Name:

Enrolment No:

Semester: VI

Time: 03 hrs.

UPES

End Semester Examination, May 2025

Course: Application of Machine Learning in Industries

Program: B. Tech CSE

Course Code: CSAI3006 Max. Marks: 100

Instructions: Write all the answers concisely

SECTION A (5Qx4M=20Marks)

S. No.	(SQA4W-20Warks)	Marks	СО
Q 1	Q1. A delivery company uses a binary classifier to detect fraud transactions. Assume the feature vectors follow a multivariate normal distribution for legitimate and fraud transactions respectively: $f\colon \mathbb{R}^d \to \{0,1\}$	Marks	CO1
	$N(\mu_0, \Sigma_0), N(\mu_1, \Sigma_1)$ (a) Derive the decision boundary under the assumption $\Sigma_0 = \Sigma_1$. (b) How would you implement a Bayes-optimal classifier in this case?	7	COI
Q 2	In retail demand forecasting, suppose monthly sales data y(t) follows a seasonal autoregressive model: $y(t) = \alpha + \sum_{i=1}^p \phi_i y(t-i) + \sum_{j=1}^s \theta_j y(t-jS) + \varepsilon(t)$ $\varepsilon(t) \sim N(0,\sigma^2)$ (a) Explain the stationarity conditions for this model. (b) Propose how ML can improve prediction over this model and define feature transformations to be used in LSTM.	4	CO4
Q 3	In wind power forecasting, suppose $X = \{x_1, x_2,, x_n\}$ denotes hourly wind speeds and Y denotes the corresponding energy outputs.	4	CO2

	(a) Fit a linear regression model and derive the closed-form solution using matrix notation.		
	(b) Apply Ridge regularization and derive the cost function. How does it promote sparsity in feature selection?		
Q 4	 Consider an ML pipeline for genomics classification using Support Vector Machines (SVM). Let φ: ℝ^d → ℝ^D be a nonlinear kernel mapping. (a) Derive the dual optimization problem of SVM using Lagrangian multipliers. (b) How does the kernel trick reduce computational complexity? Use RBF kernel as an example. 	4	CO1
Q 5	 A CNN-based quality control system uses a convolution kernel K ∈ ℝ³x³ on an input matrix I ∈ ℝ⁵x⁵. (a) Derive the output feature map using valid padding and stride 1. (b) Interpret the role of ReLU activation mathematically. (c) How would you apply cross-entropy loss if this system classifies products into Defective or Non-defective? 	4	CO2
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Design a deep learning-based fault detection system in oil refineries. Include: (a) Formulation of the classification problem. (b) CNN/RNN model suited for sensor time series data. (c) Evaluation using metrics such as F1-score, AUC. (d) Sensor-specific feature engineering strategies.	10	CO1

	(d) Multi-model ensemble design		
	(c) Evaluation with MAPE and RMSE	20	CO4
	(b) Time series forecasting using GRU or Prophet		
	(a) Feature engineering for product attributes, promotions		
Q 10	consumer goods (FMCG). Discuss:		
Q 10	(2Qx20M=40 Marks) Develop an AI system for dynamic inventory management in fast-moving		
	SECTION-C		
	Evaluation with MAE and R^2		
	XGBoost pipeline		
	Feature engineering		
	Data cleansing and encoding	10	CO2
	(b) Build a system for delivery time prediction in last-mile logistics. Include:		
	OR		
	and explain kernel use for nonlinear paths.		
Q 9	(a) In autonomous vehicles, use SVR for path prediction. Derive SVR objective		
	example transformation.		
	(b) Explain the polynomial kernel's effect on feature space and provide an	10	CO3
	(a) Derive the dual formulation of the SVM optimization using Lagrangian multipliers.		
Q 8	A cancer prediction pipeline uses SVM with a polynomial kernel.		
	(b) Define the utility matrix and compute predictions using cosine similarity.(c) Suggest algorithms to detect student disengagement early.		
	content filters.	10	CO2
	(a) Construct a hybrid recommender using deep matrix factorization and		
Q 7	In educational platforms, adaptive learning engines improve student outcomes.		

Q 11	(Attempt any one)		
	(a) Design a fraud detection framework for banking using AI. Address:		
	Structured and transactional data fusion		
	Use of graph-based anomaly detection		
	Precision-Recall curve evaluation		
	Real-time scoring and feedback loop		
	OR	20	CO2
	(b) Build a predictive model for early detection of heart disease. Include:	20	CO3
	Data imputation and normalization		
	Use of ensemble classifiers (e.g., Random Forest, LightGBM)		
	SHAP-based interpretability		
	Considerations for model updates		