Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Control Engineering Program: BTech ADE Course Code: MECH 4034P

Semester: VII Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all questions.

SECTION A (5Qx4M=20Marks)					
S. No.		Marks	СО		
Q 1	Determine the poles and zeros of the given transfer function. Also comment on the stability of the system. $G(s) = \frac{(s+3)(s+8)}{(s+5)(s-4)(s-2)}$	4	CO3		
Q 2	Define the closed loop control system by an example.	4	CO1		
Q 3	Define the steady state error in the system for the unity feedback control system.	4	CO1		
Q 4	Explain the time response parameters of any feedback control system.	4	CO2		
Q 5	Using the Routh-Hurwitz criterion, determine the stability of the system that has the following characteristic equations. $s^3 + 25 s^2 + 10 s + 450 = 0$	4	CO3		
SECTION B					
(4Qx10M= 40 Marks)					
Q 6	Apply the Mason's gain rule to signal flow graph as shown in figure, to determine the transfer function $\frac{Y_7}{Y_1}$.	10	CO2		

Q 7	Determine the time response of the given system model for unit step input and comment on the stability of the system. $\ddot{y}(t) + 8\dot{y}(t) + 16y(t) = u(t)$	10	CO2	
Q 8	Determine the input-output transfer function (<i>Y/R</i>) of the system by reduce the block diagram. $R \rightarrow G_{4} \rightarrow$	10	CO2	
Q 9	Given the forward-path transfer function of unity-feedback control systems, apply the Routh-Hurwitz criterion to determine the stability of the closed-loop system as a function of <i>K</i> . $G(s) = \frac{K(s+4)(s+20)}{s^3(s+100)(s+500)}$ Or, Determine the range of feedback gains so that closed loop system will be stable. The transfer function of the system is given as $G(s) = \frac{(s-5)}{(s^2+s+1)(S+10)}$	10	CO3	
SECTION-C (20x20M=40 Marks)				
Q 10	A unity-feedback control system has the forward-path transfer functions given in the following. Construct the complete root-locus diagram for $0 \le K \le \infty$. Find the values of K at all the breakaway points. $G(s) = \frac{K(s+3)}{s(s^2+4s+4)(s+5)(s+6)}$ Or,	20	CO3	

Q 11	$G(s) = \frac{K(s+2)^2}{(s^2+4)(s+5)^2}$ a) Construct the root loci for $K = 25$. b) Find the range of <i>K</i> value for which the system is stable. Draw the Nyquist plot and determine the range of stable gains for the given forward-path transfer function of the system.		
	$G(s) = \frac{(s+5)}{(s+2)(s^2+2s+2)}$	20	CO4