Name:

**Enrolment No:** 



## **UPES**

## **End Semester Examination, May 2025**

Programme Name: B.tech (All CSE-H) Semester: VI

Course Name : Digital Signal Processing : 03 hrs Course Code : CSEG3042P : Max. Marks: 100

Nos. of page(s) : 2 Calculator allowed: Yes

Instructions: Please attempt according to the time provided and given weightage.

## SECTION A (5Qx4M=20Marks)

| S. No. |                                                                                                                                                                                                                                                                                                           | Marks | CO  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| Q 1    | Define Signal. Why should we study signals?                                                                                                                                                                                                                                                               | 4     | CO1 |
| Q 2    | Differentiate between analog, discrete and digital signal by giving an example of each.                                                                                                                                                                                                                   | 4     | CO1 |
| Q 3    | Explain the types of signals and differentiate them.                                                                                                                                                                                                                                                      | 4     | CO2 |
| Q 4    | Find order of Butterworth filter 'N', given the following filter characteristics: $\alpha_p = 1 \text{ dB}, \ \alpha_s = 30 \text{ dB}, \ \Omega_p = 200 \text{ rad/s} \text{ and } \Omega_s = 600 \text{ rad/s}.$                                                                                        | 4     | CO2 |
| Q 5    | What is windowing technique? Write the name and mathematical representation of different window functions.                                                                                                                                                                                                | 4     | CO3 |
|        | SECTION B                                                                                                                                                                                                                                                                                                 |       | 1   |
|        | (4Qx10M= 40 Marks)                                                                                                                                                                                                                                                                                        |       |     |
| Q 6    | Consider the finite sequence of length 7 defined for $-3 \le n \ge 3$ : $x(n) = \{0, 1+j4, -2+j3, 4-j2, -5-j6, -2j, 3\}$ $\uparrow$ (a) Create its conjugate symmetric part (b) Create its conjugate Anti-Symmetric part $\mathbf{OR}$ Given $x(n) = \{0, 1, 4, 5, 2, 3, 6, 7\}$ Find DFT, using DIT-FFT. | 10    | CO2 |

| Q 7       | Design an analog Butterworth filter that has a 2 dB passband attenuation at a frequency of 20 rad/s and at least 10 dB stopband attenuation at 30 rad/s.              | 10 | CO2         |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------|--|--|
| Q 8       | Determine the direct Forms I and II realizations for a third-order IIR transfer function. $H(z) = \frac{0.28 z^2 + 0.319 z + 0.04}{0.5 z^3 + 0.3 z^2 + 0.17 z - 0.2}$ | 10 | СОЗ         |  |  |
|           |                                                                                                                                                                       |    |             |  |  |
| Q 9       | Design a second order discrete time Butterworth filter, with cut -off frequency of 1 KHz and sampling frequency of 10000 samples/sec by bilinear transformation.      | 10 | CO4         |  |  |
| SECTION-C |                                                                                                                                                                       |    |             |  |  |
| Q 10      | (2Qx20M=40 Marks)  Design an FIR filter for the given characteristics:                                                                                                |    |             |  |  |
|           |                                                                                                                                                                       |    |             |  |  |
|           | $H(e^{jw}) = 1 \; ; \; 2 \leq  w  \leq \pi$                                                                                                                           |    |             |  |  |
|           | = 0 ; otherwise                                                                                                                                                       | 20 | CO5         |  |  |
|           | Use hamming window, for M =7.                                                                                                                                         |    |             |  |  |
|           | Further, write the sequence of h'(n) for hamming window.                                                                                                              |    |             |  |  |
| Q 11      | Using bilinear transformation, design a Butterworth filter which satisfies the following condition:                                                                   |    |             |  |  |
|           | $0.8 \le  H(w)  \le 1$ ; $0 \le w \le 0.2 \pi$<br>$ H(w)  \le 0.2$ ; $0.6\pi \le w \le \pi$                                                                           |    |             |  |  |
|           | OR                                                                                                                                                                    | 20 | CO3,<br>CO4 |  |  |
|           | Design a digital filter by Impulse invariance method, when analog filter transfer function H(S) is given as:                                                          |    |             |  |  |
|           | $H(s) = \frac{4}{(s+0.1)^2 + 16}$                                                                                                                                     |    |             |  |  |