Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Computational methods in petroleum engineering **Program:** B. Tech. (APE Upstream) **Course Code:** PEAU 4021P

Semester: VII Time : 03 hrs. Max. Marks: 100

Instructions:

- (a) Use of scientific calculator is allowed for calculations. Before use, please make sure that it is approved by the invigilator.
- (b) Possession of mobile or any communication device is strictly prohibited during the exam. SECTION A (5Q x 4M = 20Marks)

S. No.	Statements of the questions	Marks	CO					
Q 1	State the difference between regression and interpolation techniques.	4	CO1 [2] CO2[2]					
Q 2	Write the full expression of 3 rd order Newton's interpolating polynomial.	4	CO1					
Q 3	Write the full expression of 4 rd order Taylor series and the expression for the reminder terms.	4	C01					
Q 4	Write a general python code for Lagrange interpolation (<i>not using in-built methods</i>)	4	CO3					
Q 5	Write any two points each to differentiate between a initial vale problem and boundary value problems?	4	CO1 [2] CO2 [2]					
	SECTION B (4Q x 10M = 40 Marks)							
Q 6	Numerically integrate the following using (i) trapezoidal method with							
	step size of 2, and (ii) Simpson's 1/3 rule with a step size of 1:							
	$\int_0^6 x^2 e^x dx$	10	CO2[4] CO3[4] CO4[2]					
	OR							
	Use the appropriate order of Newton's interpolation technique to find the value of $f(x)$ at $x = 2$, from the following data given below. Also find the error percentage associated with the solution obtain by you. The true solution is found to be 0.69314 . Provide the necessary reason and conditions, wherever necessary.							

		x	f(x)			
		1	0			
		3	1.09861			
		5	1.6094			
		7	1.9459			
Q 7	Determine the roots of the function, $f(x) = e^{-x} - x$, using an open method to locate the roots. Employ an initial guess of your choice with proper reasoning and make 3 iterations and calculate the approximate error, ε_a for each iteration. Also find the true percentage error if the true value is 0.56714329					CO2[4] CO3[4] CO4[2]
Q 8	Using Runge-k	g differential equation,				
	$\frac{dy}{dt} = -2y + t^2$ From $t = 0$ to $t = 2$, with a step size (h) of 1. The initial condition of $y(0) = 1$ is given. OR				10	CO2[4] CO3[4] CO4[2]
	Write a general above using the obtained solution					
Q 9	Obtain the temperature distribution of a long, thin rod by solving the partial differential with a length of 10 cm, from times, $t = 0$ s to $t = 3$ s. The material properties are given as in Question No. 10 . Use a step size of $\Delta x = 2$ cm, and $\Delta t = 1$ s. At $t = 0$, the temperature of the rod was 5 °C and the boundary conditions are fixed for all times at $T(0) = 200$ °C and $T(10) = 100$ °C. $k \frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}$					CO2[4] CO3[4] CO4[2]
		SEC	TION-C (2Q x 20N	A = 40 Marks)		
0 10	(a) Use Liebm:	ann's method to	o obtain the tempera	ture distribution of the		
	square heated dimensions of in both horizo	plate (Fig. 1 the plate is 8 c ontal and verti). Use a relaxatio $\mathbf{m} \times 8 \text{ cm}$. Use at-le cal directions. Not	n factor of 1.2 . The east two interior nodes e that the material is	15 + 5	CO2[5] CO3[10] CO4[5]

	aluminum with specific heat, $C = 0.2174 \text{ cal/(g} \cdot ^{\circ}\text{C})$ and density, $\rho = 2.7 \text{ g/cm}^3$. The thermal conductivity, $k' = 0.49 \text{ cal/(s} \cdot \text{cm} \cdot ^{\circ}\text{C})$,		
	$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$		
	$150 \ \odot C$ $50 \ \odot C$ $0 \ \odot C$ (b) How can you make improvements in the accuracy of the solution obtained by you ?		
Q 11	(a) Write a python code to solve the set of simultaneous equations as below, using LU decomposition method with partial pivoting. (b) Write a code to check the accuracy of your obtained solution using the in-built methods available in python modules.		
	(a) Use Gauss-Jordan method to solve the following simultaneous linear equations: $3x_1 + 4x_2 + x_3 = 26$ $x_1 + 2x_2 + 6x_3 = 22$ $6x_1 - x_2 - x_3 = 19$ Detailed steps should be provided. (b) How can you check the accuracy of solutions obtained by you?	20	CO2[5] CO3[10] CO4[5]