No', please jump to question no. 18.

Serial no. _____

18. From your experience with the DRES adopted, rate the extent of adverse impact of barriers on large scale adoption of the DRES:

DRES	To what extent the following barriers may have adversely affected large scale adoption	Not	at	to some	to large	Can't
adopted	of the DRES	all		extent	extent	say
	Lack of adequate awareness regarding the product and its benefits					
	Uncertainty of resource availability (availability of solar radiation, biomass, cow dung,					
	etc)					
	Inappropriateness (user satisfaction and reliability) of technology					
	Unavailability of trained manpower for installation and maintenance of DRES					
	High capital cost of DRES					
	Availability of cheaper fuel options such as free biomass, subsidized LPG or kerosene,					
	etc					
	Lack of access to capital/loan (via loan schemes of bank)					
	Unavailability of retail shops for sale of DRES					
	Lack of user's training for operation and minor maintenance work					
	Unavailability of spare parts of DRES in market					
	Lack of socio-cultural acceptability (e.g., issues regarding usage of cow dung for					
	cooking via biogas, cooking in open area via solar cooker)					
	Any other					

19. From your experience, list three most critical barriers to the large scale adoption of the DRES in the order of

Critical barriers	Details (if any)
1.	
2.	
3.	
	1. 2.

20. What is your opinion about other DRES?

DRES (other than	Opinion
those adopted)	

- 21. Please answer the following:
 - a) Do you plan to adopt any DRES in future: Yes / No If 'Yes', please specify the DRES:
 - b) Have you recommended any DRES to others: Yes / No If 'Yes',
 - i. Name the DRES:
 - ii. Has the recommendation lead to adoption: Yes / No
 - If 'No', kindly specify reason(s) for non-adoption:
- 22. Recommend three measures for enhanced adoption of DRES:
 - a)
 - b)
 - c)

Feedback from Non-adopters of DRES

14. From the following DRES, select the DRES having maximum utility for you:

DDDG	
DRES	Reasons for selection
Family size biogas plant	
I anniy size biogas plant	
Solar Lantern	
Calan Hama Contant	
Solar Home System	
Solar water heater	
Solar water neater	
Improved biomass cookstove	
1	
C - 1 1	
Solar cooker	
Solar pump	
Solar pullip	
Any other (please specify)	
5 1 1 57	

15. For the DRES having maximum utility, kindly provide the reasons for non-adoption by you:

16. Do you feel there are barriers to large scale adoption of the DRES having maximum utility for you: Yes / No

If the answer is 'Yes', please go to the next question (question no. 17).

If the answer is 'No', please jump to question no. 19.

Serial no. _____

17. From your perception regarding the maximum utility DRES, rate the extent of adverse impact of barriers on large scale adoption of the DRES:

Maximum	To what extent the following barriers may have adversely affected large scale	Not at all	to	some	to	large	Can't
utility	adoption of the DRES		extent		extent		say
DRES							
	Lack of adequate awareness regarding the product and its benefits						
	Uncertainty of resource availability (availability of solar radiation, biomass,						
	cow dung, etc)						
	Inappropriateness (user satisfaction and reliability) of technology						
	Unavailability of trained manpower for installation and maintenance of DRES						
	High capital cost of DRES						
	Availability of cheaper fuel options such as free biomass, subsidized LPG or						
	kerosene, etc						
	Lack of access to capital/loan (via loan schemes of bank)						
	Unavailability of retail shops for sale of DRES						
	Lack of user's training for operation and minor maintenance work						
	Unavailability of spare parts of DRES in market						
	Lack of socio-cultural acceptability (e.g., issues regarding usage of cow dung						
	for cooking via biogas, cooking in open area via solar cooker)						
	Any other						

18. For the maximum utility DRES, list three most critical barriers to the large scale adoption of the DRES

in the order of preference:

Maximum	Critical barriers	Details (if any)
utility		
DRES		
	1.	
	2.	
	3.	

19. Please answer the following:

- a) Do you plan to adopt any DRES in future: Yes / No
- If 'Yes', please specify the DRES:

b) Have you recommended any DRES to others: Yes / No

If 'Yes',

- i. Name the DRES:
- ii. Has the recommendation lead to adoption: Yes / No
 - If 'No', kindly specify reason(s) for non-adoption:

20. Recommend three measures for enhanced adoption of DRES:

- a)
- b)
- c)

BRIEF PROFILE OF THE RESEARCH SCHOLAR

About the Research Scholar

Mohammed Yaqoot is currently working as Assistant Professor (Selection Grade) in Department of Power and Infrastructure, University of Petroleum and Energy Studies, Dehradun. His areas of interest are power generation technologies, renewable energy technologies and energy policy. He is a mechanical engineering graduate who pursued his post-graduation in Energy Studies from IIT Delhi. He has conducted several training programmes on CDM and Renewable Energy Technologies. He has also offered consultancy services to L&T Infotech on 'Business Process Mapping of Power Sector'. Prior to joining the university, Mohammed Yaqoot worked with Voltas Ltd. for 4 years followed by one and half year stint with Reliance Energy Ltd. Currently, he is pursuing doctoral research work in the field of renewable energy technologies.

Papers Published

- Yaqoot, M., Diwan, P., Kandpal, T.C., 2014. Solar Lighting for Street Vendors in the City of Dehradun (India): A Feasibility Assessment with Inputs from a Survey. Energy for Sustainable Development 21, 7-12.
- Yaqoot, M., Diwan, P., Kandpal, T.C., 2015. Public Financing of Solar Lanterns versus Subsidizing Kerosene for Domestic Lighting in India: A Feasibility Assessment. Renewable Energy 80, 564-572.

Papers under Review or Draft Stage

 Yaqoot, M., Diwan, P., Kandpal, T.C. Review of Barriers to the Dissemination of Decentralized Renewable Energy Systems. Communicated to Renewable and Sustainable Energy Reviews in May, 2015.

- Yaqoot, M., Diwan, P., Kandpal, T.C. Financial Attractiveness of Decentralized Renewable Energy Systems – a Case of Uttarakhand, India.
- Yaqoot, M., Diwan, P., Kandpal, T.C. Frameworks for Estimating the Potential of Decentralized Renewable Energy Systems in Uttarakhand, India.
- 4. Yaqoot, M., Diwan, P., Kandpal, T.C. Barriers to the Dissemination of Decentralized Renewable Energy Systems a Case of Uttarakhand, India.