Name:

**Enrolment No:** 



#### **UPES**

### **End Semester Examination, May 2025**

Course:Digital ElectronicsSemester:2Program:B.Tech\_CS\_CSETime:03 hrs.Course Code:ECEG1012Max. Marks:100

#### **Instructions:**

- Electronic gadgets are not allowed during the examination except a scientific calculator.
- Carrying any material related to the subject of examination and bags are prohibited during the examination.
- Exchange of material is prohibited.

# SECTION A (5Qx4M=20Marks)

| S. No. |                                                                                                                              | Marks | CO  |
|--------|------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| Q 1    | <ul><li>a. Express XNOR operation using 2-input NOR gates</li><li>b. Express OR operation using CMOS logic</li></ul>         | 2+2   | CO1 |
| Q2     | Differentiate multiplexers and encoders with labeled diagrams.                                                               | 4     | CO1 |
| Q3     | Distinguish between synchronous sequential circuits and asynchronous sequential circuits.                                    | 4     | CO2 |
| Q4     | Draw the truth table for BCD to Excess-3 converter and express the outputs (Excess-3) in terms of min-terms and don't cares. | 4     | CO3 |
| Q5     | Define opcode and operand with an example.                                                                                   | 4     | CO4 |
|        |                                                                                                                              |       |     |

## SECTION B (4Qx10M= 40 Marks)



| Q7  | Simplify the following Boolean expression using the Quine-McCluskey (QM) minimization technique $f(A, B, C, D) = \sum m(0, 1, 3, 7, 8, 9, 11, 15)$                         | 10    | CO1 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| Q8  | Design a sequential circuit to generate the sequence $0 \rightarrow 3 \rightarrow 1 \rightarrow 7 \rightarrow 5 \rightarrow 0$ using T flip-flops                          | 10    | CO2 |
| Q9  | <ul><li>a. Explain briefly about the applications of flipflops.</li><li>b. Design a 4-bit Johnson (Twisted Ring) Counter with appropriate timing diagram.</li></ul>        |       |     |
|     | OR                                                                                                                                                                         | 10    | CO2 |
|     | a. Explain briefly the operation of Parallel Input Serial Output Shift Register (PISO).                                                                                    |       |     |
|     | b. Design a 4-bit Ring Counter with appropriate timing diagram.                                                                                                            |       |     |
|     |                                                                                                                                                                            |       |     |
|     | SECTION-C<br>(2Qx20M=40 Marks)                                                                                                                                             |       |     |
| Q10 | <ul><li>a) Explain the various addressing modes of 8085 microprocessors with example.</li><li>b) Describe briefly the bus structure of 8085 with a block diagram</li></ul> | 10+10 | CO4 |
| Q11 | a. Write the encoded digital signal by quantizing an analog signal of 10V (peak-to-peak) into 8-levels.                                                                    |       |     |
|     | <ul><li>b. Explain a 3-bit parallel-comparator (FLASH) A/D converter with a neat and clear diagram.</li></ul>                                                              | 5+15  | CO3 |
|     | OR                                                                                                                                                                         |       |     |
|     | a. Convert the 8-bit digital value 10110101 to its equivalent analog value (Consider $K = \frac{R_f}{2^7 R} V_R = 1$ ).                                                    | 5.15  | G02 |
|     | b. Explain a 3-bit weighted resistor D/A converter with a neat and clear diagram.                                                                                          | 5+15  | CO3 |