Name:

Enrolment No:

UPES End Semester Examination, Dec. 2023

Program: M.Sc. (PG) Course: Reservoir Geomechanics Course Code: PEGS 8021 Nos. of page(s): 03 Instructions: All questions are compulsory **Note: Graph Sheet is required for few Question Semester: III Time: 03 hrs. Max. Marks: 100

SECTION A

S. No.		Marks	CO
Q 1	Enumerate the general steps for analysis of stresses around a wellbore.	4	CO1
Q 2	Describe faulting theory with suitable stress relations and neat sketch.	4	CO1
Q 3	Define the following: (a) Geomechanical Earth Model (GEM) (b) In-Situ Stress (c) 3-D Mohr's Circle (d) Model validation	4	CO1
Q 4	 (a) If the Poisson's ratio is given as 0.3 and the Young's modulus is given to 7 X 10¹⁰. What will be the value for shear modulus? (b) The state of stress at a point under plane stress condition is σx = 40 MPa, σy = 100 MPa and τxy = 40 MPa. Determine the radius of the Mohr's circle representing the given state of stress in MPa 	2+2	CO3
Q 5	Describe the correlation between linear stress and strain components in cartesian and in-situ coordinate system with suitable formulation.	4	CO1
	SECTION B		
Q 6	Compute the (axial) strain expected for a rock subjected to 3,000 psi of (axial) stress under unconfined axial loading for: • A soft mudrock with E = 1 GPa • A soft sandstone with E = 10 GPa • A hard limestone with E = 50 GPa OR Write detailed notes on the following with suitable examples (a) 3-D Geomechanical Earth Model (b) 4-D Geomechanical Earth Model	10	CO3
Q 7	Discuss pore pressure prediction method with associated formulations	10	CO2

Q 8	A rectangular block of material is subjected to a tensile stress of 110 N/mm ² on one plane and a tensile stress of 47 N/mm ² on the plane at right angles to the former. Each of the above stresses is accompanied by a shear stress of 63 N/mm ² and that associated with the former tensile stress tends to rotate the block anticlockwise. Find: (i) The direction and magnitude of each of the principal stress and (ii) Magnitude of the greatest shear stress	10	CO2
Q 9	Describe the conditions for tensile failure during hydraulic fracturing.	10	CO2
	SECTION-C		
Q 10	Given that for a general orthotropic elastic material there are 12 unique coefficients such that: $\begin{bmatrix} D \end{bmatrix} = \begin{bmatrix} \frac{1}{E_{11}} & -\frac{\nu_{12}}{E_{22}} & -\frac{\nu_{13}}{E_{22}} & 0 & 0 & 0 \\ -\frac{\nu_{21}}{E_{22}} & \frac{1}{E_{22}} & -\frac{\nu_{23}}{E_{23}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\mu_{23}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\mu_{31}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\mu_{31}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{\mu_{12}} \end{bmatrix}$ The constitutive equation for this form would then be: $\{\varepsilon\} = [D] \{\sigma\}$ where the stress has the following values $\{\sigma\} = \begin{cases} \sigma_{xx} = 5 \text{ ksi} \\ \sigma_{yy} = 10 \text{ ksi} \\ \sigma_{xz} = 0 \text{ ksi} \\ \sigma_{xz} = 0 \text{ ksi} \\ \sigma_{xy} = 7.5 \text{ ksi} \end{cases}; \{\varepsilon\} = \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{yz} \\ \varepsilon_{zx} \\ \varepsilon_{xy} \end{cases}$ Suppose that the 12 material coefficients have the following values: $E_{11} = 10^6 \text{ psi} \qquad \mu_{23} = 10^4 \text{ psi} \\ E_{22} = 3 \times 10^7 \text{ psi} \qquad \mu_{31} = 2 \times 10^4 \text{ psi} \\ E_{33} = 0.2 \times 10^6 \text{ psi} \qquad \mu_{12} = 3 \times 10^4 \text{ psi} \end{cases}$	20	CO4

$ \begin{aligned} \nu_{12} &= 0.2 \\ \nu_{13} &= 0.25 \end{aligned} $		
$\nu_{13} = 0.25$ $\nu_{21} = 0.33$		
$\nu_{23} = 0.43$		
$\nu_{31} = 0.05$		
$\nu_{32} = 0.06$		
Calculate the infinitesimal strain tensor.		
 (a) Derive the formula using Mohr's Coulomb criteria to determine the following: (i) Relation between compressive and tensile stress (ii) Correlation between major and minor principal stress 		
OR		
The following data is given for a vertical well drilled. $\sigma v = 10 \text{ MPa}$	20	CO3
$\sigma H = \sigma h = 9 MPa$		
P0 = 5 MPa		
$\mu = 0.3$		
Determine the following		
(a) Fracture pressure for non-deviated well (b) Erroture pressure at the deviation $Y = 40^{\circ}$ and $b = 165^{\circ}$		
(b) Fracture pressure at the deviation $\Upsilon = 40^{\circ}$ and $\phi = 165^{\circ}$		