Name:

Enrolment No:

UPES

End Semester Examination, May 2025

Course: Compiler Design
Program: B.Tech- CSE (All Specializations)
Course Code: CSEG 3015
Semester: VI
Time : 03 hrs.
Max. Marks: 100

Instructions: Attempt all the questions.

SECTION A (50x4M=20Marks)

	(5Qx4M=20Marks)		
S. No.	Problem Statement	Marks	CO
Q 1	Consider a string $s = welcome$. Write down the prefix(s), proper prefix(s), suffix(s), and proper suffix(s).	4	CO1
Q 2	Differentiate between the regular grammar and regular expression using suitable examples.	4	CO2
Q 3	Write down the syntax for all sections in YACC specification.	4	CO2
Q 4	Construct the DAG for the following expressions: i. $a + a + ((a + a + a + (a + a + a + a)))$ ii. $x + y + x + y + x + y + x + y$ iii. $((x + y) - ((x + y) * (x - y))) + ((x + y) * (x - y))$ iv. $y = x[i] + z[i]$	4	CO3
Q 5	Convert the following C-code snippet into quadruple representation. sum = 0; requiredIncome = 200,000; monthlyIncome = 2000; noOfMonths = 0; while (sum <= requiredIncome) { sum = sum + monthlyIncome; noOfMonths = noOfMonths + 1; } check = requiredIncome == sum;	4	CO5
	SECTION B (4Qx10M= 40 Marks)		
Q 6	 i. Explain L-attributed SDD using a suitable example. ii. Write a S-attributed SDD to compute the value of an arithmetic expression like <i>id</i> + <i>id</i> * <i>id</i>. iii. Using the SDD devised in (ii), draw an annotated tree for 	3+4+3	CO4

	<i>1*2*3*(4+5)</i> .		
Q 7	Write suitable semantic rules for the following grammar G_1 to produce the three address code. Also, draw the annotated parse for the string, " $id = id + (id * id)$ " to verify the functionality of your SDD. G1: $S \rightarrow id = E$ $E \rightarrow E_1 + E_2$ $ E_1 * E_2 $ $ -E_1 $ $ (E_1) $ $ id $	5+5	CO4
Q 8	Construct a SLR parsing table for the following grammar G_2 : $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid id$	10	CO3
Q 9	Discuss the role of symbol table in compilers in detail. Also, list various operations that can be implemented in a symbol table. OR Classify all possible errors in compiler design. And, discuss available error handling techniques.	10	CO4
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Consider the following C-code snippet for bubble sorting. for (i=0; i<(n-1); i++) { for (j=0; j <n-i-1;j++) (array[j]="" if="" {=""> array[j+1]) { swap= array[j]; array[j]=array[j+1]; array[j+1]=swap; } } i. Translate the program into three-address code. Assume integers require 4 bytes. ii. Construct the flow graph for your code from (i). iii. Identify the loops in your flow graph from (ii).</n-i-1;j++)>	10 + 5 + 5	CO5

Q 11	Write short notes on any five of the followings while providing suitable		
	examples:		
	i. FIRST vs. FOLLOW		
	ii. LEADING vs. TRAILING	$5 \times 4 = 20$	
	iii. CLOSURE() vs. GOTO()	Marks	CO3
	iv. Shift-Reduce vs. Reduce-Reduce conflicts	Marks	
	v. Right Most Derivation vs. Left Most Derivation		
	vi. LL(1) vs. LR(1) grammars		
	vii. Parse Tree vs. Syntax Tree		