Name:

Enrolment No:

UPES Somestor Examination December 2

End Semester Examination, December 2023

Course: Linear and Nonlinear Programming Program: B.Sc. (Hons.) Mathematics Course Code: MATH3032 Instructions: Answer all the questions. Semester: V Time : 03 hrs. Max. Marks: 100

SECTION A (5Qx4M=20Marks)

S. No.							Marks	CO
Q 1	Define (a) S (d) Unbounde	4	CO1					
Q 2	Write the dua							
	Min Z = 2y -							
		4	CO1					
0.3	and $x, y, z \ge$							
<u>ر</u> ې	Discuss the fil		4	CO2				
Q 4	Using Least (
	following tran							
	Factory	D_1	D ₂	D ₃	<i>D</i> ₄	Supply		
	S ₁	19	30	50	10	7		
	<i>S</i> ₂	70	30	40	60	9	4	CO2
	<i>S</i> ₃	40	8	70	20	18		
	Demand	5	8	7	14			
				1	1			

Q 5	The efficiency <i>E</i> of a small manufacturing concern depends on the workers <i>W</i> and is given by $10E = -\left(\frac{w^3}{40}\right) + 30W - 392$. Find the strength of the workers that would give the maximum efficiency.							CO3			
SECTION B											
(4Qx10M= 40 Marks)											
Q 6	Solve the following L										
	$Min \ Z = 3x + y \text{ subject to}$ $x + y \ge 1$ $2x + 3y \ge 2$ and $x, y \ge 0$.							CO1			
Q 7	Solve the following tr the minimum cost.										
		D	D ₂	D ₃	D ₄	Supply		CO2			
	S ₁	20	25	28	31	200	10				
	S ₂	32	28	32	41	180	10				
	S ₃	18	35	24	32	110					
	Demand	150	40	180	170						
Q 8	Discuss the Kuhn-Tu Tucker necessary con	d obtain the Kuhn- em.									
	$Max Z = 10x - x^2 +$										
		10	CO3								
	and $x, y \ge 0$.										
0.9	Find the second order Taylor's series expansion of the function										
X '	f(x,y) = 12xy + 5y										
	Consider the function $f(x, y) = 3x^2 + y^2 - 10$. Determine the maximum or minimum point (if any) of the function.							CO3			

SECTION-C (2Qx20M=40 Marks)								
Q 10	Use penalty (
	Minimize Z							
	and $x, y \ge 0$							
	Solve the fol	20	CO2					
	From/To	Α	В	С	D	E		
	A	—	3	6	2	3		
	В	3		5	2	3		
	С	6	5	_	6	4		
	D	D 2 2 6 – 6						
	Ε	3	3	4	6	—		
Q 11	Use the meth problem. Do function?							
	Optimize $Z = 4x^2 + 2y^2 + z^2 - 4xy$ subject to x + y + z = 15 2x - y + 2z = 20 and $x, y, z \ge 0$							CO3