Name:

**Enrolment No:** 



## **UPES**

## **End Semester Examination, December 2023**

Course: Discrete Mathematics (Minor)

Program: B.Sc. Physics by Research

Course Code: MATH4013

Semester: VII

Time : 03 hrs.

Max. Marks: 100

Instructions: Answer all the questions.

## SECTION A (5Qx4M=20Marks)

|        | (5Qx4W=20Warks)                                                                                                                                                                                                                                                                                   |       |     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
| S. No. |                                                                                                                                                                                                                                                                                                   | Marks | CO  |
| Q 1    | Given the value of $p \to q$ is false, determine the value of the compound proposition $(\sim p \lor \sim q) \to q$ .                                                                                                                                                                             | 4     | CO1 |
| Q 2    | Let $A = \{2,3,5\}$ and $B = \{6,8,10\}$ . Define a binary relation $R$ from $A$ to $B$ as follows:<br>For all $(x,y) \in A \times B$ , $(x,y) \in R \Leftrightarrow x/y$ (i.e. $x$ divides $y$ ).<br>Write $R$ and $R^{-1}$ as sets of ordered pairs and find the Domain $(R)$ and Range $(R)$ . | 4     | CO2 |
| Q 3    | Define the following with relevant example.  (a) Upper bound.  (b) Lower bound.  (c) Supremum.  (d) Infimum.                                                                                                                                                                                      | 4     | CO2 |
| Q 4    | What is Generalized Pigeonhole principle? Find the minimum number of teachers in a college to be sure that four of them were born in the same month.                                                                                                                                              | 4     | CO3 |
| Q 5    | Obtain the prime factorization of the numbers 81, and 289.                                                                                                                                                                                                                                        | 4     | CO4 |
|        | SECTION B                                                                                                                                                                                                                                                                                         |       |     |
|        | (4Qx10M= 40 Marks)                                                                                                                                                                                                                                                                                |       |     |
| Q 6    | Check the validity of the following argument.  If I try hard and I have a talent, then I will become a scientist. If I become scientist, then I will be happy. Therefore, if I will not be happy, then I did not try hard or I do not have talent.                                                | 10    | CO1 |

| Q 7                            | Check whether the Poset in the following Hasse diagram is a Lattice or not.                                                                                                                                                                                                                     | 10 | CO2 |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|
| Q 8                            | Explain the 'congruence modulo $m$ ' relation and prove that it is an equivalence relation.                                                                                                                                                                                                     | 10 | CO4 |  |
| Q 9                            | Show that $p \to \sim r$ is a valid conclusion from the given premises $p \to q$ and $r \to \sim q$ . (OR)  Prove that $p \to (q \lor r) \equiv (p \to q) \lor (p \to r)$ .                                                                                                                     | 10 | CO1 |  |
| SECTION-C<br>(2Qx20M=40 Marks) |                                                                                                                                                                                                                                                                                                 |    |     |  |
| Q 10                           | By using the method of undetermined coefficients, solve the equation $y_{n+2} - 4y_{n+1} + 4y_n = n + 4^n$ . (OR)  Discuss Generating Function and using the Generating function technique, solve the following recurrence relation. $y_{n+2} - 2y_{n+1} + y_n = 2^n$ , $y_0 = 2$ , $y_1 = 1$ . | 20 | СО3 |  |
| Q 11                           | Explain Linear Diophantine equation and find the general solution of the equation $70x + 112y = 168$ .                                                                                                                                                                                          | 20 | CO4 |  |