N	ame:

Enrolment No:

Semester: 6

Max. Marks: 100

: 03 hrs.

Time

UPES End Semester Examination, May 2025

Course: Pattern Recognition and Anomaly Detection Program: B. Tech AI/ML Specialization (H and NH)

Course Code: CSAI3011

Instructions:

1. Attempt all questions.

- 2. Section A consists of 5 questions of 4 marks each.
- 3. Section B consists of 4 questions of 10 marks each.
- 4. Section C consists of 2 questions of 20 marks each.
- 5. Assume suitable data if required and state assumptions clearly.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО
Q 1	Define pattern recognition and explain its computational importance in artificial intelligence and data processing.	4	CO1
Q 2	Differentiate between pattern recognition and anomaly detection with suitable examples.	4	CO1
Q 3	Explain the impact of high dimensionality on pattern recognition models and suggest methods to handle it.	4	CO2
Q 4	Describe the principle of Maximum Likelihood Estimation (MLE) and its application in pattern recognition.	4	CO2
Q 5	List and explain types of anomalies observed in real-world datasets with relevant examples.	4	CO3

SECTION B (4Qx10M= 40 Marks)

Q 6	Compare various pattern recognition techniques, discussing their advantages, limitations, and practical applications.	10	CO1
Q 7	Analyze the role of confusion matrices and log-loss metrics in evaluating pattern recognition and anomaly detection models.	10	CO2
Q 8	Compare Z-test and T-test in the context of pattern recognition applications. When should each be used?	10	CO3
Q 9	Illustrate the core architecture and operational workflow of an Intrusion Detection System (IDS) in network security.		
	OR	10	CO3
	Explain how deep learning models are employed to detect anomalies in e-commerce systems with appropriate examples.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Develop a strategy for detecting anomalies in satellite imagery time series data for environmental monitoring, covering preprocessing, modeling, and evaluation aspects.		
	OR	20	CO2
	Propose a framework for distributed anomaly detection in cloud computing platforms, highlighting performance trade-offs and scalability issues.		
Q 11	Discuss the working of anomaly detection in 5G networks and IoT systems, highlighting their unique challenges.	20	CO3