Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Logic and Sets Program: B.Sc. (Hons.) Mathematics

Course Code: MATH 2032K

Semester: III Time : 03 hrs. Max. Marks: 100

Instructions: Attempt all questions

SECTION A
(5Qx4M=20Marks)

	(SQX4M=20Marks)		
S. No.		Marks	CO
Q 1	If p be "He is rich" and q be "He is happy". Write each statement in symbolic form using p and q. Note that "He is poor" and "He is unhappy" are equivalent to ~p and ~q, respectively. (a) If he is rich, then he is unhappy.	4	CO1
	(b) He is neither rich nor happy.(c) It is necessary to be poor in order to be happy.(d) To be poor is to be unhappy.		
Q 2	 (a) Define a compound proposition with an example. (b) Write the negation of the following compound statement: "If the determinant of a system of linear equations is zero then either the 	4	CO2
Q 3	system has no solution or it has an infinite number of solutions". Using Venn diagram, prove that $(B - A) \cup (A \cap B) = B$.	4	CO4
Q 4	Let $U = \{a, b, c, d, e\}, A = \{a, b, d\}$ and $B = \{b, d, e\}$. Find (a) $B - A$ (b) $A - B$ (c) $B' - A'$ (d) $(A \cap B)'$ (e) $(A \cup B)'$.	4	CO3
Q 5	Let $f: R \to R$ and $g: R \to R$ defined by $f(x) = x^2 - 2 x $, and $g(x) = x^2 + 1$. Find (a) $gof(3)$ (b) $fog(-2)$ (c) $gof(-4)$ (d) $(fog)(5)$	4	CO5
	SECTION B (4Qx10M= 40 Marks)		1
Q 6	Let A be a set of non-zero integers and let \approx be the relation on A x A defined by $(a,b) \approx (c,d)$ whenever $ad = bc$. Prove that \approx is an equivalence relation.	10	CO5

Q 7	Let R_5 be the relation on the set Z of integers defined by $x \equiv y \pmod{5}$, which reads " x is congruent to y modulo 5". Find the quotient set Z/R_5 .	10	CO5
Q 8	 (a) Show that contrapositive and conditional propositions are logically equivalent. (b) Prove that (p → q) ∧ (r → q) ≡ (p ∨ r) → q. 	10	CO2
Q 9	Determine the validity of the following argument:		
	$p \wedge q$		
	$p \rightarrow r$		
	$s \rightarrow \sim q$		
	$\sim s \wedge r$		
	OR	10	CO2
	Check the validity of the following argument:		
	If I like mathematics, then I will study.		
	Either I don't study or I pass mathematics.		
	If I don't pass mathematics, then I don't graduate.		
	If I graduate, then I like mathematics.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10A	Verify whether the following compound propositions are tautologies or		
	contradictions or contingency.	10	CO2
	(a) $(p \lor q) \land (\sim p) \land (\sim q)$.	10	002
	(b) $(p \to q) \leftrightarrow (\sim q \to \sim p)$.		
Q 10B	What is principal conjunctive normal form? Using truth tables, find the principal conjunctive normal form of $(p \land q) \lor (\sim q \land r)$.	10	CO2
Q 11A	If $D = \{1,2,3,9\}$, determine the truth value of each of the following		
	statements.		
	i. $(\forall x \in D), x + 4 < 15,$	4.0	
	ii. $(\exists x \in D), x + 4 = 10,$	10	CO2
	iii. $(\forall x \in D), x+4 \le 10,$		
	iv. $(\exists x \in D), x + 4 > 15.$		

	OR		
	Explain quantifier. Give the symbolic form of the following statements: (a) Some men are genius. (b) For every x , there exists a y such that $x^2 + y^2 \ge 100$. (c) Given any positive integer, there is a greater positive integer. (d) Everyone who likes fun will enjoy each of these plays.		
Q 11B	Discuss the five basic connectives with their truth tables. Construct the		
	truth table for the following proposition.		
	$[(p \lor q) \land \sim (\sim p) \land (\sim q \lor \sim r)] \lor (\sim p \land \sim q) \lor (\sim p \land \sim r)$		
	OR	10	CO2
	Using the laws of proposition algebra, check the equivalence of the propositions $p \to (q \lor r)$ and $(p \to q) \lor (p \to r)$.		