Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Mathematical Physics (Generic)
Program: BSc (Mathematics, Chemistry, Geology)

Course Code: PHYS1031

Semester: I Time: 03 hrs.

Max. Marks: 100

Instructions: All questions are compulsory

SECTION A (5Qx4M=20Marks)

S. No.		Marks	СО
Q 1	Show that the differential equation, $(2xy^3 + xy)dx + \left(3x^2y^2 + \frac{x^2}{2}\right)dy = 0 \text{ is exact}$	4	CO1
Q 2	Evaluate, $\int_0^\infty x^3 e^{-x^2} dx$ using Gamma function	4	CO1
Q 3	Verify that the Hermite polynomial of degree 4 has the form $H_4(x) = 16x^4 - 48x^2 + 12$ [where nth degree Hermite polynomial, $H_n(x) = (-1)^n e^{x^2} \frac{d^n(e^{-x^2})}{dx^n}$]	4	CO2
Q 4	Prove that for Legendre polynomial of degree l , $P_l(-x) = (-1)^l \ P_l(x)$	4	CO2
Q5	Evaluate the complex integral, $\oint \frac{z^2+1}{(z+1)+(z+2)} dz \qquad \text{where,} \ z =\frac{3}{2}$	4	CO3
	SECTION B (4Qx10M= 40 Marks)		
Q6	What is De Moivre's theorem? $ Prove that (cos\theta + isin\theta)^n = cosn\theta + isinn\theta $	10	CO1

Q7	Fourier function is defined as, $f(x) = x^2$, $0 < x < 2\pi$		
	Evaluate, a ₀ and a _n		
	OR	10	CO2
	Fourier function is defined as, $f(x) = \pi$, $0 < x < 2\pi$		
	Evaluate, a_0 and a_n		
Q8	Using beta function, Show that $\int_0^1 \frac{dx}{\sqrt{1-x^4}} = \frac{\sqrt{\pi}}{4} \frac{\left(\frac{1}{4}\right)}{\sqrt{\left(\frac{3}{4}\right)}}$	10	CO3
Q9	Hermite polynomial differential equation for 1D harmonic oscillator is		
	given by ${\rm H_n}''(\xi) - 2{\rm x}{\rm H_n}'(\xi) + (\lambda - 1){\rm H_n}(\xi) = 0$		
	Applying the concept of Hermite polynomial as a solution, deduce the		
	recurrence relation.	10	CO4
	[Consider, $\lambda = \frac{2E}{\hbar\omega}$ and $\lambda - 1 = 2n$, $\xi = \alpha x$,		
	$\alpha = \sqrt{\frac{m\omega}{\hbar}}$. Symbols have their usual meaning]		
	SECTION C (2Qx20M=40 Marks)		
Q10	(a) Find the roots of the complex number,		
	$x^4 + i = 0$	10	CO2
	(b) Use Cauchy's integral formula to show	10	CO2
	$ \oint \frac{e^{zt}}{z^2 + 1} dz = 2\pi i \sin t \qquad \text{where, t} > 0 \text{ and } z = 3 $		
	OR		
	(a) Show that		
	$\frac{(\cos\theta + i\sin\theta)^8}{(\sin\theta + i\cos\theta)^4} = \cos 12\theta + i\sin 12\theta$	10	CO2
	(b) Use Cauchy's integral formula to show		
	$\oint \frac{dz}{z^2 + 1} = 0 \qquad \text{where,} z = 2$	10	CO2
	$\int Z^2 + 1$		

Q11	(a) A voice signal curve is best fitted with ordinary polynomial $8x^3 - 4x^2 + 2x + 2$. Convert it into Hermite polynomial	10	CO3
	(b) Verify the Legendre polynomial recurrence relation,	10	CO3
	$(2l+1)xP_l(x) - lP_{l-1}(x) = (l+1)P_{l+1}(x)$		
	where $g(x,t) = \frac{1}{\sqrt{1 - 2xt + t^2}} = \sum_{l=0}^{\infty} P_l(x) t^l$		