Name:

Enrolment No:

UPES					
End Semester Examination, December 2023					
Course: B.SC (Mathematics by research)			: VII		
Program: Time Series and Forecasting Methods		1 ime	: 03 nrs.		
Course	Code: MATH4014P	Max. Mark	ks: 100		
Instructions: All questions are compulsory.					
SECTION A (50x4M=20Marks)					
S. No.		Marks	CO		
Q 1	Show that the autocovariance function can be written as	4	CO1		
	$\gamma(s, t) = E[(x_s - \mu_s)(x_t - \mu_t)] = E(x_s x_t) - \mu_s \mu_t$, where $E[x_t] = \mu_t$.	4	COI		
Q 2	Consider the two series				
	$x_t = w_t$				
	$y_t = w_t - \theta w_{t-1} + u_t$				
	where w_t and u_t are independent white noise series with variances	4	CO2		
	σ_w^2 and σ_u^2 respectively, and θ is an unspecified constant.				
	(a) Determine the $\rho_{xy}(h)$ relating x_t and y_t .				
0.2	(b) Show that x_t and y_t are jointly stationary.				
Q S	Define ARMA(p, q) model and describe now it is related with $MA(q)$ and $AB(p)$	4	CO2		
04	Derive the spectral density function of AB(2) with $\phi_{1} = 1$ and $\phi_{2} = -1$				
	Derive the spectral density function of $M(2)$ with $\psi_1 = 1$ and $\psi_2 = -0.9$	4	CO3		
0.5	Define Gaussian time series and a linear process. Is every Gaussian time		~~~		
	series linear? Justify your answer.	4	CO4		
SECTION B					
(4Qx10M= 40 Marks)					
Q 6	Consider the time series $x_t = \beta_1 + \beta_2 t + w_t$, where β_1 and β_2 are				
	known constants and w_t is a white noise process with variance σ_w^2 .				
	(a) Determine whether x_t is stationary.				
	(b) Show that the process $y_t = x_t - x_{t-1}$ is stationary.	10	CO1		
	(c) Show that the mean of the moving average $v_t = \frac{1}{2a+1} \sum_{i=-a}^{q} x_{(t-i)}$				
	is $B_1 + B_2 t$, and give a simplified expression for the autocovariance				
	function.				
O 7	Identify the following model as ARMA(p. a) models, and determine				
	whether it is causal and/or invertible:	10	CO3		
	$x_t = x_{t-1} - 0.50x_{t-2} + w_t - w_{t-1}.$	10	CO2		

Q 8	Find the ACF of an AR(2) process and discuss its tendency as $h \to \infty$.	10	CO3
Q 9	Let $x_t = \delta + x_{t-1} + w_t$, $t = 1,2 \dots$ be the random walk with constant drift δ , defined by $w_0 = 0$ where $w_t \sim wn(0, \sigma_w^2)$. Compute the mean of x_t and the autocovariance of the process $\{x_t\}$. Show that $\{\nabla x_t\}$ is stationary and compute its mean and autocovariance function.	10	CO4
	OR	10	04
	Prove the squared coherence $\rho_{y,x}^2(\omega) = 1$ for all ω when		
	$y_t = \sum_{r=\infty} a_r x_{t-r}$, that is, when x_t and y_t can be related exactly by a linear filter.		
	SECTION-C		
	(2Qx20M=40 Marks)		1
Q 10	 a. Describe Signal plus noise series. b. Define a weakly stationary time series. c. Define a linear process. d. Define cross covariance. e. Bivariate Normal Distribution 	20	CO1
Q 11	Suppose the first-order autoregressive process $x_t = \phi x_{t-1} + w_t$ has an observation missing at $t = m$, leading to the observations $y_t = A_t x_t$, where $A_t = 1$ for all t , except $t = m$ wherein $A_t = 0$. Assume $x_0 = 0$ with variance $\sigma_w^2/(1 - \phi^2)$, where the variance of w_t is σ_w^2 . Show the Kalman smoother estimators in this case are $x_t^n = \begin{cases} \phi y_1 & t = 0, \\ \frac{\phi}{1 + \phi^2} & t = m \\ y & t \neq 0, m \end{cases}$ with mean square covariances determined by $P_T^n = \begin{cases} \sigma_w^2 & t = 0 \\ \sigma_w^2/(1 + \phi^2) & t = m, \\ 0 & t \neq 0, m \end{cases}$ OR Consider a process consisting of a linear trend with an additive noise term consisting of independent random variables w_t with zero means and variances σ_w^2 , that is $x_t = \beta_0 + \beta_1 t + w_t$, where β_1 and β_2 are known constants. (a) Prove that the first difference series $y_t = x_t - x_{t-1}$ is stationary by finding its mean and autocovariance function. (c) Repeat part (b) if w_t is replaced by a general stationary process, say y_t , with mean function μ_y and autocovariance function $\gamma_y(h)$.	20	CO2