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ABSTRACT 

 

Ceruloplasmin (CP)is a protein that plays a key role in the metabolism of iron in the body by 

oxidation of Fe 2+ to Fe 3+ and in immune regulation in tumor cells by interacting with neutrophil 

derived Myeloperoxidase(MPO) to stop apoptosis. By inhibiting this interaction will allow MPO to 

generate HOCl resulting in caspase mediated tumor cell death. Further the free ceruloplasmin is 

susceptible to proteolysis leading to induction of oxidative stress mediated ferroptotic cell death 

suggesting CP could be a potential cancer therapeutic target.  

In our study we performed in silico analysis of the Oral Squamous Cell Carcinoma data from the 

GDC portal and found CP expression considerably increased in high-grade oral cancer patients. 

Based on our findings from the analysis of protein-protein interactions and co-expression networks, 

it is suggested that targeting the CP-associated redox metabolism axis, iron homeostasis, and 

immunoregulation may hold promise as a potential therapeutic approach. This is supported by the 

identification of molecular hubs that characterize the high-grade OSCC phenotypes in our study. 

We analyzed the differential miRNA expression since the loss and gain of miRNA function promote 

cancer development. We have identified candidate miRNAs as well as their target genes which play 

important role in tumor aggressive behaviors and be further explored in oral cancer therapeutics 

potential gene targets. CP is a target of a downregulated miRNA in stage 4 oral cancers whose 

expression profile and other predicted target gene ontologies show it plays an essential role as an 

oral cancer metastasis promoter. A better understanding of the mechanisms of these miRNA 

regulation may provide useful insights for the development of effective cancer treatments. 

We conducted a screening of various phytochemicals and marine compounds against CP with the 

aim of identifying a highly potent lead compound that could serve as a valuable foundation for the 

development of novel drugs with improved efficacy and reduced toxicity. The ultimate goal is to 

target early-stage oral cancer more effectively. We identified three phytochemicals with good 

docking scores, drug likeness and ADME properties. Out of these three two phytochemicals 

Lycoperoside F and Ardimerin digallate showed good results in MD simulations which could be 

further taken up for invitro and invivo studies. 
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1.1. OVERVIEW 

 

Head and Neck Squamous Cell Carcinoma (HNSCC) accounts for 325,000 deaths annually 

and is the 8th most common cancer worldwide(Gormley et al., 2022) The HNSCC is made up of a 

variety of tumors affecting the upper aero digestive tract. Among the various histological types 

observed, squamous cell carcinoma stands as the most prevalent.  

   

 

Figure 1.Oral squamous cell carcinoma sites in the Head and Neck Cancer. Oral cancer 

can occur in various sites within the mouth, including the lips, tongue, gums, floor of the mouth, 

hard and soft palate, cheeks, and even the tonsils and oropharynx. 

Despite therapeutic advancements against this disease the survival probability of HNSCC 

patients remains considerably low. Surgical intervention, radiation therapy, and systemic treatment 

form indispensable elements in managing locally advanced head and neck malignancies, which 

continue to present significant therapeutic difficulties(Head and Neck Cancer - The Lancet, n.d.). 
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In spite of the fact there may be some overlap in treatment principles, it is important to note that the 

management of head and neck cancers is typically tailored to the specific site and histology of the 

tumor. The neoplasms affecting all oral regions are grouped as Oral cancer(Figure 1) which is the 

most prevalent malignancy known in the head and neck region leading to significant deaths 

worldwide. The prevalence of oral cancer in India is higher and accounts for one-third of the total 

burden of oral cancer globally(B. Gupta et al., 2017). Some of the risk factors associated to oral 

cancer occurrence include smoking, chewing betel leaves, excessive alcohol consumption, 

prolonged unhygienic oral conditions, and sustained viral human papillomavirus infections. Out of 

these tobacco consumption is the prime cause of cancer in developing countries(Borse et al., 2020). 

The diagnosis of oral cancer often occurs in advanced stages due to various factors such as lack of 

awareness among patients, limited availability of sensitive biomarkers, and the aggressive nature of 

the disease thereby, reducing the chances of cure considerably (Veluthattil et al., 2019). Another 

hurdle faced in curing this malignant disease is resistance to chemotherapeutic drugs (Vermorken 

et al., 2008). Timely treatment upon early diagnosis may improve the patient survival by 90%. This 

necessitates the search for specific diagnostic, therapeutic and prognostic biomarkers for oral cancer. 

Personalized treatment decisions are the best way to meet the needs and preferences of each patient. 

Upregulation of CP, a copper-binding protein, has been observed in various types of tumors, 

suggesting its potential involvement in tumor development and progression (Figure 2). The 

increased expression of CP in tumors can have diverse implications for tumor biology. One possible 

consequence of CP up regulation is its association with enhanced oxidative stress management 

within tumor cells. CP scavenges reactive oxygen species (ROS) being an antioxidant protein, and 

mitigates oxidative damage. The upregulation of CP may confer a selective advantage to tumor cells 

by enabling them to cope with increased levels of oxidative stress often encountered in the tumor 

microenvironment. 
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Figure 2 .Gene expression profile of CP across all tumor samples. The Dot plot shows the 

CP gene expression profile across all tumor samples and paired normal tissues where each dot 

represent expression in samples. 

 

Overexpression of CP has been observed to correlate with lymph node metastasis stage and 

histological grade in Clear-cell renal cell carcinoma (ccRCC)(Y. Zhang et al., 2021a). Additionally, 

CP overexpression has been associated with activation of oncogenic pathways and poorer survival 

rates in ccRCC patients. In the context of breast cancer, CP has been found to correlate with immune 

infiltration and serves as a prognostic biomarker (C. F et al., 2021).  Moreover, the expression of 

CP in renal cell carcinoma is associated with higher-grade tumors and reduced survival(Y. Zhang 

et al., 2021a) 
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Figure 3. GTeX data showing TPM of ceruloplasmin in various tissues including normal 

salivary gland. After the liver, the normal salivary gland tissues exhibit an expression level of 39.9 

transcripts per million (TPM) for the CP gene. 

The human protein atlas shows a summary of CP expression and protein levels in the 

different sites within the body. Following the highest expression in liver, normal salivary gland 

tissues show an expression of 39.9 TPM of CP .This observation was made on analysis of the GTex 

dataset as shown in Figure 3. 

 



6  

 

 

Figure 4. (a) TCGA data sets summary of mRNA expression of CP, (b) CP Protein levels 

summary of TCGA dataset samples. Figure 4a shows a comparison of CP expression in head and 

neck cancer vs other cancer types while 4b shows the CP protein levels in all tumor types 

An overview of CP mRNA expression in the TCGA datasets as well as the protein 

expression summary can be seen in Figure 4. Figure 4(b) shows protein levels of CP in head and 



7  

neck cancer patients where most cancer cells showed weak to moderate cytoplasmic positivity for 

CP.  

Anti-CP precursor antibody produced in rabbit, HPA001834 was used to stain the tissues. 

On comparison of head and neck cancer patients with normal samples differential staining is 

observed(Figure 5). 

 

 

Figure 5. Staining in malignant squamous cell carcinoma obtained from head and neck 

cancer (patient id.2358) (a) vs the staining in normal samples(b) derived  skeletal muscle of 

individual with (i.d. 2608) 

 

CP exerts its influence by binding to Myeloperoxidase (MPO) and modulating its activity, 

specifically in the production of Hypochlorous acid (HOCl) by oxidizing chloride and other halide 

ions in the presence of hydrogen peroxide (H2O2). Previous studies have indicated that MPO, 

released from neutrophil granules during inflammation, does not exit into the plasma independently 

but necessitates CP-MPO binding(Rizo-Téllez et al., 2022)(Figure 6). Neutrophils release oxidants 

such as superoxides, H2O2, and HOCl as part of their anti-tumor cytotoxicity mechanisms. 
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Figure 6. CP-MPO complex visualized on PYMOL. Previous studies have reported the 

amino acid residues 699–710 of the extended loop of CP to be involved in interaction with the 1–

27 N-terminal residues of the light chain of MPO. 

 

CP acts as a regulator of MPO activity by binding to it and potentially inhibiting HOCl 

production. This inhibitory effect may be mediated by reducing the availability of copper, a cofactor 

necessary for MPO enzymatic activity. Consequently, this limitation on copper availability may 

curtail the generation of HOCl (Hawkins & Davies, 2021). By impeding HOCl production, CP 

potentially helps to regulate the potentially detrimental effects of excessive oxidative damage and 

safeguards cancer tissues against oxidative stress. However, further research and investigation are 

necessary to elucidate the precise mechanism and significance of the CP-MPO interaction in 

processes including apoptosis and other cellular mechanisms. Based on the high affinity of CP for 

MPO, we hypothesize that CP-MPO binding may play pivotal roles in tumor mechanisms(Figure 

7). 
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Figure 7. An overview of CP-MPO complex inhibition and its role in ferroptotic cell death. 

In late-stage cancer, the interplay between CP, MPO, and NETosis is complex and may be 

influenced by various factors, including the tumor microenvironment, the immune response, and the 

presence of oxidative stress. 
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1.2. GAPS IN THE STUDY 

1. Owing to late diagnosis of oral cancer, it is essential to identify protein biomarkers 

that can aid in diagnosis and targeted treatment of oral cancer patients. 

2. There have been several biomarkers identified for oral cancer through in silico 

analysis. For instance, Matrix metalloproteinase (MMPs), such as MMP-3, MMP-9, and MMP-13, 

have been found to show significant up regulation in oral squamous cell carcinoma (OSCC) 

compared to normal tissue. However, it is important to note that MMPs engage in multiple 

biological processes beyond cancer and their expression changes may not exclusively reflect cancer 

status. Similarly EGFR upregulation in oral cancer is also noted however it is also involved in 

normal cellular processes, and changes in its expression may not solely indicate the presence of 

cancer. Additionally, EGFR-targeted therapies can have adverse effects, necessitating careful 

patient selection for safe and effective use. Furthermore, several microRNAs (miRNAs), including 

miR-21, miR-31, and miR-375, have shown differential expression in OSCC compared to normal 

tissue. However, further research is needed to validate these miRNAs as reliable biomarkers. It is 

crucial to acknowledge that miRNA-based biomarkers may be prone to false positives due to 

variations in sample preparation and analysis methods. 

3. CP has been observed to be up regulated in a number of tumor types however there 

is a lack of detailed mechanistic understanding of how CP influences oral cancer metabolism which 

can be addressed by exploring the molecular pathways and signaling mechanisms through which 

CP affects cancer cell growth, invasion, metastasis, and other key processes. 

4. Investigating potential interactions with key regulators, such as oncogenes, tumor 

suppressors, or other proteins involved in oral cancer progression, could provide a more 

comprehensive understanding of CP's role. 

5. CP’s immune regulatory role and MPO inhibition as well as the impact of restricting 

this CP-MPO interaction on cancer progression has not been previously studied. 
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1.3. SCOPE OF THE STUDY 

In our study we first identified the expression of CP on analysis of the Head and Neck Cancer 

subjects submitted to The Cancer Genome Atlas database and then performed various analysis 

including network analysis and functional enrichments to help elucidate the mechanism of action in 

promoting tumorigenesis. We then determined inhibitors that can be used to target the specific role 

played by CP. We focused on phytochemicals and marine compounds as these bioactive molecules 

are preferential over other drugs as they act differentially specific to cancer cells without altering 

normal cells(Singh et al., 2016). Several phytochemicals have been previously studied to manifest 

anticancer function in vitro as well as in vivo. 

 

1.3.1. Research Objectives 
 

1. Gene expression analysis of ceruloplasmin in Oral cancer patients from TCGA 

database and its correlation with metabolic associated genes 

 

2. Identification of potential inhibitor(s) for ceruloplasmin using in silico virtual 

screening approaches 

 

3. Evaluation of selected inhibitor(s) using Molecular Dynamics Simulation 

 

1.3.2. Research questions/hypotheses: 
 

1. We hypothesized that CP up regulation in head and neck cancer promotes 

tumor progression by acting along the redox axis and immune regulation. 

 

2. We also hypothesize that CP-MPO binding maybe playing more important 

roles in tumor mechanism owing to the high affinity of CP for MPO. 
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1.4. METHODOLOGY 

i) Gene expression analysis of ceruloplasmin in Oral cancer patients from TCGA 

database and its correlation with metabolic associated genes 

1.4.1. TCGA Data Extraction 

We accessed and retrieved HNSC data from The Cancer Genome Atlas (TCGA) for our 

study. 

Data Preprocessing: The collected data underwent preprocessing, which included cleaning, 

alignment, and quality control. 

Data Analysis: Using specialized bioinformatics tools, we performed comprehensive data 

analysis. This step included tasks such as identifying genetic mutations, assessing gene expression, 

and correlating clinical information. 

Statistical Analysis: We conducted statistical analyses to uncover significant patterns, 

associations, or biomarkers within the dataset. 

Data Visualization: The results were visualized using plots, graphs, and other visual 

representations to aid in data interpretation. 

Interpretation: We interpreted the findings in the context of our research objectives and 

formulated insights and conclusions. 

Reporting: The outcomes of our analysis were documented and reported, facilitating 

knowledge sharing and future research. 

The diagram provides an overview of our TCGA data analysis workflow, highlighting the 

key steps and processes involved (Figure 8). 
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Figure 8. Workflow for TCGA data analysis of gene expression. This involves data 

extraction using R followed by analysis to identify differential expression as well as epigenetic 

modifications. 

1.4.1.1. GDC TCGA Database 

The National Cancer Institute’s Genomic Data Commons data portal provides a unified 

repository for cancer knowledge. It contains data from The Cancer Genome Atlas along with access 

to multiple other contributed datasets and enables data sharing across cancer genomic studies. 

(https://portal.gdc.cancer.gov/). It is a collection of 74 projects including 67 tumor sites in about 

86,513 recorded cancer patients. GDC portal provides data for various cancer types and projects so 

we chose the specific head and neck cancer type and the TCGA project we were interested in 

studying. 

From amongst the head and neck cancer data the transcriptomic and clinical data for OSCC 

were downloaded from GDC using GDC client. 405 patients with Oral cancer primary sites were 

selected out of the 531 Head and Neck Cancer Patients (Table1). We used the TCGA Data Portal's 

https://portal.gdc.cancer.gov/
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search interface to define the specific criteria for data retrieval. This included selecting specific 

samples, data formats, molecular profiling platforms, or other relevant parameters. 

Table 1.Characteristics of patients selected from the Head and Neck Cancer Dataset 

Variables N=405 

Primary site(oral cancer) Alveolar ridge - 18 

Base of tongue - 23 

Buccal mucosa - 22 

Floor of mouth - 61 

Hard palate - 7 

Hypopharynx - 2 

Lip - 3 

Oral cavity - 71 

Oral tongue - 124 

Oropharynx - 9 

Tonsil - 39 

Clinical Tumor stage Stage1–21 

Stage 2 –97 

Stage 3-106 

Stage 4-278  

Tumor Grade  Grade 1-54 

Grade 2-224 

Grade 3-96 

Grade 4-7 
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Tumor: metastatic Tumors- 500 

Metastatic- 2 

Vital status Dead - 43 

Alive -53 

 

The transcriptome profiling data for these cases was obtained from the repository to get the 

mRNA expression files. 

1.4.1.2. Calculating the log2 fold change: 

This is a common method used when comparing gene expression or other quantitative 

measurements between tumor and normal patients. The log2 fold change provides a standardized 

and easily interpretable metric for understanding the magnitude of differences in expression levels. 

The following are the advantages of using log2 fold change in such comparisons: 

Scaling and normalization: Gene expression data can have a wide dynamic range, and the 

distribution of expression values may vary between different samples or experimental conditions. 

Taking the log2 transformation helps to compress the data and improve the normality of the 

distribution. It also helps in reducing the impact of extreme values or outliers. 

Interpretability: The log2 scale provides a more intuitive understanding of fold changes 

compared to linear scales. A log2 fold change of 1 means a twofold difference in expression, while 

a log2 fold change of 2 represents a fourfold difference. This logarithmic transformation allows for 

a more straightforward interpretation of the relative changes in expression levels. 

Symmetry: Log2 transformation ensures symmetry around zero. In a log2 fold change 

calculation, an upregulation in expression is represented by a positive value, while a downregulation 

is represented by a negative value. This symmetry simplifies the interpretation and comparison of 

both upregulated and downregulated genes. 

Statistical analysis: Log2 fold changes are often used as input for downstream statistical 

analyses, such as t-tests or linear models. These analyses assume a more normal distribution and 

homogeneity of variance, which are better approximated after log2 transformation. 
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By calculating the log2 fold change using the Firehose Pipeline in R we identified genes that 

show significant differential expression between tumor and normal samples. A significance level of 

P < 0.05 was used to determine statistical significance. The log2 fold change (FC) values obtained 

were subsequently utilized in various other analyses. 

1.4.1.3. The Firehose pipeline  

This pipeline generates preprocessed and harmonized data for various types of genomic data, 

such as gene expression, copy number variation, DNA methylation, and more. Once the processed 

data is available,  we used R to load, analyze, and visualize the data using various packages and 

tools. 

The workflow for utilizing Firehose data in R is as follows: 

• We visited the Broad Institute's Firehose website (https://gdac.broadinstitute.org/) to 

access the processed TCGA data generated by the Firehose pipeline(Deng et al., 2017). 

• We selected the desired data type (illuminahiseq_rnaseq-gene_expression) and 

cancer type (oral cancer) and downloaded the processed data files. The data files were typically 

provided in a standardized format, such as TCGA Level 3 data. TCGA Level 3 data specifically 

refers to the processed data that has undergone normalization, filtering, and quality assessment steps. 

We relied on TCGA Level 3 data because it has undergone preprocessing steps to minimize 

technical variations and ensures data quality. This allows for more reliable comparisons and 

analyses across different tumor types and patient cohorts. 

• We used R packages, such as readr and DESeq2, to load the downloaded data files 

into R. These packages provided functions for reading and handling various data formats, such as 

tab-delimited files. 

• Once the data was loaded into R, various analyses were performed. Differential 

expression analysis packages like DESeq2 or limma were used to identify genes that were 

differentially expressed between tumor and normal samples. We obtained the fold change of the 

various genes across the subjects in comparison to normal. 

• We used ggplot2, heatmaply, or survminer to create visualizations of the analyzed 

Firehose data. These packages offered a wide range of plotting functions for generating customized 

plots, such as heatmaps, survival curves, volcano plots, and more. 
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1.4.2. Online tools used to perform differential and correlation analysis: 

The differentially expressed mRNA data was validated using online tools such as 

LinkedOmics, UALCAN, c-Bioportal and Oncomine. 

 

1.4.2.1. c-Bioportal  

This resource is freely available with a collection of about 20 different cancer studies and 

allows the multidimensional cancer genomics data sets to be explored in an interactive manner. It 

integrates and visualizes multidimensional data, allowing us to explore genetic alterations, gene 

expression patterns, and clinical outcomes across different cancer types. cBioPortal is a valuable 

resource for cancer genomics research and facilitates the identification of biomarkers along with 

potential therapeutic targets. We used c-Bioportal to obtain the correlated expression of genes in our 

dataset filtered on the basis of Spearman’s Rho static test for expression(Cerami et al., 2012). 

 

1.4.2.2.  UALCAN 

UALCAN is web portal for analyzing, and visualizing data from the Cancer Genome Atlas 

(TCGA) project. It enables the determination of gene expression impact on the survival of the 

patients. Using UALCAN we assessed the pathways perturbed in oral cancer as it also contains 

information for the methylation status of genes as well the differential miRNA expression of the 

TCGA datasets along with their genes (Chandrashekar et al., 2022). 

UALCAN primarily utilizes non-parametric statistical tests for data analysis. Specifically, it 

employs the Mann-Whitney U test (also known as the Wilcoxon rank-sum test) to assess differential 

gene expression between two groups. The Mann-Whitney U test is suitable for analyzing non-

normally distributed data or when the assumption of equal variances is violated. For survival 

analysis, it employs the Kaplan-Meier estimator to estimate survival probabilities and applies the 

log-rank test to evaluate the significance of variations in survival outcomes among groups. The 

Kaplan-Meier estimator is a non-parametric method commonly used to analyze time-to-event data, 

such as overall survival or disease-free survival. In addition to these statistical tests, UALCAN also 

provides p-values and q-values (adjusted p-values) to quantify the statistical significance of the 

observed differences. The q-values are calculated using the false discovery rate (FDR) correction 

method to control for multiple testing. 
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1.4.2.3. Oncomine 

This web-based data mining tool enables genome wide expression analysis. It is a collection 

of gene expression from micro array experiments of a variety of cancer subtypes and allows both 

clinical-based as well as pathology- based analysis (Rhodes et al., 2004). Data can be queried for 

gene-drug target pairs that can be very helpful in the discovery of biomarkers as well as therapeutic 

targets.  

Oncomine employs the Student's t-test to assess the statistical significance of differential 

gene expression between two groups, such as cancer samples versus normal samples or different 

clinical subgroups. The t-test is commonly used when comparing means between two groups. 

ANOVA is utilized in Oncomine to analyze gene expression differences among multiple groups or 

conditions. It helps identify genes that exhibit significant variation across different cancer types, 

subtypes, or clinical characteristics. It also applies FDR correction to control for multiple hypothesis 

testing when analyzing gene expression data. FDR adjustment helps minimize the likelihood of false 

positive results due to conducting multiple statistical tests. Furthermore, Oncomine employs 

statistical methods such as the Kaplan-Meier estimator and log-rank test to assess the association 

between gene expression levels and patient survival outcomes. These methods enable the 

investigation of overall survival, disease-specific survival, or progression-free survival based on 

gene expression patterns. The platform employs rigorous statistical methods to ensure robust data 

analysis and reliable results. Hence, we used oncomine to validate our results. 

 

1.4.2.4. Linked Omics 

This is a database presenting multi-omics data of the different cancer type’s clinical data 

available at The Cancer Genome Atlas (TCGA) project. Linked Omics conducts integrative multi-

omics analysis by merging various data types including genomics, transcriptomics, proteomics, 

metabolomics, and epigenomics. This approach enables a comprehensive exploration of biological 

systems and enhances our understanding of complex biological processes. It involves the 

simultaneous analysis of multiple layers of molecular data to reveal complex relationships, 

interactions, and regulatory mechanisms. It allowed us to obtain integrated data of mass 
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spectrometry (MS)-based global proteomics generated from the Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) with the gene expression data from the TCGA samples(Vasaikar et al., 2018). 

 

1.4.2.5. GEPIA 

We used GEPIA to compare the TCGA gene expression results with the GTex Normal data. 

This web-based platform allows users to perform gene expression analysis and explore correlation 

patterns in large-scale cancer datasets. We also explored the tool for correlation analysis of genes 

along with their patient survival analysis(Tang et al., 2017). GEPIA calculates the Pearson 

correlation coefficient to assess the linear correlation between gene expressions of two genes across 

different cancer samples. The Pearson correlation coefficient assesses the strength and direction of 

the linear connection between two variables, offering a range of values from -1 (representing a 

complete negative correlation) to 1 (signifying a complete positive correlation).The p-values 

calculated in GEPIA to determine the statistical significance of the observed correlations indicate 

the likelihood of obtaining a correlation as extreme as the observed one by chance alone. We 

assessed the statistical significance of correlations to determine if they were statistically reliable. 

 

1.4.2.6. Graphpad 

This is a software that provides several statistical analysis and graphing tools: Prism and 

InStat. GraphPad Prism offers an intuitive interface that allows users to import their data and 

perform a wide range of statistical analyses, including t-tests, ANOVA, regression analysis, survival 

analysis, and nonparametric tests. Prism also provides tools for creating publication-quality graphs, 

plotting dose-response curves, performing curve fitting, and generating statistical reports. 

The software utilized for generating a heat map of the differentially expressed genes in Head 

and Neck cancer patients was GraphPad Prism version 8.0.0 for Windows. 

 

1.4.3. Network Analysis 

1.4.3.1. STRING network analysis:  

We used this biological database for generating Protein-Protein Interaction Networks on the 

basis of Functional Enrichment Analysis and co- expression. It represents both known and predicted 
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protein-protein interactions as well as uses functional associations from various sources and physical 

direct interactions previously established (Szklarczyk et al., 2019). 

 

1.4.3.2. Cytoscape 

We integrated our gene expression profiles with the molecular interaction networks 

generated by string and visualized and analyzed the network using the software Cytoscape 3.9.1. 

We used Cytoscape for the functional and topological analysis of the network models and the 

identification of network modules and molecular hubs characterizing Oral cancer phenotypes 

(Shannon et al., 2003).Various cytoscape applications were used for the analysis such as 

CyTargetLinker and bingo. 

 

1.4.3.3. Gene Mania 

GeneMANIA utilizes machine learning algorithms to predict the biological functions of 

genes based on their network connections and shared characteristics with known genes. 

GeneMANIA integrates data from various sources, including publicly available databases and 

experimentally derived datasets, to provide a comprehensive view of gene interactions and 

functions. We analyzed our gene lists using gene mania on the basis of functional classification, 

physical and genetic interaction as well as predicted mechanism. Each selected data set was 

analyzed for its predictive value on the basis of weights(Warde-Farley et al., 2010) 

 

1.4.3.4. Gene Ontology Analysis 

Gene Ontology (GO) analysis is widely used to understand the functional annotation and 

enrichment of genes or gene sets. It classifies genes into defined categories based on their biological 

processes, cellular components, and molecular functions. Gene Ontology analysis involves two 

main steps: 

Gene Set Enrichment Analysis: This step determines whether a given set of genes shows a 

statistically significant enrichment in specific GO terms compared to what would be expected by 

chance. It helps identify the functional categories that are overrepresented within a gene set. 
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Functional Annotation and Visualization: After identifying enriched GO terms, the analysis 

assigns functional annotations to genes based on the enriched categories. This provides insights into 

the cellular components, biological processes, and molecular functions associated with the genes of 

interest. Visualization tools such as bar charts, scatterplots, and network diagrams can be used to 

present the results in a more interpretable manner. 

GO analysis can be performed using bioinformatics tools and software packages that provide 

precompiled GO annotations and statistical algorithms for enrichment analysis. These tools interpret 

large-scale genomic or transcriptomic datasets and gain insights into the functional relevance of 

genes in biological processes and pathways. 

We analyzed the differentially expressed genes for their Gene Ontologies using Panther 

classification systems , DAVID gene functional classification tool(D. W. Huang et al., 2007) as well 

as cytoscape 

 

1.4.3.5. STRING network analysis 

STRING, stands for Search Tool for the Retrieval of Interacting Genes/Proteins, and is a 

widely-used bioinformatics database and web resource. It offers valuable information regarding 

protein-protein interactions, functional associations, and network analysis in a comprehensive 

manner(Szklarczyk et al., 2019). STRING integrates and compiles protein-protein interaction data 

from various sources, including experimental data, co-expression data, and curated databases. It 

provides a comprehensive network of interactions, enabling the exploration of known and predicted 

protein interactions where we can customize the visualization. It also allows to perform functional 

enrichment analysis to identify the enriched Gene Ontology (GO) terms, biological pathways, and 

protein domains associated with a set of proteins. This analysis helps uncover the biological 

processes and functions enriched within a protein network or a specific group of proteins. With the 

help of network analysis metrics string can be used to assess the properties of protein-protein 

interaction networks, such as node degree, clustering coefficient, and network centralities (e.g., 

betweenness centrality, closeness centrality). These metrics help evaluate the importance and 

centrality of individual proteins within the network. By integrating diverse data sources and 

providing a user-friendly interface, STRING facilitates network-based analyses and aids in the 

interpretation of complex molecular relationships. 
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We used this biological database for generating Protein-Protein Interaction Networks on the 

basis of Functional Enrichment Analysis and co- expression. It represents both known and predicted 

protein-protein interactions as well as uses functional associations from various sources and physical 

direct interactions previously established (Szklarczyk et al., 2019). 

 

1.4.4. Gene Methylation Analysis 

We used Survival Meth, MethDB and methSurv database to investigate the result of CP 

DNA methylation on CP expression and prognosis in OSCC patients. These databases focus on 

integrating DNA methylation data from multiple cancer studies and provides tools for survival 

analysis based on methylation profiles. MethSurv can be used to identify potential DNA methylation 

biomarkers associated with survival outcomes. It provides statistical analysis and ranking of DNA 

methylation probes or regions based on their significance and association with patient survival. We 

identified the different methylation sites on the CP gene body. We also analyzed survival of the 

patients in correlation to the differential methylation status of CP. 

 

1.4.5. Immune correlation 

Immune correlation analysis is particularly relevant in the context of cancer biomarkers, as 

the immune system plays an important role in cancer development, progression, and response to 

therapy. By examining the correlation between immune system components and cancer biomarkers, 

we can gain insights into the immunological aspects of cancer biology and potentially identify novel 

immune-related biomarkers. Here's how immune correlation analysis contributes to the study of 

cancer biomarkers.  

1. Immune correlation analysis assesses the relationship between immune cell 

populations and cancer biomarkers. It explores whether specific immune cell types, such as T cells, 

B cells, natural killer cells, or macrophages, correlate with the presence or characteristics of cancer 

biomarkers. This information helps understand the immune contexture of tumors and its impact on 

disease progression. 

2. Correlating immune-related gene expression patterns with cancer biomarkers 

provides insights into the molecular mechanisms underlying immune responses in cancer. It helps 
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identify immune-related genes that are associated with specific biomarker profiles, contributing to 

our understanding of immune evasion, tumor immune escape, and potential therapeutic targets. 

3. Immune correlation analysis identifies immune-related biomarkers that have 

predictive or prognostic value in cancer. By assessing the correlation between immune components 

and clinical outcomes, such as patient survival, treatment response, or disease recurrence, immune-

related biomarkers can be identified that aid in patient stratification, treatment decision-making, and 

prognosis estimation. 

With the help of TIMER database, we estimated CP’s relationship with the immune cell 

infiltration levels (T. Li et al., 2017). Finally, the correlation of CP with the immune checkpoints 

was established using UALCAN. 

 

1.4.6. Survival Analysis 

c-Biopotal, Prognoscan, UALCAN and Kaplan Meier plotter databases were exploited for 

the correlation of CP expression with the survival probability of patients(Modi et al., 2022).  

The main objective of survival analysis is to assess the likelihood of an event taking place 

over a given period and to identify factors that could impact the timing of the event. The Kaplan-

Meier estimator is a statistical technique that is used to estimate the survival function based on 

observed survival times, without making assumptions about the underlying distribution of the data. 

It provides a stepwise estimation of survival probabilities over time and allows for the comparison 

of survival curves between different groups or treatment arms. Survival analysis is valuable for 

understanding the time-to-event outcomes in various research settings. It provides insights into 

prognosis, treatment efficacy, and the impact of risk factors on patient outcomes. By incorporating 

time-dependent information, survival analysis enables researchers and clinicians to make informed 

decisions in clinical practice and improve patient care. 

 

1.4.7. miRNA Analysis 

In our study, we accessed Head and Neck cancer data from the TCGA-HNSC project with 

the accession ID phs000178. The dataset included gene expression and miRNA expression 

quantification data obtained from 524 patients. We downloaded a total of 569 miRNA sequencing 



24  

files, along with 48 normal sample files, from the GDC portal using the GDC client. A workflow of 

miRNA analysis is shown in Figure 9. 

To investigate differential miRNA expression, we employed the DESeq2 Bioconductor 

package in R. This package allowed us to analyze the miRNA counts data and identify differentially 

expressed miRNAs. We generated a volcano plot that revealed 180 upregulated and 114 

downregulated miRNAs. 

To further explore the miRNA expression patterns across different stages of Head and Neck 

cancer, we utilized the clinical data for the case patients. We selected the top 40 upregulated and 

top 40 downregulated miRNAs based on their significant P values (<0.000005) and fold change 

(>2).This analysis enabled us to identify miRNAs that exhibited significant differential expression 

in the different stages of HNC. The selected miRNAs serve as potential candidates for further 

investigation and may contribute to our understanding of the molecular mechanisms underlying oral 

cancer. 

mirBase was used to get information published miRNA sequences and 

annotations(Kozomara et al., 2019). mirTarbase was used to obtain experimentally validated targets 

of miRNA while mirDB was used for target prediction (H. Y. Huang et al., 2022). We employed 

miRWalk to identify targets with their predicted binding sites(Sticht et al., 2018). We filtered the 

targets for the miRNA network from mirDB, mirTarbase and TargetScan. 

MiEAA was used for conversion of miRNA to their miRBase ID as well conversion of 

precursors to their respective miRNA forms. MiEAA was also used for gene enrichment of the 

miRNA targets(Backes et al., 2016). 

Cytoscape was used for network analysis for miRNA targets. MirNet, miRViz were used 

for confirmation of the network visualization. The differentially expressed miRNA used for the 

network were selected on the basis of significance (FC and p value) using ONCO.IO database.   
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Figure 9. A workflow of Head and Neck Cancer Dataset miRNA expression analysis. The 

differentially expressed miRNA can we used to identify the epigenetic control of oncogenes and 

tumor suppressor genes in diseased state. 
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ii) Identification of potential inhibitor(s) for ceruloplasmin using in silico virtual screening 

approaches 

 

1.4.8.  Protein Source: The Protein Data Bank (PDB) 

PDB is a database that provides three-dimensional structural information of biological 

macromolecules, including proteins, nucleic acids, and complex assemblies. It is a valuable resource 

for researchers in structural biology, bioinformatics, and drug discovery. Here are some key features 

of the PDB: 

Structural Data: The PDB contains experimentally determined atomic coordinates and other 

related information for a vast number of bio molecular structures. These structures are determined 

using techniques such as X-ray crystallography, NMR spectroscopy, and cryo-electron microscopy. 

Protein Structures: The PDB offers a comprehensive collection of protein structures, ranging 

from enzymes and receptors to antibodies and protein complexes. Each protein structure is assigned 

a unique PDB ID, which allows for easy identification and retrieval. In addition to proteins, the PDB 

includes structures of DNA, RNA, and their complexes with other molecules. This facilitates the 

study of nucleic acid-protein interactions, transcription, translation, and other essential biological 

processes. 

It also provides information about ligand binding sites within protein structures, allowing 

researchers to explore the interactions between small molecules (ligands) and proteins. This 

information is crucial for understanding drug-target interactions and designing novel therapeutics. 

The PDB integrates structural data with other relevant information, such as functional 

annotations, sequence data, and experimental details. This integration enhances the value of the 

database and supports a more comprehensive analysis of the structures. 

We accessed the PDB through its website (www.rcsb.org) and obtained CP protein structure 

.Out of the 4 available crystal structures of CP we chose 4ENZ as it was with the lowest resolution 

2.6 Å (Figure 10) which is better than the other available structures. Also, in this study we hope to 

target CP interaction with MPO. A previous study by Samygina et al. (2013a) reported on the contact 

residues in the complex formed between MPO and CP. The study compared the structure of free CP 

(PDB ID: 4EZN, resolution of 2.6 Å) with CP bound to MPO (PDB ID: 4EJX, resolution of 4.69 

http://www.rcsb.org/
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Å). The complex structure identified interactions with seven unique ligands attached to CP: 2-

acetamido-2-deoxy-beta-D-glucopyranose (NAG), Glycerol (GOL), Copper(II) ion, Calcium and 

sodium ions, Oxygen molecule, and a number of oxygen atoms(Samygina et al., 2013a). To 

facilitate docking studies, it is crucial to remove the ligands and preprocess the CP structure.  

 

 

Figure 10: Structure acquisition from PDB. There are four distinct crystallographic 

structures of CP stored in the Protein Data Bank (PDB) out of which the one with best resolution is 

chosen for the study. 

 

1.4.9. Receptor preparation 

Receptor preparation is a crucial step in docking studies to ensure the accurate and reliable 

modeling of ligand-receptor interactions. The receptor preparation process involves: 
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1. Structure Retrieval: The receptor structure is obtained from a suitable source, such 

as the Protein Data Bank (PDB) or other experimental or theoretical methods. 

2. Removal of Water Molecules and Heteroatoms: Water molecules, metal ions, co-

factors, and other nonessential entities present in the receptor structure are removed. However, 

essential ions or ligands required for proper receptor function may be retained. 

3. Addition of Missing Atoms and Residues: Missing atoms or residues in the receptor 

structure are added to complete the protein structure. This step can involve homology modeling or 

comparative modeling techniques using known structures as templates. 

4. Removal of Conflicting or Erroneous Structures: Any conflicting or erroneous 

structures, such as alternate conformations, redundant chains, or disordered regions, are resolved or 

removed to simplify the receptor structure. 

5. Protonation and Ionization State Assignment: The protonation and ionization states 

of titratable residues (e.g., histidine) are assigned based on the desired pH conditions. Tools like 

PROPKA or PDB2PQR can assist in predicting these states. 

6. Energy Minimization: The receptor structure is subjected to energy minimization 

using molecular mechanics force fields to optimize its conformation and eliminate steric clashes. 

7. Generation of Grid Box: A grid box is defined around the active site or target region 

where the ligand is expected to bind. The size and dimensions of the grid box depend on the specific 

docking software and the target site of interest. 

8. Selection of Binding Site and Constraints: If the binding site is known or specified, 

the receptor can be prepared to focus on that specific region. Constraints can be applied to maintain 

the conformation of essential residues involved in ligand binding. 

9. Output Format: The prepared receptor structure is typically saved in a suitable file 

format, such as PDB or PDBQT, for compatibility with docking software. 

 

Receptor preparation can be performed using various software tools, such as Schrodinger's 

Protein Preparation Wizard, AutoDockTools, or PyMOL, among others. These tools automate many 

of the steps mentioned above and ensure that the receptor structure is properly prepared and 

optimized for accurate docking simulations. 
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1.4.9.1. Structure Editing: 

The structure available at PDB have to be processed before use for docking. Any missing 

residues need to be added as well as any ligands available on them need to be removed to make all 

the sites available for docking(Figure 11).  

1) We compared all the structures available on PDB and found that the amino acids in all 

structure sequences aligned so the binding site specified for any structure would be valid for the 

other.         

2) We obtained the FASTA sequence of CP and compared it with the sequence of our 

structure to obtain the missing residues using EMBOSS NEEDLE of EMBL-EBI which works on 

pairwise alignment (Hollingsworth & Karplus, 2010). 

 3) After obtaining the missing residues we built them into the 4ENZ structure using Pymol 

Builder. We also removed the 2 NAG (2-acetamido 2deoxy-beta-D-glucopyranose) and GOL 

(glycerol molecules) from the structure.  

 

Figure 11. Steps involved in Protein preparation. This involved identification of missing 

residues using EMBOSS NEEDLE followed by filling the gaps in the amino acid sequence of the 

available structure and building the new ceruloplasmin structure using PYMOL Builder. 
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The edited protein structure was subjected to addition of hydrogen bonds and charges in 

Avogadro. This was followed by energy minimization by running 5000 steps at Steepest Descent 

was done using Autodock Tool 4 (ADT). This was followed by conversion of the protein structure 

to pdbqt(Eberhardt et al., 2021). 

 

1.4.9.2. Structure validation:  

The Ramachandran plot is a widely used tool in structural biology to assess the quality and 

validity of protein structures. It analyzes the distribution of backbone dihedral angles (Phi, ɸ, and 

Psi, Ψ) of amino acid residues in a protein structure. 

The Phi angle refers to the rotation around the Cα-C bond, while the Psi angle represents 

the rotation around the C-Cα bond. These angles determine the conformation of the peptide bond 

and the overall shape of the protein backbone. In a Ramachandran plot, X-axis denotes the Phi angle, 

and the Psi angle is plotted on the Y-axis. Each point on the plot represents an individual residue in 

the protein structure, and the point’s density in different regions of the plot reflects the prevalence 

of certain dihedral angle combinations. 

The plot is divided into regions based on the allowed and disallowed conformations of the 

peptide bond. The most common regions are the "allowed" regions, where the backbone dihedral 

angles are energetically favorable and structurally feasible. These regions correspond to stable 

secondary structures, such as alpha helices and beta sheets. 

We assessed the quality of the protein structure by analyzing the distribution of residues in 

the Ramachandran plot. A high percentage of residues falling within the allowed regions indicates 

a well-folded and reliable structure. On the other hand, residues in disallowed regions suggest 

structural irregularities or inaccuracies such as steric clashes, incorrect backbone geometry, or 

structural errors in the model. . 

Subsequently, we validated the edited 3D structure of CP using PROCHECK and the server 

https://swift.cmbi.umcn.nl/servers/html/ramaplot.html. We validated our structure for the structural 

quality by obtaining the Ramachandran plot which analyzed the structures Phi (ɸ) versus Psi (Ψ) 

angle residue distribution(Hollingsworth & Karplus, 2010). 

 

https://www.researchgate.net/deref/https%3A%2F%2Fswift.cmbi.umcn.nl%2Fservers%2Fhtml%2Framaplot.html
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1.4.9.3. Binding Site Identification: 

The previously conducted X-ray diffraction studies of purified human CP yielded the 

structures 4ENZ and 4EJX. These studies revealed that CP affects the enzymatic activity of 

myeloperoxidase (MPO) through intermolecular contacts between the 5th and 6th domains of CP 

(amino acid residues 885 to 892). Additionally, residues belonging to the domain 4 (amino acid 

residues 511, 542-557) were found to interact with MPO. The amino acid residues 699–710 of the 

extended loop of CP were observed to interact with the 1–27 N-terminal residues of the light chain 

of MPO(Samygina et al., 2013b)(B. P. Mukhopadhyay, 2019). Furthermore, residues M668, W669, 

and H667 near the p-PD site of CP in domain 4 were identified as being involved in the contact. By 

visualizing the CP-MPO complex in PyMOL, we identified the interacting residues at the contact 

site as specified in the mentioned study(Figure 12). 

 

 

Figure 12. Ceruloplasmin involved in contact with myeloperoxidase (Samygina et al., 

2013c) (green: ceruloplasmin, Blue : myeloperoxidase) 
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We visualized the CP-MPO complex on Pymol and identified the interacting residues at the 

contact site according to those specified in the mentioned study. 

 

1.4.9.4. Grid box 

Grid box generation is a crucial step in molecular docking studies as it determines the search 

space within the receptor where the ligand will be docked. The grid box defines the region where 

the docking algorithm explores different orientations and conformations of the ligand to find the 

optimal binding pose. To generate the grid box, the binding pocket of the receptor as identified 

above is used. The dimensions of the grid box are defined to encompass the active site while 

minimizing the search space for computational efficiency. The grid box is centered on key residues 

within the interacting site, and its size is adjusted to include solvent molecules/ions contributing to 

ligand binding. The grid spacing, or resolution, determines the density of grid points within the box. 

The generated grid box coordinates are saved in a suitable format for the docking software being 

used. Proper grid box generation is essential for accurate and reliable docking results, as it influences 

the exploration of ligand binding interactions within the receptor. 

 

1.4.10. Ligand Source: 

In our study we focused on phytochemicals and marine compounds as our choice of ligands 

for molecular docking studies. We obtained these from the following databases. 

 

1.4.10.1. IMPPAT 2.0 

IMPPAT 2.0 is a specific database that focuses on Indian medicinal plants, phytochemistry, 

and therapeutics. It is an upgraded version of the IMPPAT database, providing a more 

comprehensive and updated resource for researchers interested in Indian medicinal plants and their 

applications. IMPPAT 2.0 integrates information on the phytochemical composition of Indian 

medicinal plants, their pharmacological activities, and therapeutic applications. The database 

includes data on the chemical constituents of plants, such as alkaloids, flavonoids, terpenoids, and 

phenolic compounds. It also provides information on the traditional uses of these plants in various 

systems of traditional medicine, such as Ayurveda, Siddha, and Unani(Mohanraj et al., 2018). 
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1.4.10.2. TIPdb 

TIPdb is a database that has been constructed to compile information on phytochemicals 

derived from indigenous plants in Taiwan with potential anticancer, antiplatelet, and 

antituberculosis activities. The database follows a standardized format and includes data extracted 

from published sources. Its purpose is to provide researchers with a consolidated resource of these 

bioactive compounds found in Taiwan's indigenous plant species. TIPdb aims to facilitate the 

exploration and utilization of these phytochemicals for various applications in cancer, platelet-

related disorders, and tuberculosis research(Lin et al., 2013). 

 

1.4.10.3. CMNPD 

CMNPD (Comprehensive Marine Natural Products Database) is a specialized database of 

marine natural products that can be used for drug discovery. It compiles information on the 

biological activities along with the chemical structures, and sources of bioactive compounds derived 

from marine organisms. CMNPD serves as a centralized resource for researchers to explore the 

potential of marine-based drug discovery(Lyu et al., 2021). 

We used phytochemicals as well as marine drugs for docking screening. Phytochemicals 

were downloaded from IMPPAT i.e., Indian Medicinal Plants, Phytochemistry and Therapeutics 

database and TIPdb for anticancer phytochemicals. The ligand preparation product, Ligprep, from 

Schrodinger was utilized to generate high-quality, three-dimensional (3D) structures of the ligands. 

Marine natural products 3D structures were downloaded from CMNPD database.  A signature 

library was prepared with 26717 marine compounds as well as 17000 phytochemicals. 

 

1.4.11.  Preparation of Ligand: 

The preparation of ligands for docking studies involves several steps to ensure their 

suitability and accuracy in the docking process. Ligand preparation can be performed using various 

software tools such as Schrodinger's Ligprep, Open Babel, RDKit, or AutoDockTools. These tools 
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provide automated workflows to handle most of the steps mentioned above, allowing for efficient 

and accurate preparation of ligands for docking studies. 

After obtaining the 3D SDF structures of phytochemicals and marine compounds, the 

structures were first minimized using Avogadro (Hanwell et al., 2012). Subsequently, they were 

converted to pdbqt format, which is suitable for docking studies using Open Babel 

software(O’Boyle et al., 2011). To ensure high-quality, 3D structures of the ligands, the Schrodinger 

ligand preparation product, specifically the Ligprep module of Maestro from the Schrodinger suite 

(LLC, New York, NY, 2020-1), was employed. During this process, the OPLS 2004 force field was 

utilized for optimization and the generation of low-energy isomers of the ligands. Finally, all ligand 

molecules were docked using the same settings with the receptor. 

Schrodinger's Ligprep is a software tool commonly used for the preparation of ligands in the 

context of molecular docking studies. Ligprep is a module within the Schrodinger suite, a 

comprehensive suite of computational chemistry software(I. J. Chen & Foloppe, 2010). Ligprep 

performs a series of operations to generate high-quality, 3D structures of ligands suitable for 

docking simulations. Some key features and functionalities of Ligprep include: 

1. File Format Conversion: Ligprep supports various input file formats, such as SDF, 

MOL, SMILES, and PDB, allowing for flexibility in the choice of ligand representation. 

2. Structure Optimization: Ligprep employs the OPLS 2004 force field to perform 

energy minimization and geometry optimization of the ligand structures. This helps to correct 

structural issues, eliminate clashes, and generate low-energy conformations. 

3. Tautomeric and Stereoisomeric Handling: Ligprep considers different tautomeric 

and stereoisomeric forms of the ligands. It can generate all possible tautomers and stereoisomers or 

focus on specific states based on user-defined preferences. 

4. Ionization and Protonation State Assignment: Ligprep assigns appropriate ionization 

and protonation states to the ligands based on the desired pH conditions. It utilizes pKa prediction 

algorithms to determine the likely protonation states. 

5. 3D Coordinate Generation: Ligprep generates or refines the ligand's 3D coordinates 

by assigning bond angles and lengths, and dihedral angles to ensure a realistic and accurate 

representation. 
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6. Epitope-based Ligand Preparation: Ligprep also offers options for preparing ligands 

that bind to specific protein binding sites or epitopes. It allows the user to specify the binding site 

and adjust the ligand conformation accordingly. 

7. Output Format: Ligprep provides the ligand structures in various output formats, 

including PDBQT, which is widely used in docking software. 

By performing these operations, with the help of Schrodinger's Ligprep the ligands were 

prepared with improved accuracy, reliability, and compatibility for subsequent docking studies. 

 

1.4.12.  Screening of compounds: 

The molecular screening of phytochemicals and marine compounds against CP involved the 

use of Schrodinger Glide's virtual screening workflow (VSW). In this workflow, the protein receptor 

was kept rigid while docking, allowing flexibility for the ligands. To facilitate the docking process, 

we generated a receptor grid at the site of contact between CP and MPO using Glide's Receptor grid 

generating panel(Friesner et al., 2004a). 

After docking, the ligand poses are scored based on their predicted binding affinity and 

interactions with the receptor. The docking results were analyzed, and ligands with a positional root-

mean-square deviation (RMSD) of less than 1.0 Å were selected. These ligands were further filtered 

based on favorable binding interactions. Various scoring functions are available in Glide, such as 

GlideScore and Prime MM-GBSA, to evaluate the ligand-receptor interactions and estimate binding 

energies. The binding energies of the ligands were assessed, and ligands with the most negative 

binding energies were considered to have the highest binding affinity or binding score, indicating a 

strong potential for binding to CP. 

 

1.4.13. Analysis and visualization: 

The docking results are further analyzed to identify ligands with the most favorable binding 

poses and interactions. This analysis d examining hydrogen bonding, hydrophobic interactions, and 

other key factors influencing ligand binding. 
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1.4.13.1. QikProp 

To ensure drug-like properties, the screened compounds were subjected to further filtering 

using QikProp, which generated Lipinski's rule of five parameters. This step helped eliminate 

compounds that violated the rule of five, which defines specific physicochemical properties 

important for drug-likeness. 

QikProp is a software tool developed by Schrödinger that is commonly used to predict 

various drug-like properties of small organic molecules. It employs a range of computational 

algorithms and models to estimate important molecular properties and assess the likelihood of a 

compound having favorable pharmacokinetic and physicochemical characteristics. When using 

QikProp for compound filtering, several key drug-like properties are typically evaluated. These 

properties include: 

Lipophilicity (LogP): QikProp estimates the octanol-water partition coefficient (LogP) of a 

compound, which is an indicator of its hydrophobicity. It provides insight into the compound's 

ability to cross biological membranes and influences factors such as absorption and distribution. 

Solubility: QikProp predicts the aqueous solubility of a compound, which is a crucial 

property for its formulation and bioavailability. Poorly soluble compounds may face challenges in 

achieving adequate drug concentrations in the body. 

Molecular weight: QikProp calculates the molecular weight of a compound. High mol. 

weight can be a concern due to potential difficulties in absorption, distribution, metabolism, and 

excretion (ADME). 

Number of hydrogen bond donors and acceptors: These properties are important for 

assessing a compound's ability to form interactions with target molecules. The hydrogen bond 

donors and acceptors impact the binding affinity and potential for favorable interactions with 

biological targets. 

Topological polar surface area (TPSA): QikProp estimates the TPSA, which provides 

information on the size and polarity of the compound's surface area. TPSA influences factors such 

as membrane permeability and can be used as an indicator of a compound's ability to cross biological 

barriers. 
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By applying QikProp to screened compounds, we assessed the likelihood of the drug-

likeness of the selected ligands based on these properties. Filtering compounds based on favorable 

values of these properties prioritized molecules with higher potential for further development, 

thereby reducing the time and resources spent on compounds with undesirable characteristics. 

QikProp predictions are computational estimates that need further validation through experimental 

studies. 

Pymol and Discovery Studio were employed to visually analyze the docking results by 

identifying the amino acids of the ligand interacting at the site on CP (Yuan et al., 2017). 

 

1.4.13.2. Pymol 

PyMOL is primarily a molecular visualization software that specializes in rendering and 

analyzing three-dimensional structures of biomolecules. It provides a user-friendly interface and a 

wide range of visualization options to represent proteins, nucleic acids, and other macromolecules. 

PyMOL is highly customizable, allowing users to tailor the appearance and style of molecular 

representations to suit their needs. It also offers scripting capabilities, which enables users to 

automate tasks and perform advanced analyses(Yuan et al., 2017). 

 

1.4.13.3. Discovery studio 

Discovery Studio is a comprehensive suite of tools designed for molecular modeling and 

simulation in drug discovery. It offers a broader range of functionalities compared to PyMOL, 

including Molecular Dynamics Simulations, Structure-based and  Ligand-based Drug Design, and 

ADMET Prediction (Absorption, Distribution, Metabolism, Excretion, and Toxicity)(Pawar & 

Rohane, 2021). 

In order to assess how the selected ligands will be processed by a living organism, the top 

10 hits were subjected to ADME analysis using Swiss-ADME. The ADME properties of the selected 

compounds were evaluated according to Lipinski's rule of five, which considers factors such as 

pharmacokinetic properties, drug solubility, and drug likeness(Han et al., 2019).  
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iii) Evaluation of selected inhibitor(s) using Molecular Dynamics Simulation 

 

1.4.14 Molecular Dynamics Simulation:  

The protein CP and its three best ligand complexes wrre subjected to molecular dynamics 

(MD) simulations using the Desmond module within the Schrödinger suite, specifically in the 

Maestro environment(Ivanova et al., 2018). The ligands were chosen based on ADME analysis, XP 

docking, and binding interactions. The ligands, along with the protein, were prepared in the Prime 

module of the Schrödinger suite to rectify any inaccuracies in charge states, bond orders, missing 

hydrogen atoms, and side chains. A restrained energy minimization procedure was performed to 

alleviate strained bonds/angles and steric clashes, allowing the heavy atoms to move by a maximum 

of 0.3 Å (Ivanova et al., 2018). 

To mimic physiological conditions, the protein-ligand complex systems were solvated in a 

solution containing 0.15 M NaCl and modeled using the TIP3P water model. To maintain the 

system's overall neutrality, counter ions (Cl- or Na+) were added to balance the net charge. 

Extensive MD simulations of 200 ns were carried out using the Desmond software to assess the 

stability of the ligand binding within the CP complex. The simulations were conducted at a 

temperature of 300 K, standard pressure (1.01325 bar), within an orthorhombic box of dimensions 

10×10×10 Å³, and using the NPT ensemble.To maintain the desired temperature, the Martyna-

Tobias-Klein dynamic algorithm was employed, while the pressure was controlled by the Nose-

Hoover chain method.  
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CHAPTER 2.1. ORAL CANCER 

 

2.1.1. Anatomy of the Oral cavity  

The circumvallate papillae of the tongue on the inferior side, the vermilion border of the lips, 

and the hard-soft palate junction on the superior side all serve as boundaries for the oral cavity. The 

lip, the floor of the mouth, the buccal mucosa, the lower and upper gingiva or gum, the oral tongue, 

the retromolar trigone, and the hard palate are some of the anatomical subsite divisions of the oral 

cavity(Figure 13). Despite being close by, these sub sites have unique anatomical traits that must be 

considered when designing oncologic therapy. The overall lip cancer prevalence has been reported 

to be 1–2% , accounting for about 23.6–30% of all oral cancers(Alhabbab & Johar, 2022).  

 

 

Figure 13:Anatomy of the oral cavity. The oral cavity includes lip, the floor of the mouth, 

the buccal mucosa, the lower and upper gingiva or gum, the oral tongue, the retromolar trigone, 

and the hard palate. 

Hard palate cancer is a mostly squamous cell carcinoma and is not a very common 

representing approximately 1–3.5% of oral cavity cancers. HNC accounts for about 54,000 cases 

diagnosed each year worldwide (Hammouda et al., 2021). Tongue cancer when identified early, is 

highly curable, but it can be a serious, life-threatening form of oral cancer if not promptly diagnose 

and treated. However, the occurrence of tongue cancer is relatively rare(Tongue Cancer — Cancer 

Stat Facts, n.d.). 28 to 35 percent of all mouth cancers are malignancies of the mouth's floor. Men 

are three to four times as likely as women to get cancer of the mouth's floor. The most important 
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risk factors for floor of mouth malignancies are alcohol and tobacco use. Floor of the mouth cancers 

are also highly curable when diagnosed early(Oral Cancer - India Against Cancer, n.d.). 

 

2.1.2. Oral cancer Epidemiology and Etiology 

According to the Global Cancer Observatory (GLOBOCAN)  the oral cavity and pharynx is 

one of the top most sites with highest cancer burden in both sexes accounting for 1,98,438 cases 

from India(Sathishkumar et al., 2023). In most ethnic groups, oral cancer affects men three times 

more frequently than women, according to studies. The oral cavity and pharynx cancers together 

rank sixth among all cancers worldwide in terms of prevalence(Warnakulasuriya, 2009). According 

to the most recent study from the IARC, there are more than 300.000 diagnosed cases of oral cancer 

worldwide, and there are roughly 145,000 fatalities each year(Rivera, 2015). The South-East Asia 

and Europe regions of the World Health Organization (WHO) have the highest incidence and fatality 

rates for oral cancer, respectively. Furthermore, a relatively high prevalence of oral cancer has also 

been found in India. The crude rate and age-standardized incidence rates (global) are greater in more 

developed regions, but mortality is higher in the less developed regions, showing socioeconomic 

inequality. Age of oral cancer initiation, location of the disease, etiology, and molecular biology 

also vary across the developing and developed worlds.  Poverty, illiteracy, older ages at presentation, 

lack of access to health care, and inadequate treatment infrastructure are significant barriers to 

managing cancer. 90% of oral cancer patients in rural areas belong to lower or lower-middle 

socioeconomic classes, and 3.6% of them live below the poverty line, according to a review of the 

incidences of different cancers conducted by the Indian Council for Medical Research (ICMR) for 

the Cancer Atlas project. 

Tobacco contains many carcinogenic molecules and is one of the top causes of oral cancer. 

The risk of developing squamous cell oral cancer is directly proportional to the  amount of tobacco 

consumption over the years(Spitz et al., 1988). After tobacco cessation, this risk maybe reduced by 

30% in the first 9 years and 50% for those over 9 however it does not fully abate(Macfarlane et al., 

1995)(Samet, 1992). Alcohol is linked to higher oral cancer risks in nonsmokers and has a 

synergistic effect in the oral and oropharyngeal cancer etiology in tobacco users(Brugere et al., 

1986). Other suggested causative variables include poor dental hygiene, exposure to wood dust, 

nutritional inadequacies, eating of red meat, and salted meat consumption(De Stefani et al., 2012). 
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Oral cancer has been associated with herpes simplex virus (HSV), but the virus has not been 

definitively implicated(Larsson et al., 1991). Head and neck cancer occurrence is increased by host 

variables such AIDS patients with HIV infection and transplant patients' weakened immune 

systems. Ataxia telangiectasia, fanconi anemia, and xeroderma pigmentosum are examples of 

genetic disorders that have been reported to be associated with an elevated incidence(Kutler et al., 

2003)(A. T. Shah et al., 2013)(Ficarra & Eversole, 1994). Human papillomavirus (HPV) has 

emerged as a significant factor in the epidemiology of oral cancer. While tobacco and alcohol use 

have traditionally been linked to oral cancer, the prevalence of HPV-associated oral cancers is on 

the rise. HPV, especially high-risk strains like HPV-16, has been identified as the leading cause of 

a subset of oral cancers, particularly in the oropharynx. This shift underscores the changing 

landscape of oral cancer etiology, with HPV playing an increasingly prominent role(Lechner et al., 

2022).  

The incidence of oral cancer is higher among men, and it usually develops after the fifth 

decade. It is important to monitor patients post-therapy and alter their lifestyles in order to prevent 

secondary chronogenic tumors, which develop in 10% to 40% of patients after primary treatment. 

 

2.1.3. Symptoms of Oral Cancer 
 

Mouth cancer may be indicated by various signs and symptoms(Scully & Porter, 

2001)including a sore in the mouth or on the lip that doesn't heal, red or white patch on the inside 

of the mouth, painful or loose teeth, lump or growth inside the mouth, pain in the mouth or ear and 

difficulty or pain while swallowing. Other possible signs and symptoms may include: Thickening 

or lump in the cheek, sore throat or feeling that something is stuck in the throat, difficulty moving 

the jaw or tongue, numbness in the tongue or other areas of the mouth, swelling of the jaw, changes 

in voice, lump in the neck, weight loss and persistent bad breath. 
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2.1.4. Pathophysiology of Oral cancer 

Squamous cell carcinomas, which have a range of histologic grades, are the most common 

types of cancer of the head and neck(Johnson et al., 2020). Well-differentiated malignancies have 

tumor cells that closely resemble healthy squamous epithelium, whereas poorly differentiated 

cancers are more challenging to identify as coming from squamous epithelium(Figure 14)(Jögi et 

al., 2012). A small percentage of head and neck cancers are salivary gland tumors, the majority of 

which are adenocarcinomas. Both squamous and salivary gland carcinomas spread by the lymphatic 

pathway, which drains into the local lymph nodes, and by direct contiguity(Vogel et al., 2010). 

. 

 

Figure 14: Section of a moderately differentiated oral squamous cell carcinoma, stained 

with hematoxylin and eosin for contrast. The stain can be observed to be taken up differently by 

the tumor tissue that has been differentiated. This figure was generated using the Human protein 

atlas. 

                                            

The pathophysiology of oral cancer involves a complex interplay between genetic, 

environmental, and lifestyle factors, leading to normal cells getting transformed into cancer cells. 
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The pathogenesis of oral cancer is thought to start with genetic mutations in the cells of the oral 

cavity, which can be triggered by various factors, such as exposure to tobacco, alcohol, human 

papillomavirus (HPV), and chronic inflammation(X. Jiang et al., 2019). These mutations can affect 

the genes that regulate cell growth, division, and death, leading to uncontrolled cell proliferation 

and the formation of a tumor. 

Oral cancer cells also exhibit altered metabolism compared to normal cells. Even when 

oxygen is present, they preferentially use glycolysis, which is known as the Warburg effect(Liberti 

& Locasale, 2016). This metabolic alteration grants cancer cells a growth edge by promoting the 

production of energy and biosynthetic precursors required for rapid cell proliferation(Liberti & 

Locasale, 2016)(Crabtree, 1929). In addition to these molecular changes, oral cancer is associated 

with various pathophysiological changes in the affected tissues. For example, oral cancer can cause 

local tissue invasion and destruction, leading to pain, difficulty swallowing, and speech impairment. 

It can also metastasize to other body parts, such as the lymph nodes, lungs, and liver, leading to 

systemic symptoms and complications (Rivera & Venegas, 2014). Furthermore, oral cancer can 

disrupt the normal immune response, leading to immune evasion and immune suppression(Horton 

et al., 2019). Cancer cells can evade immune surveillance by down regulating the expression of 

surface antigens and up regulating immune checkpoint molecules, such as PD-L1, which can inhibit 

the functioning of T cells along with rest of the immune cells79. Moreover, cancer cells can induce 

immune suppression by recruiting T regulatory cells and myeloid-derived suppressor cells to the 

tumor microenvironment(Y. Yang et al., 2020). 

In summary, the pathophysiology of oral cancer involves complex molecular, cellular, and 

physiological changes that result in uncontrolled cell proliferation, metabolic reprogramming, tissue 

invasion, metastasis, and immune evasion. Understanding these mechanisms can help Formulate 

novel approaches for the prevention, diagnosis, and oral cancer treatment. 

 

2.1.5. Oral cancer Metabolism 

Oral cancer is characterized by several metabolic alterations that are critical for tumor 

growth and survival. These metabolic alterations can serve as potential biomarkers for oral cancer 

diagnosis as well as prognosis. Below, we discuss the key metabolic alterations that can be used for 

biomarker estimation in oral cancer. 
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2.1.5.1. Increased Glucose Uptake and Altered Glycolysis 

Oral cancer cells exhibit increased glucose uptake and altered glycolysis, which allows them 

to generate energy even in the absence of oxygen. The increased glucose uptake is accompanied by 

upregulation of glucose transporters, such as GLUT1, and altered glycolysis, which results in 

increased lactate production(Zambrano et al., 2019).  In cancer cells, there is a reduction in 

mitochondrial oxidative phosphorylation despite the presence of oxygen, resulting in decreased 

reliance on the TCA (tricarboxylic acid cycle) and ETC (electron transport chain) for ATP 

production(Luo et al., 2020). The PPP, an alternative branch of glucose metabolism, is often 

upregulated in cancer cells(Anastasiou et al., 2011)(Figure 15). It generates nucleotides, NADPH, 

and ribose-5-phosphate for DNA synthesis and antioxidant defense. This metabolic shift called 

Warburg effect is a hallmark of oral cancer cells and provides several advantages to cancer cells, 

including increased ATP production, production of metabolic intermediates for biosynthesis, and 

maintenance of redox balance(Heiden et al., 2009). The altered glucose metabolism in cancer cells 

is driven by various factors, including oncogenic signaling pathways, hypoxia-inducible factors 

(HIFs), and mutations in key metabolic enzymes(Marbaniang & Kma, 2018). The increased glucose 

uptake and altered glycolysis can be measured using metabolic imaging techniques, such as positron 

emission tomography (PET), which can aid in oral cancer diagnosis and staging(Walker-Samuel et 

al., 2013). 

2.1.5.2. Alterations in Lipid Metabolism: 

Oral cancer cells may alter their lipid metabolism, including the uptake, synthesis, and 

breakdown of lipids. These alterations can make a significant contribution to the energy needs of 

cancer cells and also promote tumor growth and survival. Several lipid metabolites, such as 

phospholipids, sphingolipids, and triglycerides, show alterations in oral cancer cells, and their levels 

can serve as potential biomarkers for oral cancer (Fu et al., 2021). Recent research reveals that 

medication resistance and altered lipid metabolism are closely connected in tumors(R. Yang et al., 

2022).Some key mechanisms involved in the alterations of lipid metabolism in cancer cells are as 

follows:  

Increased de novo lipogenesis: Cancer cells often show an upregulation of de novo 

lipogenesis, the process of synthesizing fatty acids from non-lipid precursors such as glucose and 
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amino acids. This is driven by the activation of key enzymes, including ACC (Acetyl-CoA 

carboxylase), FASN (fatty acid synthase), and SREBP (sterol regulatory element-binding protein) 

transcription factors. Enhanced de novo lipogenesis provides cancer cells with a source of fatty acids 

for energy production, membrane synthesis, and signaling molecule production(Koundouros & 

Poulogiannis, 2019). 

 

Figure 15. Alterations in the cancer cells' metabolic processes. This figure shows the 

precise metabolic processes that contribute to redox equilibrium, such as GSH production, fatty 

acid oxidation (FAO), pentose phosphate pathway (PPP), glutaminolysis, and one-carbon 

metabolism. (Abbreviations: α-KG, alpha ketoglutarate; 3PG, 3-phosphoglycetare; R5P, ribulose-

5-phosphate; G6P, glucose-6-phosphate; 3PS, 3-phospho-serine; THF, tetrahydrofolate; MeTHF, 

5,10-methylene-tetrahydrofolate; 6PG, 6-phosphoglucono-1,5-lactone; FA, fatty acid; A-CoA, 

acetyl coenzyme A; CPT1, carnitine palmitoyltransferase-1; (Kou et al., 2020) 

 

Enhanced fatty acid uptake: Cancer cells increase their exogenous fatty acids uptake by 

upregulating fatty acid transporters such as CD36(Drury et al., 2022). This allows cancer cells to 

utilize exogenous fatty acids as a fuel source or for incorporation into cellular membranes. 
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Lipolysis of stored lipids: Some cancer cells can mobilize stored lipids, such as triglycerides, 

from adipose tissue or lipid droplets within the cells(Z. Li et al., 2020). This process involves the 

activation of lipases, including hormone-sensitive lipase (HSL) and adipose triglyceride lipase 

(ATGL), which hydrolyze stored triglycerides into free fatty acids that can be utilized by cancer 

cells(Kory et al., 2016). 

Altered lipid desaturation: Cancer cells often exhibit changes in lipid desaturation, leading 

to increased levels of unsaturated fatty acids(Mukherjee et al., 2017). To do this, enzymes such 

stearoyl-CoA desaturase (SCD), which changes saturated fatty acids into monounsaturated fatty 

acids, are upregulated. Altered lipid desaturation influences membrane fluidity, signaling pathways, 

and resistance to oxidative stress in cancer cells. 

Lipid droplet accumulation: Many cancer cells show an accumulation of lipid droplets, 

which are intracellular lipid storage organelles. Lipid droplets provide a reservoir of lipids that can 

be utilized during periods of increased energy demand or metabolic stress. They also play a role in 

protecting cancer cells from lipotoxicity, and oxidative stress. 

Lipid metabolism-associated signaling pathways: Lipid metabolites and enzymes involved 

in lipid metabolism can activate various signaling pathways that promote cancer cell survival, 

proliferation, and migration. For example, lipid-derived signaling molecules like 

phosphatidylinositol-3,4,5-trisphosphate (PIP3) can activate the PI3K/AKT pathway, a key 

signaling pathway involved in cell growth and survival(P. Liu et al., 2009). 

Understanding the mechanisms underlying alterations in lipid metabolism in cancer cells is 

important for developing therapeutic strategies that target these metabolic vulnerabilities. Targeting 

enzymes involved in de novo lipogenesis, fatty acid uptake, or lipid signaling pathways represents 

potential avenues for cancer therapy. 

 

2.1.5.3. Alterations in Amino Acid Metabolism: 

Oral cancer cells may increase the metabolism of certain amino acids, such as glutamine and 

serine, which are essential for tumor growth and proliferation. The levels of certain amino acids and 

their metabolites have shown alteration in oral cancer cells and can serve as potential biomarkers 

for oral cancer. For instance, GS-MS untargeted metabolomics analysis and UHPLC-MS targeted 
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quantitative analysis have been performed to reveal three amino acids as potential biomarkers of 

OSCC namely glutamate, aspartic acid, and proline(X. H. Yang et al., 2020). 

2.1.5.4. Altered Redox Homeostasis: 

Oral cancer cells exhibit altered redox homeostasis, which contributes to their survival and 

growth. The levels of oxidative stress markers, such as reactive oxygen species (ROS) and 

antioxidants, are altered in oral cancer cells. The alterations in redox homeostasis can be measured 

using various assays, such as glutathione assay and ROS detection assay, and can serve as potential 

biomarkers for oral cancer(Marrocco et al., 2017). 

Altered redox homeostasis in cancer cells arises from various mechanisms that disrupt the 

balance between reactive oxygen species (ROS) generation and the cellular antioxidant defense 

systems. Cancer cells often experience increased production of ROS due to heightened metabolic 

activity, malfunctioning mitochondria, activation of oncogenes, or exposure to external factors like 

radiation or chemicals(Hayes et al., 2020). Dysregulation of the antioxidant systems further 

exacerbates the imbalance, with reduced expression or activity of key antioxidant enzymes such as 

superoxide dismutase (SOD), catalase, and glutathione peroxidase(Reczek et al., 2017). 

Dysfunctional mitochondria, characterized by mutations in mitochondrial DNA, impaired electron 

transport chain activity, and elevated reactive nitrogen species production, also contribute to the 

altered redox state(Raldine Gentric et al., n.d.). Moreover, the metabolic reprogramming observed 

in cancer cells, such as heightened aerobic glycolysis and dysregulated nutrient utilization, can lead 

to the accumulation of glycolytic intermediates and increased production of reducing equivalents, 

thereby promoting ROS generation(Gwangwa et al., n.d.). Dysfunctional redox signaling pathways 

and aberrant intracellular calcium signaling further contribute to the disruption of redox homeostasis 

in cancer cells(Delierneux et al., 2020). The resultant oxidative stress induces DNA damage, 

including strand breaks, base modifications, and adduct formation, which can further burden the 

cellular redox defense systems and promote genetic instability(Peluso et al., 2020). Collectively, 

these mechanisms contribute to the altered redox homeostasis observed in cancer cells, impacting 

various cellular processes, signaling pathways, and ultimately influencing cancer cell survival, 

proliferation, metastasis, and response to therapy. 
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The relationship between redox homeostasis and the major hallmarks of cancer demonstrates 

the impact of altered oxidative balance on cancer development and progression. Here's how redox 

is related to each hallmark (Figure 16): 

1. Sustained proliferative signaling: Redox signaling critically regulates cell 

proliferation. Altered redox homeostasis can activate signaling pathways, such as those involving 

growth factors and oncogenes, leading to sustained proliferative signaling(Foyer & Noctor, 2005). 

The Reactive oxygen species (ROS) produced by oxidative metabolism can act as secondary 

messengers, modulating cell cycle progression, DNA synthesis, and cell division(Checa & Aran, 

2020). 

2. Evading growth suppressors: Normal cells have robust mechanisms to sense and 

respond to growth-inhibitory signals. Altered redox balance can disrupt these mechanisms, allowing 

cancer cells to evade growth suppressors(Purohit et al., 2019). Dysregulated redox signaling can 

impair tumor suppressor genes function, such as p53, which regulates cell cycle arrest and apoptosis 

as a reaction to DNA damage and oxidative stress(Budanov, 2014). 

3. Resisting cell death: Cancer cells often acquire the ability to resist cell death, 

enabling their survival and uncontrolled growth. Redox signaling is intricately involved in apoptotic 

regulation (programmed cell death)(Elmore, 2007). Altered redox homeostasis can activate survival 

pathways and inhibit apoptotic signaling, thereby conferring resistance to cell death(Xing et al., 

2022a). For example, elevated antioxidant capacity and dysregulation of redox-sensitive proteins 

can interfere with apoptotic signaling pathways. 

4. Enabling replicative immortality: Normal cells have a finite replicative capacity due 

to the shortening of telomeres with each cell division. However, cancer cells can bypass this 

limitation through various mechanisms, including altered redox regulation. Elevated ROS levels can 

activate telomerase, an enzyme that maintains telomere length, allowing cancer cells to achieve 

replicative immortality(Robinson & Schiemann, 2022). 

5. Inducing angiogenesis: Redox signaling influences the process of angiogenesis, 

which involves new blood vessel formation to support tumor growth and metastasis(Ushio-Fukai & 

Nakamura, 2008). ROS can act as signaling molecules that promote angiogenesis by activating 

pathways such as TNF-α/NFκ-B/Snail pathway and the hypoxia-inducible factor 1 (HIFα-1) (Ziello 
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et al., 2007). Altered redox homeostasis can contribute to an angiogenic switch, facilitating the 

development of a tumor blood supply(Y. Wu & Zhou, 2010)(Aguilar-Cazares et al., 2019). 

6. Activating invasion and metastasis: Redox signaling can modulate cellular processes 

involved in metastasis and tumor invasion. ROS has the potential to induce epithelial-mesenchymal 

transition (EMT), a process that enhances cancer cell migration and invasion(Pani et al., 2010). 

Altered redox balance can activate EMT-inducing transcription factors, remodeling the extracellular 

matrix, and promoting cancer cell motility and invasiveness(Park et al., 2020). 

Additionally, redox homeostasis is intertwined with other hallmarks of cancer, including 

genomic instability and immune evasion(Kotsafti et al., 2020). Increased ROS levels can induce 

DNA damage and genomic instability, contributing to genetic alterations and tumor 

heterogeneity(Sallmyr et al., 2008). Altered redox balance can also affect immune responses by 

modulating immune cell functions and suppressing anti-tumor immune responses(Gostner et al., 

2013).Understanding the intricate relationship between redox homeostasis and the hallmarks of 

cancer provides insights into the underlying molecular mechanisms driving cancer development and 

progression. Targeting redox-dependent pathways and restoring redox balance represent potential 

strategies for cancer prevention and treatment. 
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Figure 16. Relationship between redox and the main characteristics of cancer. Redox 

regulation influences the progression of cancer and is linked to the characteristics of cancer(Xing 

et al., 2022b) 

 

2.1.5.5. Alterations in Nucleotide Metabolism: 

Oral cancer cells may alter their nucleotide metabolism, including the synthesis and 

breakdown of nucleotides. These alterations can play a role in contributing to the energy needs of 

cancer cells and also facilitate tumor growth and survival. The levels of certain nucleotides and their 

metabolites, such as uridine and inosine, show alterations in oral cancer cells and can serve as 

potential biomarkers for oral cancer(Paz et al., 2007). These alterations can be measured using 

various assays and imaging techniques and can aid in the identification of new biomarkers and 

development of therapeutic strategies for oral cancer. 

 

2.1.5.6. Iron metabolism 

Iron is a vital element necessary for fundamental metabolic processes and cell division, 

making it indispensable for the functioning of all cells, including malignant cells. From a canonical 

perspective, cancer cells often exhibit accelerated proliferation rates and increased metabolic 

turnover, leading to a heightened demand for iron compared to non-malignant cells. Iron metabolism 

plays a crucial role in the development and progression of oral cancer(Guo et al., 2021). Iron is an 

essential nutrient required for cellular growth, proliferation, and survival(L. Zhou et al., 2018). 

However, Reactive oxygen species (ROS), which can result in DNA damage and mutations, are 

produced when there is an excessive amount of iron accumulated, ultimately leading to cancer(Ying 

et al., 2021). 

Several studies have reported altered iron metabolism in oral cancer tissues compared to 

normal tissues (Brown et al., 2020). The expression of iron transport proteins, such as transferrin 

and transferrin receptor, is also up regulated in oral cancer cells(Torti & Torti, 2020). Furthermore, 

iron uptake pathways, such as divalent metal transporter 1 (DMT1) and transferrin receptor-

mediated endocytosis, are up regulated in oral cancer cells. Further studies have shown that 

integration of Cell Cycle and JAK-STAT3 Signaling via DMT1-Mediated Iron Uptake Promotes 

Colorectal Tumorigenesis(Xue et al., 2016).The up regulation of iron uptake pathways in oral cancer 
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cells can contribute to iron accumulation and ROS generation which leads to DNA damage, 

mutations ultimately promoting cancer. Therefore, iron chelation therapy, which involves the 

removal of excess iron from the body, has emerged as a potential therapeutic strategy for oral 

cancer(J. C. Lee et al., 2016). Several iron chelators, such as deferoxamine, deferasirox, and 

deferiprone, have been tested for their anti-cancer effects in oral cancer(Bedford et al., 2013). These 

iron chelators have been shown to inhibit oral cancer cell growth, induce apoptosis, and decrease 

ROS levels (Ohyashiki et al., 2009). Furthermore, iron chelation therapy has been shown to sensitize 

oral cancer cells to chemotherapy and radiotherapy, potentially improving the efficacy of these 

treatments(Abdelaal & Veuger, 2021). However, conflicting reports challenge this viewpoint and 

suggest that increasing cellular and systemic iron stores may paradoxically inhibit tumor 

progression(Jian et al., 2013) .Therefore, it is likely that maintaining an equilibrium of iron levels, 

fulfilling metabolic requirements without causing cellular damage, impairing oncogenic signaling, 

or triggering ferroptosis, is crucial for sustaining cancer progression. 

Multiple mechanisms have been identified through which iron can exert both positive as 

well as negative effects on tumor cell growth. Firstly, iron acts as a catalyst in non-enzymatic 

reactions, leading to the generation of ROS. Secondly, iron serves as a cofactor for enzymes 

involved in cell division, such as ribonucleotide-diphosphate reductase. Thirdly, iron regulates cell 

cycle control proteins, impacting cell cycle progression. Fourthly, iron participates in both pro- and 

anti-oncogenic signaling pathways. Lastly, iron plays a crucial role in the hypoxic response and 

contributes to metabolic and epigenetic reprogramming mediated by 2-oxoglutarate dioxygenases 

(Cabantchik et al., 2002). 

A recurrent finding in numerous cancer cell types is the cell cycle arrest and activation of 

apoptosis in iron-depleted cancer cells(Dongiovanni et al., n.d.)(Kulp et al., n.d.). However, iron 

overload in cancer cells can indeed lead to tumor cell death. This occurs through various 

mechanisms, including the generation of reactive oxygen species (ROS) and the induction of 

oxidative stress. Excessive iron levels can promote the production of ROS, which can cause damage 

to cellular components such as DNA, proteins, and lipids. The accumulation of ROS beyond a 

certain threshold can trigger apoptotic pathways, leading to tumor cell death(Nogueira & Hay, 

2013). Furthermore, iron overload can disrupt cellular homeostasis and interfere with essential 

cellular processes, including cell cycle progression and DNA repair mechanisms. These disruptions 

can further contribute to cell death in cancer cells. 
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In some cases, the combination of iron chelators, which help to reduce iron levels, and pro-

apoptotic signaling can enhance the effectiveness of inducing tumor cell death(Rainey et al., 2019). 

The targeted reduction of iron levels in cancer cells can sensitize them to apoptotic signals, leading 

to increased cell death. While iron overload can have detrimental effects on cancer cells, it is 

important to carefully balance iron levels to avoid potential damage to healthy cells and tissues. 

Ferroportin is a transmembrane protein involved in the export of iron from cells. It is 

primarily responsible for releasing iron into the bloodstream from cells that store or absorb iron, 

such as macrophages and enterocytes in the intestine(Ward & Kaplan, 2012). Hepcidin, a hormone 

that binds to ferroportin and causes its internalization and destruction, controls ferroportin, thus 

reducing iron export(Nemeth & Ganz, 2009). FPN and CP  are indeed connected in terms of iron 

metabolism(Musci, 2014). FPN1, which mediates the outflow of ferrous iron, works with any one 

of the three multi-copper oxidases—hephaestin, CP, and zyklopen—that can change ferrous iron 

into its ferric form(Vashchenko & MacGillivray, 2013). 

 

2.1.5.7. Avoid tumor cell death 

Oral cancer cells have developed several mechanisms to avoid tumor cell death. These 

mechanisms help cancer cells to survive and proliferate, making them resistant to various anti-

cancer treatments.  

One of the mechanisms that oral cancer cells use to avoid tumor cell death is the activation 

of anti-apoptotic pathways. Apoptosis, or programmed cell death, is a natural process that eliminates 

damaged or abnormal cells. However, cancer cells can evade apoptosis by activating anti-apoptotic 

pathways, such as the PI3K/AKT pathway, the NF-κB pathway, and the MAPK pathway (Fulda & 

Debatin, 2006). These pathways can inhibit apoptosis and promote cancer cell survival. 

Another mechanism that oral cancer cells use to avoid tumor cell death is the activation of 

DNA repair pathways. Chemotherapy and radiation therapy induce DNA damage in cancer cells, 

which can lead to cell death. However, cancer cells can repair DNA damage by activating DNA 

repair pathways, such as the homologous recombination and non-homologous end joining 

pathways(Helleday, 2010). These pathways can repair DNA damage and promote cancer cell 

survival. 



54  

Moreover, oral cancer cells can evade tumor cell death by activating autophagy, a process 

that recycles damaged or unnecessary cellular components. Autophagy can promote cancer cell 

survival by providing energy and nutrients to cancer cells under stress conditions, such as 

chemotherapy and radiation therapy(Yun & Lee, 2018). 

Additionally, cancer cells can evade tumor cell death by activating pro-survival signaling 

pathways, such as the Wnt/β-catenin pathway and the Notch pathway(Katoh, 2011). These pathways 

can promote cancer cell proliferation and survival by regulating cell cycle progression and 

apoptosis. 

Furthermore, Cancer Cells Evade Death via Redox Regulation. One of the key strategies 

employed by cancer cells is the upregulation of antioxidant defense systems. This includes an 

increase in the production of antioxidant enzymes that scavenge and neutralize ROS, such as 

superoxide dismutase (SOD), catalase, and glutathione peroxidase. By enhancing their antioxidant 

capacity, cancer cells can effectively mitigate the harmful effects of ROS and prevent apoptosis. 

The ability of cancer cells to evade death via redox regulation poses a significant challenge in cancer 

treatment. Therapeutic strategies that target redox imbalance and disrupt the adaptive mechanisms 

of cancer cells are being explored to overcome this evasion. By understanding the intricate interplay 

between redox regulation and cell survival in cancer, researchers aim to develop novel approaches 

to selectively induce apoptosis in cancer cells only. 

 

2.1.5.8. Iron metabolism, Redox regulation and Ferroptosis in Tumors: 

Ferroptosis is a form of controlled cell death characterized by an iron-dependent buildup of 

lipid peroxides and oxidative damage(Pu et al., 2022) It represents a unique intersection between 

redox regulation and cell death pathways. Unlike apoptosis or necrosis, ferroptosis specifically 

involves the dysregulation of cellular iron and lipid metabolism, leading to ROS accumulation and 

lipid peroxidation(X. Chen et al., 2020a). 

Ferroptosis is tightly linked to redox signaling and cellular antioxidant defenses. One of the 

key players in ferroptosis is the glutathione peroxidase 4 (GPX4) enzyme, which utilizes glutathione 

(GSH) to detoxify lipid peroxides and maintain redox balance within cells. Inhibition or depletion 

of GPX4 leads to the accumulation of lipid peroxides and triggers ferroptosis(J. Li et al., 2020). The 

redox status of cells also influences their susceptibility to ferroptosis. Cells with lower levels of 
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intracellular antioxidants or reduced capacity to regenerate GSH are more susceptible to ferroptosis. 

On the other hand, activation of the Nrf2 pathway, which regulates the expression of antioxidant 

genes, can confer protection against ferroptosis by enhancing cellular antioxidant defenses. 

Furthermore, iron metabolism plays a critical role in ferroptosis(X. Chen et al., 2020b). Iron 

is required for the generation of lipid peroxides through Fenton chemistry, where it catalyzes the 

production of highly reactive hydroxyl radicals. The accumulated ROS can initiate lipid 

peroxidation and cause oxidative damage to cellular components, ultimately triggering ferroptotic 

cell death. 

The connection between redox regulation and ferroptosis is of great interest in cancer 

research and therapeutics. Interestingly, exploiting iron accumulation as a therapeutic strategy has 

been investigated in certain types of cancer(Morales & Xue, 2021). For instance, targeting iron 

metabolism through iron chelators or inhibitors of iron uptake or storage proteins can effectively 

induce ferroptosis in cancer cells with iron overload. This approach uses the vulnerability of cancer 

cells to iron-induced oxidative stress and offers a potential therapeutic avenue. 

2.1.6. Treatment and Diagnosis 

Microscopic inspection can be used to diagnose the majority of head and neck malignancies. 

Immunohistochemistry is useful in identifying poorly differentiated tumors and those with unusual 

morphological features(Pai & Westra, 2009). Antibodies like cytokeratin (CK), p63, and S-100 are 

frequently employed in diagnosing squamous cell carcinoma or salivary gland carcinomas(H. Li et 

al., 2020). In oropharyngeal cancers, p16 expression is routinely evaluated to assess HPV presence, 

providing valuable prognostic information(Golusiński et al., 2017). Molecular studies are used to 

evaluate (Epstein-Barr virus) EBV presence in undifferentiated tumors or to confirm the subtypes 

of salivary gland tumors and assess genetic alterations(Young & Dawson, 2014).         

The prognosis for head and neck cancer patients varies with the histological type and 

location of the tumor(Pai & Westra, 2009). The 5-year survival rate is about 60% for salivary 

gland cancer, mouth tumors, cancers of oropharynx, and larynx, while hypopharyngeal cancer has 

a lower rate of around 30%. Treatment choices are contingent upon factors such as the location of 

the tumors, histological type, and cancer stage(Kase et al., 2021). Surgery, radiotherapy, and 

chemotherapy are the main treatment options for advanced cases(Figure 17). Patients with 
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squamous cell carcinoma may also consider immunotherapy with checkpoint inhibitors(Zolkind & 

Uppaluri, 2017).       

 

 

Figure 17. An eight step oral cavity inspection is part of a quick oral cancer screening. 

Based on work of Lindsey McCall, 2019 

 

Several factors need to be considered when choosing a treatment for a patient. The patient's 

physiological age, comorbid conditions (such as heart problems), lifestyle choices (such as smoking 

or excessive alcohol consumption), and surgical resectability are all evaluated to determine the 

potential risks of complications associated with the treatment (J. P. Shah & Gil, 2009) The preferred 

course of treatment for OC is surgical resection, which enables precise pathologic staging and 

provides details regarding tumor dissemination, margin status, and histopathologic characteristics 

that can be utilized to guide further management based on an evaluation of risk against benefit 

(Moratin et al., 2021). In regionally advanced tumors adjuvant radiotherapy along with 

chemotherapy is used for specific indications (Warnakulasuriya, 2009). Despite advancements in 

the field the proportion of patients presenting with advanced disease had not changed owing to delay 
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in diagnosis(Varela-Centelles, 2022). This delay has been reported by several studies to be on the 

patient’s part in seeking professional advice after the presentation of oral cancer symptoms. Further, 

since most oral cancers present at a late stage of the disease it is essential to identify molecular 

diagnostic and therapeutic markers.  

 

Hence the following are the several reasons why identifying molecular diagnostic and 

therapeutic markers of oral cancer is important: 

1. Early detection: Molecular indicators can aid in the early oral tumors detection, when 

it is most amenable to treatment. As a result, there may be a greater likelihood for successful therapy 

and better patient outcomes. 

2. Precision medicine: Molecular markers can help tailor treatment to an individual 

patient's cancer, based on the specific genetic mutations or alterations present. This can lead to more 

effective and targeted treatments, with fewer side effects. 

3. Prognosis: Certain molecular markers can predict the cancer progression or 

recurrence likelihood, as well as the overall prognosis for the patient. This can help guide treatment 

decisions and monitoring strategies. 

4. Drug development: Identifying molecular markers of oral cancer can aid in new 

drugs and therapy development, specifically targeting the molecular pathways involved in the 

cancer. This can lead to more effective treatments and improved outcomes for patients. 

Overall, identifying molecular diagnostic and therapeutic markers of oral cancer can help 

improve patient outcomes, guide treatment decisions, and improve our understanding of the disease. 
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CHAPTER 2.2. INSILICO BIOMARKER ESTIMATION 

 

Various in silico methods have been used for identifying potential cancer biomarkers and 

can help guide the development of new diagnostic and therapeutic strategies. In silico methods refer 

to computational approaches that use algorithms, software, and databases to analyze large amounts 

of biological data. Figure 18 shows several in silico methods have been used to identify cancer 

biomarkers, including: 

Genomic analysis: This involves the analysis of DNA and RNA sequencing data to identify 

genetic mutations, alterations, and expression patterns that are characteristic of cancer. 

Bioinformatics tools can be used to analyze the data and identify potential biomarkers. 

Proteomic analysis: This involves the analysis of proteins in biological samples, such as 

blood or tissue, to identify proteins that are overexpressed or under expressed in cancer. Mass 

spectrometry and other proteomic techniques can be used to identify potential biomarkers. 

Machine learning: This involves the use of algorithms and statistical models to analyze 

large datasets and identify patterns that are indicative of cancer. Machine learning can be used to 

identify potential biomarkers based on gene expression, protein expression, or other molecular 

characteristics. 

Network analysis: This involves the analysis of molecular interactions and pathways to 

identify key players and potential biomarkers in cancer development and progression. Network 

analysis can be used to identify potential biomarkers based on their interactions with other molecules 

in the cell. 
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Figure 18. Workflow of biomarker estimation. The gene expression data helps us perform 

a number of analysis including gene interaction network analysis and correlated expression 

analysis to identify the pathways altered during cancer progression as well as identify the best 

targets in cancer therapy. 

2.2.1. Differential gene expression analysis 

Differential gene expression analysis is a powerful approach used to identify potential cancer 

biomarkers by comparing gene expression levels between cancerous and non-cancerous tissues or 

between different cancer subtypes. Here are key points regarding the use of differential gene 

expression analysis for cancer biomarker identification: 

Data Generation: Gene expression data is generated using high-throughput technologies 

such as microarrays or RNA sequencing (RNA-seq) from cancer and normal tissue samples. These 

technologies provide comprehensive information on the expression levels of thousands of genes 

simultaneously. 

Differential Expression Analysis: Statistical methods, such as t-tests, ANOVA, or advanced 

algorithms like DESeq2 or edgeR, are employed to identify genes that show significant differences 
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in expression between cancer and normal samples. The analysis helps identify genes that are 

upregulated or downregulated in cancer. 

Fold Change and p-value: The fold change, which measures how much gene expression has 

changed, and the p-value, which denotes the statistical significance of the differential expression, 

are commonly reported by differential expression analysis. Genes with high fold change and low p-

values are considered as potential biomarkers.  

Calculating the log2 fold change is a common method for comparing gene expression 

between tumor and normal patients. It provides a standardized and easily interpretable measure of 

the magnitude of expression differences. By using log2 fold change, researchers can identify genes 

with significant differential expression, aiding in the understanding of molecular changes associated 

with the disease and the identification of potential biomarkers or therapeutic targets. 

Biological Relevance: Identified differentially expressed genes are further analyzed for their 

biological functions and pathways using enrichment analysis tools such as Gene Ontology (GO) 

analysis or pathway analysis. This helps understand the functional implications of the identified 

genes and their involvement in cancer-related processes. 

Validation: Differential gene expression findings need to be validated in independent sample 

sets or through alternative techniques like qRT-PCR or immunohistochemistry. Validation ensures 

the reliability and reproducibility of the identified biomarkers. 

Biomarker Selection: From the list of differentially expressed genes, potential biomarkers 

are selected based on their biological relevance, specificity to cancer, association with clinical 

outcomes (e.g., survival, response to therapy), and feasibility of detection in clinical settings. 

Clinical Translation: Validated biomarkers can be further developed into diagnostic, 

prognostic, or predictive tools for cancer. They may undergo clinical trials to assess their 

effectiveness and utility in patient management. 

 

2.2.2. Differential gene methylation 

Differential gene methylation status has been widely investigated as a potential biomarker 

for cancer. The identification of specific genes that exhibit differential methylation patterns between 

cancerous and normal tissues holds promise for diagnostic, prognostic, and therapeutic purposes. 
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Here are some key points regarding the use of differential gene methylation status as a cancer 

biomarker: 

Cancer-Specific Methylation: Certain genes may show tumor-specific methylation patterns, 

with hypermethylation or hypomethylation occurring predominantly in cancer cells compared to 

normal cells. These differentially methylated genes can serve as potential biomarkers for cancer 

detection and classification. 

Diagnostic Biomarkers: Differential methylation of specific genes can be utilized as 

biomarkers for cancer diagnosis. Methylation-specific PCR (MSP), bisulfite sequencing, or other 

methylation detection methods can be employed to assess the methylation status of selected gene 

regions and distinguish between cancerous and non-cancerous tissues or body fluids. 

Prognostic Biomarkers: Gene methylation status can also provide valuable prognostic 

information. Methylation alterations in certain genes have been associated with cancer progression, 

metastasis, and patient survival. By analyzing the methylation status of specific genes, clinicians 

can gain insights into the potential aggressiveness of the cancer and guide treatment decisions.  

Predictive Biomarkers: In addition to diagnosis and prognosis, differential gene methylation 

can serve as a predictive biomarker for response to specific treatments. Certain gene methylation 

profiles may indicate sensitivity or resistance to particular therapies, allowing for personalized 

treatment strategies. 

Panels of Biomarkers: Rather than relying on single gene methylation analysis, panels of 

differentially methylated genes are often utilized to enhance the sensitivity and specificity of cancer 

detection and classification. Methylation profiling of multiple genes in a panel can provide a more 

comprehensive picture of the disease status. 

 

2.2.3. Differential miRNA expression 

Differential miRNA expression analysis is a valuable approach for identifying cancer 

biomarkers. By comparing the expression levels of microRNAs (miRNAs) between cancerous and 

normal tissues, this analysis reveals changes that are associated with tumor development, 

progression, and treatment response. Differential expression analysis identifies specific miRNAs 

that are significantly upregulated or downregulated in cancer. These differentially expressed 



62  

miRNAs can serve as potential biomarkers, distinguishing between cancerous and non-cancerous 

conditions. 

Differentially expressed miRNAs can be used for cancer diagnosis while certain 

differentially expressed miRNAs correlate with clinical outcomes in cancer patients. Combining 

multiple miRNAs into signature panels improves the accuracy of cancer detection, enabling early 

intervention and better patient outcomes. They serve as prognostic indicators, providing information 

on disease progression, metastasis, and patient survival. Moreover, differentially expressed 

miRNAs often regulate key cancer-related genes and pathways, making them potential therapeutic 

targets. Modulating their expression or activity could restore normal cellular functions and hinder 

cancer progression. Specific miRNAs may be associated with drug sensitivity or resistance, 

allowing for personalized treatment strategies. Hence, differential miRNA expression patterns can 

predict treatment response.  

Hence differential miRNA expression analysis, combined with functional and clinical 

validation, has the potential to revolutionize cancer diagnosis, prognosis, treatment selection, and 

therapeutic development.  

 

2.2.4. Network analysis 

Network analysis is a powerful approach used to study the relationships and interactions 

between entities, such as genes, proteins, or individuals, represented as nodes, and their connections, 

represented as edges. It provides a comprehensive view of complex systems and allows for the 

exploration of various biological, social, or technological phenomena.  

1. Networks consist of nodes (also called vertices) and edges (also called links). Nodes 

can represent individual entities, such as genes or proteins in a biological network or individuals in 

a social network. Edges represent the connections or interactions between nodes, which can be 

physical, functional, or informational relationships. 

2. Various approaches, such as correlation analysis, co-expression analysis, or protein-

protein interaction data, can be used to establish connections between nodes. 

3. Network topology refers to the structural characteristics and patterns within a 

network. It includes measures such as node degree (number of connections), centrality (importance 

of nodes), clustering coefficient (degree of connectivity within a neighborhood), and modules or 
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communities (groups of densely connected nodes).Graph theory provides various metrics and 

measures to quantify and characterize network properties.  

4. Graph theory offers a wide range of algorithms for network analysis. These 

algorithms enable researchers to perform tasks such as identifying important nodes (e.g., centrality 

analysis), detecting network motifs or patterns, finding shortest paths, measuring network resilience, 

and predicting missing or future connections. 

5. It helps uncover underlying patterns, identify key nodes or influencers, assess 

network robustness, analyze diffusion processes, and understand the overall structure and dynamics 

of networks. 

6. Network analysis techniques, such as graph theory and pathway analysis, can be used 

to identify hub genes, bottleneck genes, and estimate shortest paths in biological networks. 

Hub Genes: 

Hub genes are nodes in a biological network that exhibit high connectivity, meaning they 

are connected to a numerous other genes or proteins within the network. Hub genes play an 

important role in maintaining network integrity and communication, as they act as central points for 

information flow. They are often involved in critical biological processes, such as signaling 

pathways, regulatory networks, or key functional modules. Identifying hub genes can provide 

insights into key players or regulators within a biological system and their potential roles in disease 

or normal physiological processes. 

Bottleneck Genes: 

Bottleneck genes, also known as bottleneck proteins, are nodes in a network that act as 

critical points of control or regulation. They are characterized by their essential role in maintaining 

the flow of information or resources within the network. Bottleneck genes often have high 

betweenness centrality, meaning they lie on many of the shortest paths connecting different parts of 

the network. Disruption or alteration of bottleneck genes can have a significant impact on the overall 

network structure and functionality. Identifying bottleneck genes helps uncover key regulatory 

points and potential targets for therapeutic intervention or biomarker discovery. 

Shortest Paths Estimation: 

Shortest path estimation is a computational technique used to calculate the shortest route or 

distance between two nodes in a network. In the context of biological networks, such as gene 
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regulatory networks or protein-protein interaction networks, estimating shortest paths can provide 

insights into functional relationships, information flow, or communication patterns between 

different genes or proteins. Shortest path estimation algorithms, such as Dijkstra's algorithm or 

Floyd-Warshall algorithm, can be applied to determine the most efficient paths between nodes based 

on the network topology and edge weights. The shortest path analysis helps uncover key 

relationships, functional associations, or potential signaling cascades within the network, aiding in 

understanding biological processes and identifying important nodes or pathways related to disease 

or normal physiology. 

 

2.2.5. Survival analysis  

A statistical technique called survival analysis is frequently employed in the context of 

medical research to assess time-to-event data. It is widely applied in various fields, including cancer 

research, epidemiology, and clinical trials. Assessment of the likelihood of an event happening over 

time and the identification of variables that can affect the time until the event are the two main 

objectives of survival analysis. 

There have been several biomarkers identified for oral cancer through in silico analysis. For 

instance, Matrix metalloproteinase (MMPs) have been identified as potential biomarkers for oral 

cancer on analysis of the gene expression data from patients with oral squamous cell carcinoma 

(OSCC). The study found that MMP-3, MMP-9, and MMP-13 were significantly upregulated in 

OSCC compared to normal tissue(Shin et al., 2021). While MMPs have been identified as potential 

biomarkers for oral cancer, they are involved in a wide range of biological processes, including 

tissue remodeling and angiogenesis. As such, changes in their expression may not specifically 

reflect changes in cancer status. Similarly another study reported EGFR to be significantly 

upregulated in oral cancer tissue(Kalinowski et al., 2012). While EGFR has been shown to be 

upregulated in oral cancer, it is also involved in normal cellular processes, and changes in its 

expression may not specifically indicate cancer. In addition, EGFR-targeted therapies have been 

associated with a range of adverse effects, and careful patient selection is needed to ensure that these 

therapies are used safely and effectively. Several miRNAs have been identified to be differentially 

expressed in OSCC compared to normal tissue, including miR-21, miR-31, and miR-375(Rajan et 

al., 2021). However more research needs to be carried out to validate these targets. Furthermore 
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miRNA-based biomarkers may be subject to false positives due to variations in sample preparation 

and analysis. 

Using these in silico analysis procedures other biomarkers may be identified in future studies 

as our understanding of oral cancer biology continues to evolve. 

 

2.2.5. TCGA data analysis 

The National Human Genome Research Institute (NHGRI) and the National Cancer Institute 

(NCI) jointly established the Cancer Genome Atlas (TCGA), a sizable research initiative, in 

2006(Tomczak et al., 2015). This project catalogs the genetic and epigenetic changes that occur in 

various cancer types, with the aim of enhancing our understanding of cancer biology and ultimately 

leading to improved diagnostic and therapeutic approaches. TCGA involved the analysis of 

thousands of tumor samples across more than 30 different cancer types, using a wide range of 

genomic and molecular profiling techniques, including DNA sequencing, RNA sequencing, 

methylation profiling, and proteomic analysis. The resulting data sets, which included both raw 

sequencing data and processed results, are now available to researchers around the world through a 

public data portal. The TCGA project has led to numerous discoveries in the field of cancer biology 

and has helped to spur the development of new technologies and analytical tools for genomic and 

molecular analysis. 

Analyzing TCGA data involves several steps, including data retrieval, processing, analysis, 

and interpretation. Here is an overview of each step: 

Data retrieval: TCGA data is publicly available and can be accessed through the Genomic 

Data Commons (GDC) data portal. Data sets for various types of cancer can be downloaded which 

may include raw sequencing data, processed genomic data, clinical data, and other metadata. 

Data processing: TCGA data sets can be quite large and complex, and may require pre-

processing before analysis. This can include steps such as filtering out low-quality data, normalizing 

data across samples, and correcting for batch effects. 

Data analysis: Once the data has been pre-processed, a variety of analytical methods can be 

applied to identify patterns as well as relationships in the data. This may involve techniques such as 

differential expression analysis, pathway analysis, network analysis, and machine learning. 
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Interpretation: The results of the analysis can then be interpreted to gain insights into 

cancer biology as well as to develop new diagnostic and therapeutic approaches. This may involve 

validating findings through additional experiments or clinical trials. 

TCGA data analysis can be challenging due to the large volume and complexity of the data, 

as well as the need for specialized computational and statistical expertise. However, the availability 

of TCGA data has enabled researchers around the world to collaborate and share insights, leading 

to numerous important discoveries in the field of cancer biology. 

Working with TCGA data requires an understanding of bioinformatics and data analysis 

techniques. There are several bioinformatics pipelines and packages available in the R programming 

language that can be beneficial for analyzing and utilizing TCGA data. Some commonly used 

pipelines and packages: 

TCGAbiolinks: TCGAbiolinks is an R package specifically designed for retrieving and 

analyzing TCGA data. It provides functions for data download, data preprocessing, differential 

expression analysis, survival analysis, and data visualization. It offers a comprehensive set of tools 

for TCGA data analysis. 

DESeq2: A popular R program for analyzing differential expression in RNA-seq data is 

DESeq2. It allows the identification of differentially expressed between different groups, such as 

tumor and normal samples from TCGA. DESeq2 provides statistical methods and normalization 

techniques to account for sample variability and perform robust differential expression analysis. 

limma: limma is another widely used R package for analyzing microarray and RNA-seq 

data. It includes functions for differential expression analysis, data normalization, and batch effect 

correction. limma is often applied to TCGA data for identifying differentially expressed genes and 

exploring molecular changes between tumor and normal samples. 

Survival: The survival package in R provides functions for survival analysis, including 

Kaplan-Meier estimation, Cox regression, and log-rank tests. This package is useful for analyzing 

TCGA clinical data, such as patient survival information, and investigating the relationship between 

gene expression and patient outcomes. 

ggplot2: ggplot2 is a powerful R package for data visualization. It offers a flexible and 

intuitive grammar of graphics for creating high-quality plots and visualizations. ggplot2 can be used 
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to generate publication-ready plots to visualize TCGA data, such as expression patterns, differential 

expression results, and survival curves. 
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CHAPTER 2.3. CERULOPLASMIN 

 

Tumor cells synthesize markers in large quantities releasing them into the circulation during 

the process. Abnormal levels of these biomarkers in the patient’s serum or saliva of an individual 

can serve as indicators of potential malignant transformations in the future. Greater than normal 

serum CP levels have been noticed in a number of cancers(Patil et al., 2021). CP has been explored 

as a potential cancer biomarker due to its involvement in various biological processes and its altered 

expression in cancer. Furthermore, CP's ability to regulate iron metabolism and oxidative stress 

makes it relevant to cancer biology. Dysregulation of iron metabolism and increased oxidative stress 

are common features of cancer cells. CP's role in iron oxidation and transport suggests its potential 

involvement in cancer-related iron dysregulation and ROS generation. As an acute-phase reactant, 

CP levels can increase in response to inflammation, which is often associated with cancer 

development and progression (Ceruloplasmin and Acute Phase Protein Levels Are Associated with 

Cardiovascular Disease in Chronic Dialysis Patients - PubMed, n.d.).Studies have indicated that 

CP levels may be elevated in certain types of cancer, including liver, breast, and colorectal cancer. 

Increased CP levels have been associated with tumor growth, metastasis, and poorer prognosis in 

some cases(Y. Zhang et al., 2021c). CP is typically used in combination with other cancer 

biomarkers or clinical assessments to improve diagnostic accuracy and prognostic value. Further 

research has to be done to fully elucidate the utility of CP as a cancer biomarker, including the 

identification of specific cancer types or stages where its measurement may be most informative. 

 

CP, is a copper-containing protein involved in iron transport and metabolism. It plays a role 

in incorporating iron into transferrin, a major iron transport protein in the blood. CP also possesses 

ferroxidase activity, facilitating the oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+), through 

the transfer of four electrons to oxygen, which is necessary for its binding to transferrin(Roeser et 

al., 1970). CP maintains iron homeostasis by transferring ferric irons to transferrin for transport 

outside the cell and also prevents the occurrence of the deleterious Fenton reaction (B. Jiang et al., 

2016). This enzyme has also been reported to oxidize various biogenic amines such as 

norepinephrine, serotonin and synthetic amines like phenylenediamine and dianisidine(Vashchenko 

et al., 2011) has been previously described to have interactions with number of proteins such as 
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ferroportin, transferrin, and myeloperoxidase. Since copper plays an important role in hypoxia and 

CP plays a major role in copper transport, CP is a hypoxia related protein. CP expression maybe 

high in tumors to account for the increased iron during the rapid cancer cell proliferation. Recent 

research shows iron homeostasis related genes can be potential therapeutic targets. The expression 

of CP has been previously reported to be high in a number of tumors such as melanomas and renal 

cancers. However, the expression of CP in head and neck cancer hasn’t been explored before. 

Ceruloplasmin (4ENZ) is a multi-domain glycoprotein found in the blood that plays a crucial 

role in copper transport and oxidation. Its structure, as determined by X-ray crystallography, reveals 

several distinct domains that are responsible for its various functions. Here's an overview of the 

domains found in ceruloplasmin: 

N-Terminal Domain: This domain is responsible for copper binding and contains six copper-

binding sites. Ceruloplasmin can carry up to six copper ions simultaneously, making it an essential 

copper transporter in the bloodstream. 

Ferritin-like Domain: This domain is involved in iron binding and regulation. Ceruloplasmin 

also has ferroxidase activity, which helps convert toxic ferrous iron (Fe2+) into ferric iron (Fe3+), 

facilitating iron transport and storage. 

Glycosylation Sites: Ceruloplasmin is a glycoprotein, meaning it has carbohydrate (sugar) 

chains attached to certain amino acids. These glycosylation sites are crucial for its stability and 

function. 

Signal Peptide: This is a short sequence at the N-terminus that guides the newly synthesized 

ceruloplasmin to the endoplasmic reticulum, where it undergoes further processing and 

glycosylation. 

The combination of these domains allows ceruloplasmin to fulfill its roles in copper 

transport, copper oxidation, and iron regulation within the body. Its multi-domain structure is 

essential for its biological functions(Figure 19). 
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Figure 19. Protein ceruloplasmin structure from PDB (4ENZ) showing different domains 

(blue: domain 1, green: domain 4, sea green: domain 6, red: domain 2, orange: domain 3, purple: 

domain 5)  

 

2.3.1. Ceruloplasmin in iron homeostasis 

CP has been previously reported to exist in an interplay with FPN in maintaining iron 

homeostasis. Hepcidin, a hormone that binds to ferroportin and causes its internalization and 

degradation, inhibits iron export by causing ferroportin to be internalized and degraded. Ferroportin 

is a transmembrane protein involved in the export of iron from cells. CP has been shown to stabilize 

ferroportin on the cell surface, thereby enhancing iron export(Musci, 2014). Additionally, CP-

derived copper is required for proper ferroportin function(Jończy et al., 2021). Furthermore, 

hepcidin, the hormone that regulates ferroportin, is influenced by CP(Kono et al., 2010). CP is 

involved in the oxidation of ferrous iron, which leads to increased levels of ferric iron. High levels 

of ferric iron can stimulate hepcidin production, resulting in the degradation of ferroportin and 

decreased iron export (Figure 20).  
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Figure 20. Schematic representation of cellular iron homeostasis. The transporters are 

used to import iron. The cytoplasmic labile iron pool (LIP) is made up of intracellular iron and can 

be either supplied to various cell compartments or stored in ferritin for later use. Hephaestin, 

ceruloplasmin, and ferroportin work together to facilitate the excess iron's export, and hepcidin 

inhibits it(Jung et al., 2019) 

 

CP by converting Fe2+ to Fe3+ and promoting iron binding to transferrin, thereby limiting 

the labile iron pool within cells. This limitation reduces the availability of free iron for catalyzing 

the Fenton reaction and subsequent ROS production, thereby suppressing ferroptotic cell death. 

Ferroportin exports Fe2+ from the cytoplasm into the extracellular space, while transferrin receptor 

internalizes Fe3+ via transferrin-bound complexes into the cell where Fe3+ is reduced to Fe2+ by 

the action of STEAP3, allowing it to enter the labile iron pool present in the cytoplasm. Additionally, 

Fe2+ released into the extracellular space can be oxidized to Fe3+ by CP, enabling its uptake by 

transferrin for transport. 

In the context of ferroptosis, Fe2+ plays a critical role by participating in key reactions that 

contribute to the development of this form of regulated cell death. In the Fenton reaction, Fe2+ 

interacts with hydrogen peroxide to produce hydroxyl radicals (•OH), which are extremely reactive. 

These hydroxyl radicals can oxidize lipids in the cell membrane, initiating a chain reaction of lipid 
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peroxidation, which is a hallmark event in ferroptosis(Figure 21). Moreover, Fe2+ can also catalyze 

lipid peroxidation through the activity of lipoxygenases (LOXs), further contributing to the 

propagation of lipid peroxidation in ferroptosis. Understanding these processes provides insights 

into the mechanisms underlying ferroptosis and potential targets for therapeutic interventions in 

diseases associated with dysregulated iron metabolism(Mao et al., 2020). 

According to a study done on HCC cells, CP depletion makes it more likely that cells would 

undergo the ferroptotic cell death that is brought on by erastin and RSL3. This results in an 

accumulation of intracellular ferrous iron (Fe2+) and lipid ROS. On the other hand, CP 

overexpression successfully blocks erastin- and RSL3-induced ferroptosis in HCC cells. CP 

therefore inhibits ferroptosis in hepatocellular carcinoma cells via controlling iron 

homeostasis(Shang et al., 2020a)(Figure 22). 

 

 

Figure 21. Iron metabolism in ferroptosis. Ferroportin and transferrin receptor (TFR) 

maintain iron balance. TFR transports Fe3+ into cells, reduced to Fe2+ by STEAP3 in endosomes, 

then released into a labile iron pool. Fe2+ can oxidize to Fe3+ by ceruloplasmin, taken up by 

transferrin. Fe2+ triggers ferroptosis by lipid oxidation via Fenton reaction and lipoxygenases. 

LPCAT3 and ACSL4 also impact ferroptosis by regulating polyunsaturated fatty acids(Mao et al., 

2020). 
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Figure 22. Ferroptosis suppression by Ceruloplasmin by regulation of iron homeostasis 

in hepatocellular carcinoma cells. Ceruloplasmin (CP) controls ferroptosis triggered by erastin 

and RSL3 through iron export. CP collaborates with ferroportin (FPN) to facilitate the release of 

Fe2+ from cells, thereby playing a crucial role in regulating ferroptosis induced by erastin and 

RSL3. In the absence of CP, intracellular Fe2+ accumulates, promoting ferroptosis. (Shang et al., 

2020a). 

 

2.3.2. Ceruloplasmin and copper 

There is proof that CP connects copper and iron metabolism directly at the molecular level. 

Copper deficiency results in low plasma CP and iron levels as 6 atoms of copper form an integral 

part of CP protein structure(O’Brien & Bruce, 2010). The oxidase activity of CP is also copper-

dependent. Cancer cells due to increased proliferation have an increased demand for iron. The labile 

iron pool within the cancer cell result in increased ROS. Tumor cells counter the oxidative stress 

due to the ROS built-up within the cell by transporting out excess Fe2+ ions out of the cell (De 

Domenico et al., 2007). A set of enzymes that change Fe2+ to Fe3+ are required for iron to be 

properly loaded onto transferrin (Tf), as this protein can only bind the oxidized form of the metal. 

Iron is extruded by Fpn as Fe2+. These enzymes, which also include CP and hephaestin, a 
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membrane-bound paralog of CP, are multicopper oxidases with ferroxidase activity(Bonaccorsi di 

Patti et al., 2018). The majority of CP processes, such as the amine oxidase activity that regulates 

the amount of biogenic amines in intestinal fluids and plasma, the elimination of free radicals from 

plasma, and the export of iron and copper to extra hepatic tissues, are dependent on the presence of 

the Cu centers centers(BIOLOGICAL INORGANIC CHEMISTRY : Structure and Reactivity., 2018). 

CP is reported to regulate and VEGF24 and HIF1A. A study on colon cancer reported 

proteasomal degradation of CP could result in angiogenesis inhibition by regulating HIF-1α 

expression and VEGFA(Y. Zhang et al., 2021a).CP is responsible for carrying iron outside a cell by 

ferrous ion conversion and helps reduce the built up of free radicals within the cell. Hence we 

suggest that CP upregulation may be tumor cells mechanism of countering the buildup of oxidative 

stress within the cell and avoid cell death. 

 

2.3.3. Ceruloplasmin and MPO 

It has been discovered that CP inhibits the production of myeloperoxidase (MPO), holds a 

pivotal role as a vital component within the innate immune system produced by neutrophils.  

Myeloperoxidase (MPO) is an enzyme found in certain immune cells, particularly neutrophils, 

which play a role in the body's defense against pathogens. It generates reactive oxygen species 

(ROS) as part of the immune response. The activation of caspases, a family of protease enzymes, is 

a crucial step in the process of apoptotic cell death. The involvement of MPO-mediated caspase 

activity in apoptotic cell death can be explained as follows: 

1. Reactive Oxygen Species (ROS) generation: MPO produces ROS, including 

hydrogen peroxide (H2O2) and hypochlorous acid (HOCl), as byproducts of its activity(Mütze et al., 

2003). These ROS can induce oxidative stress and damage cellular components. 

2. Activation of Caspases: The increased levels of ROS generated by MPO can trigger 

various signaling pathways, leading to the activation of caspases(Parrish et al., 2013). Caspases are 

initially present as inactive procaspase forms. However, under conditions of oxidative stress, 

specific caspases, such as caspase-9 and caspase-3, can undergo activation through proteolytic 

cleavage. 

3. Mitochondrial Dysfunction: ROS generated by MPO can cause mitochondrial 

dysfunction. This can lead to the release of cytochrome c, a protein normally located in the 
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mitochondria, into the cytosol. Cytochrome c forms an apoptosome complex by binding to the 

apoptotic protease activating factor 1 (Apaf-1) and ATP (Garrido et al., 2006). 

4. Formation of Apoptosome Complex: The apoptosome complex, consisting of 

cytochrome c, Apaf-1, and ATP, promotes the activation of caspase-9. The execution phase of 

apoptosis begins when activated caspase-9 cleaves and activates downstream caspases, such as 

caspase-3(Brentnall et al., 2013). 

5. Execution of Apoptosis: Upon activation caspase-3 cleaves various cellular 

substrates, including structural proteins, enzymes, and DNA repair proteins(McIlwain et al., 2013). 

This results in the characteristic morphological and biochemical changes associated with apoptosis, 

such as cell shrinkage, chromatin condensation, DNA fragmentation, and membrane blebbing. 

 

CP binding to MPO in the presence of hydrogen peroxide, prevents the oxidation of 

chloride and other halide ions to produce hypochlorous acid. Previous Studies have shown that MPO 

released from the neutrophil granules at an inflamed site do not exit to the plasma on their own and 

require CP-MPO binding. Neutrophils release neutrophil-derived oxidants such as super-oxides, 

hydrogen peroxide (H2O2) and hypochlorous acid (HOCl) as a mechanism of anti-tumor cytotoxicity 

(Singel & Segal, 2016). CP binds to MPO and regulate its activity modulating the production of 

HOCl by MPO. CP may act as an inhibitor by reducing the availability of copper, a cofactor required 

for MPO enzymatic activity, thus limiting the generation of HOCl(Chapman et al., 2013). By 

inhibiting HOCl production, CP may help regulate the potentially harmful effects of excessive 

oxidative damage and protect the cancer tissues from oxidative stress. However, the exact 

mechanism and significance of CP-MPO interaction in the context of apoptosis or other cellular 

processes require further research and investigation. 

A number of crystallographic studies have been carried out to elucidate CP structure owing 

to the nature of function of the protein. CP is a 1065 amino acids protein with 6 domains and a multi 

copper active site. The copper at the tri nuclear center plays an important role in the oxidoreductase 

activity of CP. According to studies, MPO binds to two main 21 amino acid sequences, and the 

application of the Anti-P18 antibody prevents the CP-MPO association while preserving the 

enzyme's activity. P18 and P76, two significant binding sites, were reported (Bakhautdin et al., 

2014)(Figure 23). 
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Figure 23. Interacting amino acids in ceruloplasmin-myeloperoxidase complex 

(Samygina et al.) (A) Interaction zone between the N-terminal of the MPO light chain and the loop 

spanning residues 699 to 720 of Cp.(B) Interaction of the loop comprising residues 699 to 720 of 

Cp with a symmetric monomer of MPO. The symmetrical Cp molecule is omitted for clarity.(C) 

Contact region involving loops spanning residues 542 to 557 and 618 to 624 of Cp.(D) Proximity 

to the phosphorylated-PD (p-PD) site of Cp within domain 4. Residues M668, W669, and H667 are 

depicted in stick representation. 

 

2.3.4. Ceruloplasmin in tumors 

Clear-cell renal cell carcinoma (ccRCC) histological grade and lymph node metastatic stage 

were found to be related to CP overexpression(Y. Zhang et al., 2021b). It was noted to be associated 

with poorer survival rates along and was observed to play a role in oncogenic pathways in clear-cell 

renal cell carcinoma (Y. Zhang et al., 2021c). Patients diagnosed with nasopharyngeal carcinoma 

exhibit elevated levels of CP expression in both their serum and tumor tissues compared to healthy 

individuals(Doustjalali et al., 2006). In a study, it was discovered that CP acts as a novel adipokine 

that shows increased expression in adipose tissue of obese individuals and in cancer cells associated 
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with obesity(Arner et al., 2014). One study indicated that the activity of the CP promoter is markedly 

increased in ovarian cancer, suggesting its potential as a promising cancer-specific promoter for the 

development of new gene therapy approaches targeting ovarian cancer. Through deletion studies, it 

was determined that an activator protein-1 (AP-1) site within the CP promoter plays a crucial role 

in regulating its activity. Activation of the CP promoter was observed upon treatment with 1-O-

tetradecanoyl phorbol-13-acetate, an activator of c-Jun, while inhibition of c-jun by SP600125 

resulted in suppression of the CP promoter. Additionally, the AP-1 site in the CP promoter was 

found to specifically interact with c-Jun both in laboratory experiments and in vivo. 

Immunohistochemical analysis of human ovarian cancer samples revealed a significant correlation 

(r = 0.7, P = 0.007) between the expression levels of c-Jun and CP. In a xenograft mouse model 

carrying SKOV3.ip1 tumors, the CP promoter demonstrated notably higher activity in the tumors 

compared to normal organs(C. M. Lee et al., 2004). These findings highlight the potential of the CP 

promoter as a target for ovarian cancer-specific gene therapies and highlight the involvement of c-

Jun in its regulation. CP mRNA expression has been reported to be significantly higher in early 

invasive Lung adenocarcinoma(Matsuoka et al., 2018). 

CP is a predictive biomarker for breast cancer that corresponds with immune infiltration(F. 

Chen et al., 2021). CP expression in renal cell carcinoma correlates with higher-grade and shortened 

survival(Zimpfer et al., 2021). 

Aceruloplasminemia, which results in iron accumulation and tissue damage and is linked to 

diabetes and neurologic disorders, is brought on by mutations in this gene. This gene has two 

transcript variants, one of which codes for proteins and the other not.[Provided by RefSeq, Feb 

2012](gEPIA) (M. Y et al., 2021). 

One study reported that the long non-coding RNA (lncRNA) ceruloplasmin (NRCP) exhibits 

significant upregulation in ovarian tumors. The observed that knockdown of NRCP in cancer cells 

led to notable increases in apoptosis, decreased cell proliferation, and reduced glycolysis compared 

to control cancer cells(Rupaimoole et al., 2015). 
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i) Gene expression analysis of ceruloplasmin in Oral cancer patients from TCGA database 

and its correlation with metabolic associated genes 

Part 3.1: CP expression and interaction 

 

On analysis of the HNSCC patient’s mRNA Expression on cbioportal we found 440 samples 

out of total 538 patients did not show alteration in CP while 90 patients showed alterations in CP. 

The volcano plot of the CP altered vs unaltered showed that the patients with CP alteration had 

alterations in a number of cancer progression related genes(Brlek et al., 2021). (CP Mean log2 

expression in the altered group=7.02, standard deviation= 3.34 while that in unaltered group = 6.17, 

std. deviation=3.03)(Figure 24). 

We highlighted a few genes that are altered in higher percentages in the CP high patients 

such as PIK3CA with 85% alteration in CP altered patients in comparison to just 23% alteration in 

the unaltered patients. PIK3CA is an unrefuted oncogene that has been previously studied to be 

linked to tumor metastasis(Karakas et al., 2006).  

 

Figure 24. (a) Volcano plot showing CP alteration in TCGA HNSCC dataset. (b) A 

comparison of genes altered in CP altered vs unaltered patients. From amongst a number of genes 
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altered in CP altered patients SOX2,WWTR1, PI3KCA and TRIM2 are highlighted as are important 

cancer related genes. 

 

The Protein expression (RPPA) analysis revealed the most significant altered protein in CP 

altered patients was CHEK2. CHEK2 has been associated with cancer risks. An increased CHEK 2 

expression has been associated to an increased chance to develop female breast cancer, colorectal 

cancer, and possibly other cancers(Koen et al., 2022)(Figure 25). 

 

Figure 25. RPPA analysis of patients with ceruloplasmin alteration. The  protein 

expression of CHEK2 is higher in individuals with ceruloplasmin alteration. 

 

3.1.1. CP expression and Copy Number Variation:  

On plotting the log2 expression values of CP in tumor vs normal patients we found the CP 

expression increased in the later stages as well later grades of Oral Cancer (Figure 26a, b). The copy 

number alteration also confirmed with the gene expression levels of CP (Figure 26c, d). Differential 

site wise analysis showed the highest expression of CP in the tissues from the base of the tongue 

followed by the lip tissues then tonsil while the lowest was observed in the tissues from the alveolar 

ridge. (Figure 26e) 
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Figure 26. Expression and copy number variation of Ceruloplasmin in Oral Cancer 

Patients: a) CP gene expression in normal vs tumor b)Site-wise analysis of CP expression in 

OSCC patients, c)Stage-wise expression of CP, d) Stage-wise copy number variation, e) Grade-

wise  expression f)Grade-wise copy number variation)CP expression in metastatic tissues in 

HNSCC ,h)CPO expression in metastatic tissues in OC patients ,i) in paired tissues, j) non paired 

normal and tumor tissues). CP expression and copy number  is higher in the later stages and grades 

of OC. The  tissues samples from the lip showed the highest expression for ceruloplasmin. 

 

3.1.2. Differentially expressed genes: 

The log2 FC calculated for a list of 120 genes using R, were used to plot a heatmap. This 

heat map showed correlated expression of a number of cancer progression related genes (Figure 27). 

For instance, Notch1 showed correlated expression to CP. MAPK13 that was up regulated in tumors 

showed expression similar to CP suggesting a possible interaction. Similarly, metabolism related 

gene HK 1 also is up regulated in oral cancer tumors. It has been discovered that CP expression is 

connected with the expression of genes involved in tumor migration, including NOTCH 1, MAPK 
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13, CLDN 1, MMP 11, MMP 2/9, VEGFA, FAT 1, and TIAM 1, as well as other genes that promote 

tumor growth and invasion. In OSCC, FOXP 2 expression has been discovered to be downregulated, 

and its decreased expression is known to encourage tumor migration(M. T. Chen et al., 2018). An 

upregulated gene called TNF, which is linked to cell survival and proliferation, has been discovered 

in OSCC(H. L. Yang et al., 2014). FGG, whose expression is down regulated in OSCC patients, is 

another gene whose down regulation encourages tumor spread(M. Wang et al., 2020). One of several 

CC cytokine genes that secretes proteins implicated in inflammatory and immunoregulatory 

processes, the CCL19 gene has linked expression to CP(X. Zhang et al., 2017). 

 

Figure 27. Gene expression heat map of various Oncogenes with ceruloplasmin in oral 

cancer patients. A number of other cancer progression and metastasis related genes such as 

VEGFA, NOTCH1, AGRN, MAPK13 are showing upregulated expression in correlation to CP 

expression. 

 

3.1.3. Network analysis 

We analyzed 50 genes for interaction with CP using GENEMANIA. 15 neighboring genes 

were found to be co-expressed with CP. CP was found to interact with LTF which plays a role in 

NFκB signaling. Another interacting protein can be seen is MMP9. FGG and CP are seen to share 
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the same function of negative regulation of apoptosis(Hoesel & Schmid, 2013) (Figure 28a). HIF-

α1-alpha transcription factor network pathway documented by PID Pathways shows CP as one of 

the nodes in the HIF1A signaling and is observed to interact with VEGFA. This suggests CP plays 

an important role in this oncogenesis-associated pathways such as the HIF- α1 signaling pathway. 

Previous studies have reported CP is capable of regulating the HIF-2α activity via an iron/PHD 

cascade-dependent pathway(YM et al., 2020). This is in confirmation with observation reported by 

researchers that on inhibition of CP proteasomal degradation, angiogenesis could set in by HIF-1α 

and VEGF24 regulation. 

 

      

Figure 28. (a) Gene interaction network generated using Gene mania on the basis of 

functional annotation, (b) Cytoscape network showing CP interaction in HIF1a signaling. FGG 

plays a role in suppressing apoptosis and is found to show gene-gene interaction with CP. Genes 

related to epithelial migration such as MMP9 are also interacting while TF gene coding for 

transferin is showing co expression. 

SLC40A1, TF, HEPH, and HMOX1 are four genes involved in iron metabolism that CP was 

found to interact with(Sukiennicki et al., 2019), also MMP9 that plays a role in epithelial migration 

(Deryugina & Quigley, 2006) and LTF in NFĸB signaling. MMP9, FGG have also been associated 

to negative regulation of apoptotic signaling pathway and have been seen to interact with CP 
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(Arnould et al., 2009). CH3L1 an important angiogenesis and protein kinase B signaling pathway 

protein also shows protein-protein interaction with CP. This Protein-protein interaction of CP was 

observed on plotting string interaction networks on cytoscape. CP also interacts with genes involved 

in ferroptosis, tumor metastasis and cancer progression related genes, and oncogenes as well as 

redox metabolism associated genes (Figure 29). 

     

 

Figure 29. String and Cytoscape network analysis of CP interaction with a) oncogenes, b) 

tumor suppressor genes, c) interaction with angiogenesis, tumor metastasis related genes, and 

genes involved in iron metabolism, ferroptosis and complement system, d) oxidative stress related 

genes interacting with CP.MYC,HRAS,JUN,NOTCH1,Tiam1 are amongst the oncogenes showing 

PPI with CP while the tumor suppressors are not showing any interaction with CP.MF,CD46 and 

FLNA of the complement system interact with CP .FGG,MAPK13,VEGFA and the matrix 
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metalloproteases are amongst the migration promoting genes interacting with CP.irom metabolism 

related genes are also involved in PPI with CP. 

Previous studies have reported high CP to result in increased IL-8 secretion (Kennedy et al., 

2012).  Also, there is evidence for CP-PDPK1 interaction which is responsible for AKT 

phosphorylation that plays a role in various pathways of cancer cells(Gagliardi et al., 2018). This 

provides evidence for role of CP in cancer progression by interacting with various cancer signaling 

related genes. 

 

3.1.4. CP methylation:  

Given the role of DNA methylation in cancer progression, the aberrant methylation of CpG 

sites holds promise as potential markers for disease initiation(Łuczak & Jagodziński, 2006). We 

analyzed CP methylation status. We identified the CpG site cg094575255 to be significantly hyper 

methylated. We observed differential methylation of this site in the high-risk Oral cancer patients 

and it correlated to poorer survival(Figure 30). 

 

 

Figure 30. Heat map of CP methylation, b) differential CGP methylation in tumor vs 

normal, c) Impact of methylation on survival of patients. The CpG site cg094575255 is identified 

to be hypermethylated differentially in tumor vs normal samples and correlated to lower survival 

probability. In figure 30a Red shows hypermethylation. 
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3.1.5. Immune Cell Infiltration: 

CP expression was observed to be linked to the expression levels of various immune cell 

types. High CP expression corresponded to low tumor immune infiltrating levels such as low CD8 

T cells and CD4 T cells which accounts for the aggressive Oral cancer phenotypes (J. Ma et al., 

2019) (Figure 31a). CP expression was observed to be positively correlated to PD-L1, CTLA-4, 

LAG-3, and TIM- 3 which are established negative regulators of immune response(Han et al., 

2020)(Andrews et al., 2017)(Das et al., 2017) (Figure 31b). Due to this the overexpression of CP is 

associated to immunosuppressive role and with shorter survival. CP shows correlated expression to 

various immune checkpoints which could be targeted to enhance the immune response of patients 

limiting the tumor growth(Y. Zhang & Zhang, 2020). Therefore, CP may serve as a biomarker for 

the immune-related gene prognostic index in patients with oral cancer.     

 

Figure 31. a) CP expression levels in relation to tumor immunological infiltration of key 

immune cells, b) Expression of Negative regulators of immune response in relation to CP 

expression. A lower expression of CD8+T cells and CD4+T cells in observed to be downregulated 

when CP expression increases. 
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3.1.6. Survival Analysis: 

On plotting the Kaplan-Meier survival plot for CP expression we found that the high 

expression of CP correlated to a worse survival (HR=1.99; p=0.14) as well as high CP mutation also 

was associated to reduced survival (HR=0, p=0.47) in Oral cancer patients(Figure 32). 

 

Figure 32. Survival plots for High CP expression and CP mutation. A higher CP 

expression  as well as mutation resulted in a lower survival of patients with time. 

 

Discussion of Part 3.1. 

Using bioinformatics analysis, we examined the expression patterns, copy number variation, 

gene interactions, survival analysis, DNA methylation, and associations with immune infiltration in 

OSCC patients in this study. We discovered genomic changes in the CP gene in 90 patients by 

cBioportal analysis of the Head and Neck Squamous Cell Carcinoma TCGA, Firehose Legacy 

Dataset, and we also discovered changes in numerous additional oncogenes in CP altered 

individuals.  In early cancer clinical stages and pathological grades, we found that the expression of 

CP mRNA and protein was downregulated; in later tumor grades and stages, it was shown to be 

upregulated (Figure 26). Furthermore, in patients with oral cancer, CP expression seems to be linked 

to metastasis and demonstrated a higher CP in paired tumor and neighboring normal. 
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CP expression has been observed to be connected with the expression of NOTCH 1, MAPK 

13, and other genes that promote tumor invasion and development, including CLDN 1, MMP 11, 

VEGFA, FAT 1, MMP 2/9, and TIAM 1(Figure 27 and 29). In OSCC, FOXP 2 expression has been 

discovered to be down regulated, the result of which is known to encourage tumor migration.  TNF, 

a gene linked to cell survival and growth, has been discovered to be elevated in OSCC.  FGG, whose 

expression is downregulated in OSCC patients, is another gene whose downregulation encourages 

tumor spread. Oncogenes like HRAS and MYC are inversely connected with CP, whilst genes 

involved in glucose metabolism like HK1 have been found to be positively correlated to CP 

overexpression. One of the CC cytokine genes that secretes proteins involved in inflammatory and 

immunoregulatory processes is CCL19.  In cervical cancer, increased CCL19 expression has been 

linked to tumor development(X. Zhang et al., 2017). Through the WNT signaling pathway, AGRN 

progression encourages the proliferation in rectal cancers as well as promotes tumor invasion, and 

migration(ZQ et al., 2021). An association between the expression of CP and inflammation has been 

suggested by the observation that NFκB2 is elevated while the tumor suppressor gene APC is down 

regulated. 

Aberrantly methylated CpG sites can function as potential markers in OSCC because DNA 

methylation has been shown to affect gene expression(Bertucci et al., 2017) . Upregulated DNA 

methylation in CpG sites in tumor patients suggests an increased methylation level at specific 

genomic regions. This can potentially lead to gene silencing or altered gene expression patterns, 

which may contribute to the development or progression of the tumor. The CpG site cg09457255 

that we found to have significantly altered methylation within tumor cells when compared to normal 

samples has been associated with a poor prognosis in individuals with HNSCC (Figure 30).   

The interaction of CP with several oncogenes and genes related to oxidative stress is 

supported by numerous text mining and database analyses (Figure 28). Additionally, CP has been 

shown to participate in oncogenesis-related pathways, such as the HIF-α1 signaling pathway and to 

control HIF-α2 activity via an iron/PHD cascade-dependent mechanism(Tsai et al., 2020). It has 

been observed that under hypoxic conditions, the expression of CP, vascular endothelial growth 

factor (VEGF), and glucose transporter 1 (Glut-1) is upregulated as well as transcription of the CP 

gene promoter(M. F et al., 2005). According to a study on colon cancer, inhibiting CP's proteasomal 

degradation promotes angiogenesis via controlling the production of HIF-1 and VEGF(Dai et al., 

2016).  
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By controlling iron homeostasis in hepatocellular carcinoma (HCC) cells, the previously 

identified glycoprotein CP plays a crucial role in iron homeostasis and suppressing ferroptosis, a 

type of cell death characterized by the iron-dependent accumulation of lipid hydroperoxides. 

Researchers found that overexpression of CP in HCC cells suppressed erastin- and RSL3-induced 

ferroptosis while CP depletion promoted erastin- and RSL3-induced ferroptosis cell death and led 

to the accumulation of intracellular ferrous iron (Fe2+) and lipid reactive oxygen species (ROS).L-

type Ca2+ channels (LTCC) have been discovered as prospective therapeutic targets to lessen the 

harmful consequences of too much iron(Oudit et al., 2006). Dysregulated iron metabolism has been 

identified as a prognostic factor in cancer. 

CP expression and CACNA1C, which codes for the calcium voltage-gated channel subunit, 

are positively correlated in Gepia, with the exception of the PPI interaction shown in figure 28. 

Additionally, CACNA1C is elevated in OSCC patients. Additionally, it has been discovered that 

CP is adversely linked with the invasion of CD8+ T cells.  CP reduces ferroptosis because CD8+ T 

lymphocytes promote ferroptosis.  In the presence of high CP, Interferon-gamma (IFN-ɤ), a different 

pleiotropic molecule linked to antiproliferative, pro-apoptotic, and antitumor mechanisms(Castro et 

al., 2018a), is suppressed, leading to more HIFα2 inducing arginase1 expression and NO 

production(Keith et al., 2012).  In prior investigations, it was discovered that ARG1 has an 

oncogenic role in the development of HCC by accelerating the EMT process(You et al., 2018). The 

CP transcript is selectively silenced during IFN- activation via a cis regulatory element known as 

the GAIT element, which is a gatekeeper of the expression of inflammatory genes(R. 

Mukhopadhyay et al., 2009). HIF-2 (hypoxia-inducible factor-2) has also been discovered to be 

crucial for the development and spread of tumors(Roig et al., 2018). Neutrophil granules release LF 

and MPO when there is inflammation(AV et al., 2014). According to earlier research, CP is a gene 

involved in the inflammatory response. Increased CP expression was strongly correlated with low 

tumor immune infiltration levels, according to TIMER analysis (Figure31). It has been discovered 

that a number of immune cells in the TME are linked to metastasis, recurrence, and prognosis 

supporting cancer start and progression. In numerous malignancies, it has been demonstrated that 

targeting immunological check points is effective(Z. Y & Z, 2020). We discovered that the 

HAVCR2, IDO1, LAG3, PDCD1LG2/PDL2, TIM3, and negative regulators of T-cell immune 

response were overexpressed in the CP-high samples. As a result of this immunosuppressive 

function, excessive expression of CP is linked to a shorter survival time. Low CD8 T cells, low CD4 



90  

T cells, high B cells infiltration, M0 macrophages, M2 macrophages, as well as suppressive 

immunity and more aggressive phenotypes have all been linked to high CP expression. 

                               

Under hypoxic conditions the CP gene promoter transcription is induced leading to increased 

CP expression (M. F et al., 2005). The role of CP in conversion of Fe2+ to Fe3+ suppresses 

ferroptosis and inactivates the PHD1/2 leading to increased VEGFA and HIF2a which favors tumor 

progression. When CP expression is low MPO is high which results in increased oxidative stress 

promoting cancer progression. However, in the later stages of cancer CP is highly expressed leading 

to MPO inhibition which maybe a cancer cells mechanism of countering increasingly toxic oxidative 

stress. At low CP levels Erastin and RSL3 have been reported to induce ferroptotic cell death 

resulting from Fe2+ accumulation of and lipid reactive oxygen species (ROS) (Sukiennicki et al., 

2019). However, at high CP levels erastin- and RSL3-induced ferroptosis is suppressed in HCC 

cells. We propose a similar mechanism of working of CP in Oral cancer patients. CP has been 

observed to show correlated expression with CACNA1C which codes for the L-type Ca2+ 

channels(Sukiennicki et al., 2019) (LTCC) which play a role in dysregulated iron metabolism in 

cancer cells and are potential therapeutic targets(Shang et al., 2020b). The negative correlation of 

CP with CD8+ T cells confirms the role of CP in ferroptosis suppression as CD8+ T cells have been 

reported to enhance ferroptosis. Interferon-gamma (IFN-γ) that works in antiproliferative, pro-

apoptotic manner has been studied to be suppressed by CP which results in high HIF2α(Castro et 

al., 2018b).This increased HIF 2α levels result in arginase accumulation which promotes EMT 

making tumors more aggressive and undifferentiated (You et al., 2018). In case of inflammation 

neutrophil granules secrete LF and MPO .CP has been previously identified as an inflammatory 

response gene and works to inhibit MPO in the later tumor stages when inflammation sets in(AV et 

al., 2014).  In our study we identified the miRNAs targeting CP, of which mir21 has important 

cancer related gene associations. mir21 expression also confirmed with CP expression levels in our 

queried dataset. This could be further explored for development of better Head and Neck cancer 

targeted therapy. 

Interaction with CP inhibited peroxidase activity of Myeloperoxidase (MPO) under 

physiological conditions preventing HOCl production by MPO in the Tumor-Associated 

Neutrophils in tumor microenvironment(Masucci et al., 2019). This suppresses HOCL-mediated 
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caspase activity that leads to apoptosis which may be a mechanism of tumor survival in the later 

tumor stages. We also reported using Tumor Immune Infiltration analysis that the High CP 

expression shows correlated expression to PDL1 and TIM3 that activate NETosis (Kaltenmeier et 

al., 2021). These neutrophil extracellular traps have been previously studied to promote tumor 

metastasis. Furthermore MPO-CP binding prevents CP from proteolytic degradation. Therefore, we 

aim to target CP's immune regulation in head and neck cancer patients. 
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Part 3.2: miRNA expression analysis in head and neck cancer patients: 

 

3.2.1. Differential miRNA expression 

 

Starting from profiles retrieved by GDC portal we selected several miRNAs differentially 

expressed between control and HNC patients. The volcano plot in Figure33 shows the significant 

up regulated as well as downregulated miRNA in head and neck cancer patients. Specifically, we 

selected 39 upregulated miRNA and 40 downregulated, with log2FC>2 and p values <0.000005. 

 

Figure 33: a) A volcano plot of FC vs P value of HNC miRNA expression, b) Stage wise 

down regulated miRNA in HNSC patients. c) Stage wise up regulated miRNA in HNSC patients. 

 

We obtained the miRNA expression in the different stages of Head and Neck cancer patients 

and found that the miRNA expression varied across the different tumor stages. A higher number of 

miRNAs were down regulated in the patients in the Stage 1VB (Figure 33b, c).  We found Hsa- mir-
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378i to be downregulated with a fold change of 3.93 on comparison of normal samples to tumor 

samples of stage 1 as well as stage 3.Similarly, we observed hsa-mir-105-1, mir-196a, mir-767 one 

of the most upregulated miRNA to show the highest FC in stage 4 cancer patients. 

         

3.2.2. Predicted miRNA targets:  

The miRNA targets predicted from various online databases were used to build a network 

of interaction between the differentially expressed miRNAs and their target genes. The analysis of 

the upregulated miRNAs target network shows the target genes are mostly tumor suppressor genes 

such as CDKN1A, SMAD7, GFBR2, PDCD4, TIMP2, TP53, PTEN, CCDN1, BCL10 and IL10 

(Figure 34). Similarly, a few highlighted targets of the downregulated miRNA include MAPK3, 

NRAS, HRAS, EGFR, CDK14, MET, MMP28, MYC which are previously reported oncogenes 

(Woodman & Mills, 2010) (Figure 35). Figure 34b highlights the tumor suppressor genes targeted 

by the upregulated miRNA. A few miRNAs can be seen to target multiple genes and similarly a 

number of genes are targeted my multiple miRNAs. These genes could be those involved in 

important processes and can be further explored as potential head and neck cancer targets. 
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Figure 34. Network of upregulated miRNA targets. Programed cell death related gene 

PDCD4 and tumor suppressor PTEN are amongst the targets of the miRNA. 

 

 

Figure 35.Network of downregulated miRNA targets. Oncogenes like MYC,SMAD2,SNAIL 

1 and zinc factors are amongst the targets of the downregulated miRNA in oral cancer. 

 

3.2.3. Experimentally validated miRNA targets: 

Using Cytopscape, we created a network of the miRNA targets that have undergone 

experimental validation. We calculated the top downregulated and upregulated miRNAs with the 

highest degrees for each network's nodes (Figure 36a,b).Most genes are targeted by the upregulated 

and downregulated hsa-mir-301-3p. We also discovered the genes associated with the greatest 

number of upregulated miRNAs, with a confidence level of at least 8, or two times the average 

degree of elevated miRNA targets (4). Similarly, taking into account the average node degree of 5, 

we found the downregulated miRNA targets with degrees more than 10.Figure 36 c displays the 

genes that the most downregulated miRNAs target, with Vascular Endothelial Growth Factor 

A(VEGFA) and Ras GTPase-activating protein-binding protein 2 (G3BP2) are amongst among the 

genes that were most frequently targeted by the down regulated miRNA and thus allegedly up 
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regulated in HNC patients. According to Sa-nguanraksa and O-charoenrat (2012), VEGFA is an 

oncogene important for angiogenesis, vasculogenesis, and endothelial cell growth. Its upregulation 

is linked to endothelial cell proliferation and cell migration. According to Gupta et al. (2017), 

G3BP2 regulates SART3, the expression of the pluripotency transcription factors Octamer-binding 

protein 4 (Oct-4) and Nanog Homeobox (Nanog), as well as subpopulations of breast cancer cells(N. 

Gupta et al., 2017). Polypyrimidine tract-binding protein (PTBP1) has been identified as a pro-

oncogenic component that has been linked to enhanced malignancy in some research on breast and 

bladder cancer(He et al., 2014). Tyrosine-protein phosphatase non-receptor type 4 (PTPN4), one of 

the genes targeted by the elevated miRNA, is important for immunity; hence, a number of 

uncontrolled miRNA targeting this gene ensures decreased immunity. Furthermore, STAT3 

activation due to PTPN4 depletion has been shown to enhance tumor growth in colorectal cancer(B. 

D. Zhang et al., 2019). Another heavily targeted gene is ZNF711, whose reduction of JHDM2A and 

SLC31A1 in ovarian cancers has been linked to cisplatin resistance(G. Wu et al., 2021). Neuropilin-

1 (NRP1), an immunoregulatory receptor, is a gene that is targeted by more downregulated than 

upregulated MIRNA, and regulatory T cells enriched with these receptors are seen in a variety of 

malignancies. This gene is an important TME checkpoint as well as a potential immunotherapeutic 

target(Chuckran et al., 2020). Other frequent target genes include the proto-oncogene MET and 

MCL1, whose overexpression is linked to both a poor prognosis and medication resistance(H. Wang 

et al., 2021)(Gherardi et al., 2012). In line with previously reported findings that NPTX1 

upregulation inhibits tumor proliferation and migration, we discovered that NPTX1 was being 

targeted by higher upregulated miRNA in HNC patients. Chemotherapy is ineffective against the 

tumor because NPTX is downregulated (J. Wu et al., 2022). 
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Figure 36: Top 20 down regulated miRNA with highest degree (a), Top 20 up regulated 

miRNA with highest degree (b) Gene targets of down regulated miRNA(c) up regulated miRNA 

(d) with highest degree (e) Genes targeted by both down and upregulated miRNA with significant 

difference in degree. Blue bars indicate genes targeted by down-regulated miRNAs . Orange bars 

indicate differentially expressed genes most targeted up-regulated miRNAs.  

 

3.2.4. Gene Ontology enrichment analysis of predicted miRNA targets: 

We obtained the gene set enrichment analysis of the targets of the miRNA using Cytoscape. 

We analyzed the biological processes (BP) and the pathways enriched in specifically downregulated 

miRNA targets and in up regulated targets separately. We found 57 biological processes and 9 

pathways enriched in downregulated miRNA targets falling in <0.01 FDR category while 16 

biological process and 3 pathways enriched in upregulated miRNA targets only. Figure 37 a shows 

all the processes and pathways enriched in upregulated miRNA targets whereas Figure 37b shows 

all the pathways enriched but only a few biological processes for better visualization. Since the 

tumor suppressor TP53 controls the transcription of 24 of the elevated miRNA's target genes, their 

downregulation would be linked to the development of tumors. To maintain the survival of tumor 
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cells, autophagy mechanisms are downregulated in tumor cells. This pathway is also enriched in 

targets for upregulated miRNAs. 

 

Figure 37. Gene Enrichment analysis of the upregulated miRNA (a) and downregulated 

miRNA(b)The upregulated miRNA targets regulate autophagy and are related to transcriptional 

regulation by TP53 while the downregulated miRNA targets promote vascular development, 

migration and motility. 

Similarly, the gene ontologies of downregulated miRNA show they play roles in VEGF 

signaling and regulation of cell migration and motility. 

 

3.2.5. Hub genes Targets: 

The 417 genes in the network of up-regulated miRNA targets were filtered to produce a 

network of 36 nodes using the criteria of mean centroid value=-260.86, betweenness=515.41, and 

bridging=12.88. A network of 38 genes was created by filtering the down-regulated miRNA targets 

using the criteria of mean centroid value=-234, betweenness= 457.38, and bridging=7.53. Figure 

38a highlights the genes involved in phagocytosis, immune system processes, and integrin-mediated 
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signaling pathways. String enrichment of these networks revealed regulated miRNA targets 

enriched in only biological functions. We found that the down-regulated miRNA hub genes were 

more frequently involved in cancer-promoting pathways, such as the activation of RAF and 

RhoGTPase effectors and WNT and ROBO receptor signaling. According to numerous studies, Wnt 

signaling upregulation promotes tumor metastasis, proliferation, differentiation, and cancer stem 

cell renewal (Zhan et al., 2016), playing a significant role in carcinogenesis and therapy response 

(Y. Zhang & Wang, 2020). Prior research by Zhou et al. (2011) demonstrated the significance of 

ROBO3 in the malignant transformation of cancer cells and tumor invasion in conjunction with 

upregulated Wnt pathway components(W. J. Zhou et al., 2011). Previous research has shown that 

Raf activation through the Rho GTPases affects cell adhesion, morphology, and progression by 

modulating the cell cycle (Beeram et al., 2005)(Cardama et al., 2017). 
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Figure 38: Upregulated miRNA target hub genes selected by (mean=515.4), bridging 

(mean=12.8) and centroid (mean=260.8). t (a), down regulated miRNA target hub genes selected 

by betweenness (mean=457.3), bridging (mean=7.5) and centroid (mean=-234.5).(b) violin plot 

showing average betweenness of each random network against the betweenness of the original 

network of upregulated targets (c) and downregulated targets (d) 

3. 2.6. List of miRNAs targeting known oncogenes and tumor suppressor genes: 

We obtained a list of miRNA targeting oncogenes and tumor suppressor genes. We obtained 

a network to identify miRNA targeting both PTEN as well as TP53. Similarly, we tried to find 

miRNAs that targeted the largest number of these oncogenes EGFR, MET, HRAS and TP53, 

NOCTH1.  The threshold for the adjusted p-value (FDR) was set to 1 and the threshold for number 

of miRNA-target interactions was set to 2 interactions (Table3). hsa- mir-410-3p, hsa-mir-1-3p, hsa-

mir-499a, hsa-mir-133, hsa-mir-139-5p are the miRNA significantly downregulated miRNA 

targeting the oncogenes while hsa-mir-21, hsa-mir-205, hsa- mir-106a, hsa-mir-19a-3p, hsa-mir-

18a-5p are those upregulated miRNAs targeting the tumor suppressor genes. 

 

 

Figure 39. Experimentally validated miRNA targeting the oncogenes (a) and the tumor 

suppressor genes (b). 
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Using mirTarbase, we were able to obtain the validated mirna targeting a list of oncogenes 

and tumor suppressor genes. We contrasted the miRNAs that specifically target TP53 and PTEN. A 

list of common miRNAs that target PIK3CA, EGFR, MET, HRAS, and NOCTH1 was also created 

by our team (Table 1).We discovered that miR-301a-3p and miR-301b-3p, which had the highest 

number of gene targets compared to the most elevated miRNA in HNC patients, also targeted the 

tumor suppressor PTEN. While miRr-210-3p is known to target both PTEN and TP53 with 440 

target genes, miR-1305, miR-196b-3p, and miR-31-3p all appear to target exclusively TP53. As a 

result, we suggest that additional research on upregulated miR-210- 3p would be worthwhile. 

Table 2: List of tumor suppressors along with their targeting miRNA compared to the list 

of up regulated miRNA in head and neck cancer patients with highest number of target genes 

 

PTEN TP53 CDKN1A Upregulated 

miRNA 

degree 

hsa-miR-518c-3p hsa-miR-200a-3p hsa-mir-301a-3p hsa-miR-301a-3p 1543 

hsa-miR-155-3p hsa-miR-10b-5p hsa-miR-1229-3p 

 

hsa-miR-301b-3p 1246 

hsa-miR-26a-1-3p hsa-miR-25-3p hsa-miR-1307-3p 

 

hsa-miR-615-3p 1177 

hsa-miR-638 hsa-miR-518c-3p hsa-miR-130b-3p 

 

hsa-miR-455-3p 1139 

hsa-miR-214-3p hsa-miR-155-3p hsa-miR-18a-3p 

 

hsa-miR-1305 930 

hsa-miR-18a-5p hsa-miR-26a-1-3p hsa-miR-1910-3p 

 

hsa-miR-9-3p 887 

hsa-miR-377-3p hsa-miR-638 hsa-miR-1911-3p 

 

hsa-miR-1910-3p 502 
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hsa-miR-221-3p hsa-miR-214-3p hsa-miR-193b-3p 

 

hsa-miR-210-3p 440 

hsa-miR-222-3p hsa-miR-18a-5p hsa-miR-19a-3p 

 

hsa-miR-873-3p 428 

hsa-miR-19a-3p hsa-miR-377-3p hsa-miR-205-3p 

 

hsa-miR-548f-3p 407 

hsa-miR-106a-5p hsa-miR-221-3p hsa-miR-21-3p 

 

hsa-miR-519a-3p 398 

hsa-miR-19b-3p hsa-miR-222-3p hsa-miR-450-3p 

 

hsa-miR-1293 385 

hsa-miR-106b-5p hsa-miR-19a-3p hsa-miR-455-3p 

 

hsa-miR-196a-3p 303 

hsa-miR-17-5p hsa-miR-106a-5p hsa-miR-301b-3p hsa-miR-5008-3p 225 

hsa-miR-20a-5p hsa-miR-19b-3p  hsa-miR-31-3p 207 

hsa-miR-200a-3p hsa-miR-106b-5p  hsa-miR-196b-3p 136 

hsa-miR-10b-5p hsa-miR-17-5p  hsa-miR-3619-3p 129 

hsa-miR-25-3p hsa-miR-20a-5p  hsa-miR-1269b 127 

hsa-miR-301a-3p hsa-miR-1305  hsa-miR-4652-3p 111 

hsa-miR-301b-3p hsa-miR-196a-3p  hsa-miR-6728-3p 97 

hsa-miR-21-3p hsa-miR-196b-3p  hsa-miR-1269a 87 

hsa-miR-210-3p hsa-miR-210-3p  hsa-miR-767-3p 69 

hsa-miR-519a-3p hsa-miR-31-3p  hsa-miR-937-3p 69 

   hsa-miR-503-3p 50 
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   hsa-miR-4713-3p 46 

   hsa-miR-4724-3p 43 

   hsa-miR-3144-3p 40 

   hsa-miR-4745-3p 30 

 

Similar to this, we discovered miR-1-3p with the highest gene targets similarly targeted 

MET, EGFR, and PIK3CA on examination of the miRNA targeting oncogenes with the 

considerably downregulated miRNA. While miR-133b targeted EGFR and MET, miR-101-3p, 

miR-410-3p, and miR-410-3p targeted NOTCH1 and MET. Since miR-1-3p targeted the most 

genes, including three oncogenes, further examination of miR-1-3p role in head and neck cancer 

patients’ survival is recommended. 

 

 

 

Table 3: List of oncogenes with their targeting miRNA compared to the list of down 

regulated miRNA with highest degree. 

MET NOTCH1 EGFR HRAS PIK3CA Downregulated 

miRNA 

Degree 

hsa-miR-

137 

hsa-miR-

139-5p 

hsa-miR-1-

5p 

hsa-miR-

181a-5p 

hsa-miR-

139-5p 

hsa-miR-1-3p 6235 

hsa-miR-

34c-5p 

hsa-miR-

27b-3p 

hsa-miR-

133b 

hsa-let-7a-

5p 

hsa-miR-

10b-5p 

hsa-miR-101-3p 2471 

hsa-miR-

449a 

hsa-miR-

30a-5p 

hsa-miR-

146a-5p 

hsa-miR-

139-5p 

hsa-miR-1-

3p 

hsa-miR-29c-3p 1895 

hsa-miR-

34b-3p 

hsa-miR-

144-3p 

hsa-miR-

27a-3p 

  hsa-miR-378a-3p 1113 
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hsa-miR-

1-3p 

hsa-miR-

10b-5p 

hsa-miR-

218-5p 

  hsa-miR-30a-3p 1072 

hsa-miR-

410-3p 

hsa-miR-

23b-3p 

hsa-miR-

27b-3p 

  hsa-miR-133a-3p 852 

hsa-miR-

101-3p 

hsa-miR-

34c-5p 

hsa-miR-

137 

  hsa-miR-499a-3p 465 

hsa-miR-

34a-5p 

hsa-miR-

449a 

hsa-miR-1-

3p 

  hsa-miR-378c 462 

hsa-miR-1-

5p 

hsa-miR-

146a-5p 

hsa-let-7a-

5p 

  hsa-miR-376c-3p 405 

hsa-miR-

133b 

hsa-miR-

34b-3p 

hsa-miR-

30a-5p 

  hsa-miR-488-3p 366 

hsa-miR-

30a-5p 

hsa-miR-

410-3p 

   hsa-miR-486-3p 319 

hsa-miR-

144-3p 

hsa-miR-

101-3p 

   hsa-miR-378d 308 

hsa-miR-

23b-3p 

hsa-miR-

181a-5p 

   hsa-miR-202-3p 269 

hsa-miR-

27a-3p 

hsa-miR-

34a-5p 

   hsa-miR-410-3p 264 

hsa-miR-

218-5p 

    hsa-miR-378i 251 

hsa-miR-

27b-3p 

    hsa-miR-411-3p 230 

hsa-miR-

139-5p 

    hsa-miR-381-3p 223 
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     hsa-miR-99a-3p 220 

     hsa-miR-206 151 

     hsa-miR-885-3p 147 

     hsa-miR-133b 147 

     hsa-miR-299-3p 136 

     hsa-miR-378f 128 

     hsa-miR-4740-3p 125 

     hsa-miR-211-3p 119 

     hsa-miR-4776-3p 109 

     hsa-miR-135a-3p 67 

     hsa-miR-208b-3p 52 

     hsa-miR-5089-3p 44 

     hsa-miR-1258 37 

According to an examination of the miRNAs that target oncogenes, patients with head and 

neck cancer have considerably lower levels of the miRNAs hsa-miR-410-3p, hsa-miR-1-3p, has-

miR-499a, has-miR-133, and hsa-miR-139-5p. Two of these miRNAs that frequently target 

NOTCH1 and MET are hsa-mir-410-3p and hsa-mir-499a. It has been discovered that hsa-miR-1-

3p and hsa-miR-139-5p share four common targets between them: NOTCH1, HRAS, MET, and 

PIK3CA. Similarly, hsa-miR-21, hsa-miR-205, hsa-miR-106a, hsa-miR-19a-3p, hsa-miR-18a-5p, 

and hsa-miR-522 target tumor suppressor genes and are upregulated in HNSC. In addition, hsa-

miR-205, hsa-miR-19a, hsa-miR-106a, and hsa-miR-21 target PTEN and TP53. Among these 

miRNA, has-miR-522 targets TP53 and CDNK2A. 

 

3.2.7 miRNA targeting Ceruloplasmin 

mirTarbase reports four experimentally validated miRNA targeting CP including three 

found in house mouse: mmu-miR-129-5p, mmu-miR-203-3p, mmu-miR-203 and one in humans: 
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hsa-miR-145-5p. Figure 40 shows the mir-145 is down regulated in tumors in comparison to normal 

patients suggesting its role in suppressing the controlling the transcription of oncogenes. Mir-145 is 

seen to target CP from amongst various other target genes. Lower expression of mir-145 has been 

observed to be associated to reduced survival of cancer patients. 

 

Figure 40: a) Differential expression of miR-145, b) stage wise expression of miR-145, c) 

survival analysis of miR-145, d) the targets of miR-145.miR145 is observed to be downregulated 

in tumor samples. Its lower expression confirms CP upregulation and corresponds to lower survival. 

170 miRNA were predicted to be targeting CP according to miRwalk database. Out of these 

we identified the miRNA differentially expressed in the head and neck cancer patients in comparison 

to normal patients.  
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Table 4: List of miRNA targeting CP, significantly differentially expressed in Head and 

neck cancer patients 

 

Upregulated 

miRNA targeting CP 

Down regulated 

miRNA targeting CP 

hsa-mir-1237 hsa-mir-125b-1 

hsa-mir-1343 hsa-mir-139 

hsa-mir-137 hsa-mir-1468 

hsa-mir-196b hsa-mir-204 

hsa-mir-2355 hsa-mir-431 

hsa-mir-3619 hsa-mir-432 

hsa-mir-3940 hsa-mir-504 

hsa-mir-450a-1 hsa-mir-5698 

hsa-mir-4714 hsa-mir-676 

hsa-mir-4726 hsa-mir-885 

hsa-mir-4745  

hsa-mir-4763  

hsa-mir-5008  

hsa-mir-503  

hsa-mir-6764  

hsa-mir-6803  

hsa-mir-6887  

hsa-mir-6891  

hsa-mir-7110  
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hsa-mir-7112  

hsa-mir-7850  

hsa-mir-8072  

hsa-mir-873  

hsa-mir-21  

 

We generated a list of miRNA targeting CP and hsa-miR-21 out of the above mentioned 

downregulated and upregulated miRNA has been predicted to target CP.  The differential expression 

analysis stagewise and survival analysis of mir-21 was performed. In grade 4 patients miR21 is 

downregulated and CP is upregulated especially in the later stages. Furthermore, the lower 

expression of hsa-miR-21 expression in head and neck cancer patients was found to be correlated 

to lower survival rates of patients (Figure41). 
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Figure 41. a)Predicted targets of miR-21 showing it targets CP, b) miR21 expression in 

HNSCC tumor vs normal, c)stage wise expression of miR-21, and d) its survival analysis. Higher 

expression of miR21 in early stages and downregulation in lager stages confirms with CP 

expression trend i.e. upregulated in later stage. Its decreased expression corresponds to lower 

survival probability in patients. 

 

3.2.8. Mir21 Target analysis:  

We used ONCO.IO for miRNA target network analysis for mir21.When mir21 is 

upregulated in the early tumor stages of Head and neck cancer it promotes tumor progression by 

targeting various tumor suppressor genes such as (C. Y. Chen et al., 2018) SMAD7(D. Ma et al., 

2021), Programmed cell death gene PDCD4 (Matsuhashi et al., 2019)and TP63. However, in the 

later tumor stages it is downregulated which resulted in MAPK10, STAT3, NFKB, MMP3, 

NANOG and MYC along with CP up regulation. Hence our candidate miRNA21 could be further 

explored as a potential therapeutic target in Head and Neck cancer therapeutics. 

 

Figure 42. Targets of miR21 in the early tumor stages when it is upregulated along with 

summary of the processes effected.TP53 a tumor suppressor maybe inhibited in the initial cancer 

stages by miR21 upregulation and maybe involved in increasing tumor proliferation and 

inflammation. 
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Figure 43. Targets of miR21 in the later tumor stages when it is downregulated along with 

a summary of the processes affected. Here in the later cancer stage miR21 downregulation leads 

to upregulation of MAPK3,CP, NFKB and TIAM1 promoting invasion and inducing drug 

resistance. 

 

Discussion of part 3.2: 

The stage IVB patients had the most downregulated miRNAs, according to the differential 

miRNA expression in the head and neck cancer patients in the various stages. This suggests that 

miRNAs associated with disease aggression may be the targets of these downregulated miRNAs. 

We chose the top 20 enriched phrases for the upregulated miRNAs based on the P value, which 

included terms like protein ubiquitination, positive regulation of angiogenesis, negative regulation 

of gene expression, and positive regulation of cell proliferation. Positive regulation of cell motility, 

the Ras signaling pathway, the upkeep of somatic stem cells, cell cycle transitions, and protein 

stability were among the enriched processes in the downregulated miRNA. Many of the cancer-

related genes that the downregulated miRNAs target have been identified as prospective targets for 

cancer therapy, including transcription factors like MYC and protein kinases like MAPK(Braicu et 

al., 2019). In addition to being upregulated in some tumors, the long non-coding RNA (lncRNA) X-

inactive specific transcript (XIST), an oncogene previously identified to promote tumorigenesis by 

upregulating EGFR, MAPK1, HIF1alpha, TGFB1, and WNT signaling, is also a targeted of several 

miRNAs that are downregulated in head and neck cancer (J. Yang et al., 2021). Another target is 
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ERBB2; this protein's function in human cancers and chemoresistance is significant (Tan & Yu, 

2013).PTEN, TP53, and TIMP2, which is an inhibitor of metalloproteinases 2 and prevents tumor 

metastasis, are miRNA targets that are increased(W. Wang et al., 2019)(H. Wang et al., 2021). 

Tumors with downregulated SMAD7 experience epithelial to mesenchymal transition because 

SMAD 7 has been shown to impede TGF signaling(Matsuhashi et al., 2019). Another tumor 

suppressor that is inhibited in head and neck malignancies is PDCD4 (Programmed cell death 

protein 4)236. It is targeted by the increased miRNA. 

The most common genetic change is identified in the TP53 tumor suppressor gene, which is 

mutated in roughly 70–80% of individuals with head and neck cancer (Blandino & Di Agostino, 

2018). PTEN has been identified as the primary antagonistic regulator of PI3K-Akt signaling 

pathway activation in earlier HNC research(Vahabi et al., 2019). The miRNAs that target these 

tumor suppressors and are associated with decreased survival upon increased expression were the 

focus of our investigation. We identified 2 elevated miRNAs, hsa-mir-18a and hsa-mir-19a, which 

were associated with cancer-specific survival. Patients with upregulated expression of hsa-mir 18a 

and 19a showed lower survival rates. Numerous transcription factors, including ZEB1, ZEB2, Snail, 

Slug, and Twist, have been linked to tumor metastasis and the EMT process, according to studies. 

It has been discovered that in many cancers, the expression of these genes is elevated while the 

targeted miRNA is downregulated. The biggest difficulties in treating head and neck cancer are 

resistance to radiotherapy and resistance to chemotherapy. EGFR has been connected to therapy 

resistance and a bad prognosis. About 90% of HNSC patients have been shown to have 

overexpression of the EGFR gene. We discovered three miRNAs that were highly expressed in the 

EGFR, MET, and PI3K-Akt-mTOR signaling pathways(Vahabi et al., 2021). Hsa-mir-1-1, Hsa-

mir-410, and Hsa-mir-139 survival research revealed that downregulation of these genes was 

associated with a decreased likelihood of surviving and a worse prognosis. 

We discovered that downregulating hsa-mir-410 and 139 combined led to the targeting of 

cancers related to MDM2, MMP16, and MET. According to research by Wei et al. (2019), TRIM44 

is another target that has been shown to encourage cell proliferation by controlling FRK and 

activating the AKt/mTor signaling pathway in malignancies(Wei et al., 2019). These miRNAs also 

target ITPKB, an enzyme that has been shown to control the redox balance of NOX4-dependent 

pathways and give cisplatin resistance in malignancies (Pan et al., 2019). The ATG16L1 gene is 

crucial for autophagy and is also targeted by mir-410 and 139(Jamali et al., 2022) Dickkopf-1 
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(DKK1), which is overexpressed in many cancers and is thought to have immunosuppressive 

functions in addition to being a secreted regulator of Wnt signaling. Because mir-310 and mir-139 

are suppressed in HNC malignancies, its overexpression is linked to worse clinical outcomes(Haas 

et al., 2021). These miRNAs that were downregulated also targeted the inflammatory gene 

HMGB1(Kang et al., 2013). It has been noted that lncRNA CCAT1 functions as an oncogene in 

individuals with renal cancer, and its relationship to hsa-mir140 and 139 may be further investigated. 

As a result, we demonstrate that these downregulated miRNAs have targets that modulate a number 

of cancer-related domains, such as inflammation, drug resistance, WNT signaling, immunological 

suppression, and cell migration. These miRNAs may be investigated in the treatment of head and 

neck cancer. The tumor suppressors PTEN, Smad3, and ROR, which have been shown to regulate 

pathways relevant to cancer growth, have been demonstrated to be inhibited by the increased 

miRNA18a and 19a. When downregulated, the Sonic Hedgehog (SHH) signaling downstream target 

gene neogenin-1 (NEO1) is associated with basal cell carcinoma aggressiveness(Casas et al., 2017) 

.A lnc RNA called TP53TG1 has been investigated to improve cisplatin sensitivity in lung cancer 

cells and has also been investigated as a method to improve the efficacy of chemotherapy for 

NSCLC (Xiao et al., 2018). The NF-B signaling pathway is negatively controlled by the well-

studied tumor suppressor TNFAIP3, which is reported to be downregulated in cancerous tumors(Du 

et al., 2019). Therefore, by up-regulating these tumor suppressive and drug-sensitizing genes 

targeted by these miRNAs, it should be able to enhance the clinical result of patients. 

Mir-145 has been reported experimentally to be targeting CP. This miRNA was found to be 

downregulated in tumors and its downregulation correlated to lower survival probability in patients. 

We also noted that hsa-mir-21 also  significantly differentially expressed in oral tumors, elevated in 

patients with Grade 1 and 2 OSCC, is predicted to have CP as one of its target genes. As CP is 

elevated at later stages, the finding that hsa-miR-21 is downregulated in grade 4 patients suggests 

that has-mir-21 epigenetically controls CP antagonistically .Through CP control, further research 

on its oncogenic significance may be done. Additionally, we used the miRwalk 2.0 website to 

predict the miRNA-CP interactions and discovered that hsa-miR-92a-2-5p targets CP with a target 

score of 79 and binds CP at the 3' UTR. 

 



112  

Part 3.3: ii) Identification of potential inhibitor(s) for ceruloplasmin using in silico virtual 

screening approaches 

 

3.3.1. Protein structure preparation/structure validation: 

The 4ENZ CP structure was downloaded from the Protein Data Bank (PDB) and subjected 

to several modifications. Ligands were removed, missing residues were added, and hydrogen atoms 

were added. . To assess the quality of the energy minimized structure, a ProSA analysis was 

performed. The ProSA Z-score value for CP was determined to be -10. This Z-score falls within the 

range of Z-scores obtained for protein structures generated by both NMR spectroscopy (represented 

by dark blue spots) and X-ray crystallography (represented by light blue spots) (Prajapat et al., 

2014). Furthermore, in Figure 44B, the negative ProSA energies observed for the majority of amino 

acid residues further indicate the good quality of our structure. 

 

Figure 44. Protein preparation of PDB structure 4ENZ, (A) ProSA local quality model of 

CP edited structure (B) ceruloplasmin edited structure ProSA energy plot. The Ramachandran 

plot generated against a background of phi psi probabilities validated our structure as it showed 

92. 2 % Ramachandran favored regions. 
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The structure was edited by H addition and neutralization of residues that do not participate 

in salt bridges and that are more than a specified distance from the nearest ligand atom. Addition of 

missing residues followed by energy minimization was saved as the 4ENZ.edited structure which 

was then used to obtain a Ramachandran plot, against a background of phi-psi probabilities(Figure 

45). 

 

Figure 45. Ramachandran Plot for edited Ceruloplasmin structure 92.92% Rama 

distribution Z-score, -1.75 ± 0.25(Blue represent the helix, red means strand and green means turn 

and loop according to DSSP. The lines in the plot indicate the preferred areas. Outer lines encircle 

the area that should have 90% of all dots of the same color; the inner lines indicate the 50% area.) 

In the DSSP representation, the color blue corresponds to the helix structure, red represents 

the strand structure, and green indicates the turn and loop regions. The lines on the plot mark the 

preferred regions. The outer lines enclose the area where 90% of all crosses of the same color are 

expected, while the inner lines indicate the 50% area. 

 

3.3.2. Binding site: 

The binding site was identified containing the following amino acid residues: 885 to 892, 

511,542-557,699–710, M668, W669 and H667 which interact with myeloperoxidases binding site 

inhibiting the chlorinating action of myeloperoxidase(Figure 46). 
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Figure 46. The amino acids on CP interacting with MPO. The binding site contains the 

following amino acid residues: 885 to 892, 511,542-557,699–710, M668, W669 and H667 which 

interact with myeloperoxidases binding site inhibiting the chlorinating action of 

myeloperoxidase.3b Binding site sphere was defined for docking analysis where the control and 

ligands bind to CP 

 

3.3.3. Molecular Docking Analysis 

As an initial step in Schrodinger's docking protocol, Glide is employed to conduct a 

comprehensive conformational search. During this search, high-energy conformers and long-range 

hydrogen bonds containing conformations are eliminated as they are unfavorable for receptor 

binding (Friesner et al., 2004b). The OPLS-AA molecular mechanics potential function is utilized 

to impose a cutoff for the total conformational energy, ensuring it remains within an acceptable 

range compared to the lowest-energy state. To achieve optimal results, the starting conformations 

should be within approximately 1.5 Å rmsd (root-mean-square deviation) of the correct crystallized 

conformation. Each ligand consists of a "core" region to which several "rotamer groups" are attached 

via a rotatable bond. Glide performs an exhaustive exploration of potential positions and orientations 

for each core conformation, specifically focusing on the region of interest on the protein. 

The Receptor Grid Box for docking studies was set as in Figure 47. 
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Figure 47. Defining the Binding site. GRID_CENTER: 6.337066710810808, 

109.0767157891891, 23.543311587837835,INNERBOX: 21, 24, 16, OUTERBOX: 41, 44, 36 

(FORCEFIELD OPLS_2005) 

After evaluating favorable hydrophobic interactions, hydrogen bonding, metal-ligation 

interactions, and steric clashes, a selection is made from the best refined poses. Only a limited 

number, specifically 400 poses, undergo minimization on precomputed OPLS-AA van der Waals 

and electrostatic grids for the receptor (Elekofehinti et al., 2021). The best-docked structure is 

determined based on the model energy score, which encompasses multiple factors. This score 

includes the energy-grid score, reflecting the interaction energy within the grid; the internal strain 

energy, which accounts for the potential used during the conformational search; and the binding 

affinity predicted by the Glide Score. By considering these factors, the optimal docking pose is 

identified. 

 

3.3.3.1. Control Selection: 
Control: Amitriptyline:  
Amitriptyline belongs to a class of medications known as tricyclic antidepressants. It 

exhibits various roles, including acting as an adrenergic uptake inhibitor, an antidepressant, an 
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environmental contaminant, a xenobiotic, and an agonist of the tropomyosin-related kinase B 

receptor. Structurally, it is classified as a tertiary amine and a carbotricyclic compound(Figure 48). 

In a previous study, it was reported that Amitriptyline can bind to CP at specific amino acid 

residues, including ASN119, TRP732, ILE1016, GLN729, GLN951 (OE1), THR1033 (OG1), and 

THR1036 (OG1). The binding was determined to have a score of -7.78 kcal/mol. However, the 

study did not provide specific information about the mechanism of action of Amitriptyline in 

relation to CP (Merugu & Singh, 2018). 

 

 

Figure 48. Control selected amitriptyline structure, its binding on ceruloplasmin and the 

interacting amino acids. Amitriptyline binds with a docking score: -3.5978kcal/mol and the 

interacting amino acids are Arg 653, Ala 656, Trp 648, Thr 655, Gly1002. 

 

3.3.3.2. Screening of Phytochemicals and Marine compounds:  

We screened a list of 17000 phytochemicals out of which 45 were best hits which were 

subjected to ADME Analysis using QikProp tool of Schrodinger suite. 

Phytochemical Screening: 

A total of 17,000 phytochemicals were screened, and 45 of them showed the most promising 

results. These 45 compounds were further filtered on the basis of ADME analysis using the QikProp 
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tool in the Schrodinger suite. Based on the results obtained from qikprop and ADME analysis, 5 

phytochemicals were selected for further investigation (Table 5 and 6). Molecular docking analysis 

was performed to assess their binding affinities against CP (4ENZ) and the amino acids involved in 

the interactions. 

Table 5: Molecular docking analysis of the top phytochemicals with the best binding 

affinities against CP (4ENZ) and their interacting amino acids. 

Chemical 

name 

Binding 

scores 

 

Amino acid residues 

Control-

amitryptiline 

-3.59 Arg 653, Ala 656, Trp 648, Thr 655, Gly1002 

Xyloglucan 

oligosaccharide 

-18.93 

 

Asp 556, Arg 652, Glu 844, Lys841, Phe 708,Asp 

705,Gln 821,Trp 669, Asp 671,Gln 702 

Ardimerin digallate -13.659 

 

Arg 701,Gln 702, Ser 703, Glu 704,  Asp 705, Ser 

706, Thr 707, Lys 619, Gly 620 

Mukurozioside IIb -13.626 

 

Lys 619,Glu 704, Ser 706,Phe 708, Asp 554, Gln 552 

Lycoperoside F -15.553 

 

Asp 671, Asp 705, Ser 706, Thr 707,Phe 708, Asp 

554,Gln 552 

Uttroside B -13.606 Gln 552, Asp 554, Trp 669, Lys 841, Phe 708, Ser 

706, Asp 705, Glu 704, Ser 703 

 

Marine Compound Screening: 

In a similar manner,  screening was carried out for 26,717 marine compounds. Among them, 

66 compounds were identified as the best hits and were subjected to ADME analysis. Table 2 

presents the interacting amino acids and docking scores of the top 5 marine compounds based on 
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the QikProp results (Table6). However, due to lower binding affinities compared to the 

phytochemicals and some compounds not binding at our site of interest in CP, these ligands were 

not selected for further molecular dynamics (MD) analysis. 

Table 6. Molecular docking analysis of the top marine compounds with the best binding 

affinities against CP (4ENZ) and their interacting amino acids. 

Chemical 

name 

Binding 

scores 

 

Amino acid residues 

daldiniside B 

 

-9.089 

 

Pro3, Leu7, Cys6,Trp1, Gln 55, Ile77 

arthone C 

 

-8.124 

 

Phe659, Trp648, Tyr646, ARg653, Ala656 

engyodontiumone H 

 

-8.091 

 

Glu189, Phe10, His 4, Gln55, Ile65, Trp1 

3-[2-[2-hydroxy-3-

methylphenyl-5-

(hydroxymethyl)]-

2-oxoethyl] 

glutarimide 

 

-9.824 

 

Glu 189, Leu13, Phe10, Trp1, Ile77, Leu9 

isonaamidine D -8.456 Arg653, Thr655, Tyr646, Phe997, Tyr986, Phe303, 

Thr294 

 

3.3.4. Calculation of drug-likeness of compounds 

Drug-Likeness and ADME Analysis: 

To ensure the rational design of drugs, we evaluated the molecular properties of the selected 

compounds to comply with Lipinski's rule of five (B. Fernandes et al., 2016)(Giménez et al., 2010). 
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While all the compounds showed two violations of the five rules, they did not meet the criteria of 

having no more than 5 hydrogen bond donors, no more than 10 hydrogen bond acceptors, a 

molecular weight of less than 500, less than 10 rotatable bonds, and a topological polar surface area 

(TPSA) not greater than 140. However, the partition coefficient (log P) for all compounds was less 

than 5 (Table 7).Using the QikProp tool, we predicted significant ADME properties of our selected 

ligands. The number of metabolites binding to human serum albumin provided insights into the 

percent of human oral absorption (Aman et al., 2021). We also assessed the predicted aqueous 

solubility of the drugs (QPLogKhsa) as well as the cell's permeability (QPLogS). The results of the 

physicochemical properties and ADME parameters of these ligands suggest their potential as drug 

candidates for further studies. 

Table 7 presents the ADME properties of the top 5 phytochemical hits, while Table 8 

displays the ADME properties of the top 5 marine hits. 

Table 7.ADME of the top 5 phytochemical hits 

 

Compound  Molecular 

formula 

ADME Properties 

(Lipinki’s Rule of 

Five) 

 

Properties Value Structure Drug 

likelines

s 

XLLG 

xyloglucan 

oligosaccha

ride 

C57H96O47 Molecular weight 

(<500Da) 

 

LogP (<5)  

 

H-Bond donor(5)  

 

H-bond acceptor 

(<10) 

1387.215 g/mol 

 

-2.62 

 

28 

 

47 

 

 

no 



120  

 

Violations 

3 

Ardimerin 

digallate 

 

C42H40O26 Molecular weight 

(<500Da)  

 

LogP (<5)  

 

H-Bond donor (5)  

 

H-bond acceptor 

(<10)  

 

Violations 

960.75 g/mol 

 

1.45 

 

14 

 

26 

 

3 

 

no 

Mukurozios

ide IIb 

 

C51H86O28 Molecular weight 

(<500Da) 

 

 LogP (<5)  

 

H-Bond donor (5)  

 

H-bond acceptor 

(<10)  

 

Violations 

1147.21 g/mol 

 

4.38 

 

16 

 

28 

 

3 

 

no 
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Lycoperosi

de F 

 

C58H95NO2

9 

 

Molecular weight 

(<500Da)  

 

LogP (<5)  

 

H-Bond donor (5)  

 

H-bond acceptor 

(<10)  

 

Violations 

1270.378 

 

 

4.95 

 

17 

 

30 

 

3 

 

no 

Uttroside B C56H94O28 Molecular weight 

(<500Da)  

 

LogP (<5)  

 

H-Bond donor (5)  

 

H-bond acceptor 

(<10) 

 

 Violations 

1215.342 
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Table 8.ADME of the top 5 marine hits 

 

Compound  Molecular 

formula 

ADME Properties 

(Lipinki’s Rule of 

Five) 

 

Properties Value Structure Drug 

likeliness 

Daldiniside 

B-

CMNPD24

886 

 

C15H16O8 Molecular weight 

(<500Da)  

 

LogP (<5) 

 

H-Bond donor (5) 

 

H-bond acceptor 

(<10)  

 

Violations 

324.287 

 

 

 

2.12 

 

 

3 

 

 

9.8 

 

 

 

0 

 

yes 

arthone C-

CMNPD30

269 

 

C16H12O8 Molecular weight 

(<500Da)  

 

LogP (<5)  

 

H-Bond donor (5)  

 

H-bond acceptor 

(<10)  

332.266 

 

 

 

1.98 

 

 

 

2 

 

yes 
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Violations 

 

6.45 

 

 

0 

engyodonti

umone H-

CMNPD24

551 

 

C16H14O7 Molecular weight 

(<500Da)  

 

LogP (<5)  

 

H-Bond donor (5)  

 

H-bond acceptor 

(<10)  

 

Violations 

318.282 

 

 

 

2.29 

 

 

1 

 

 

6.65 

 

 

0 

 

yes 

3-[2-[2-

hydroxy-3-

methylphen

yl-5-

(hydroxyme

thyl)]-2-

oxoethyl] 

glutarimide-

CMNPD24

436 

C15H17NO5 Molecular weight 

(<500Da)  

 

LogP (<5)  

 

H-Bond donor (5)  

 

H-bond acceptor 

(<10)  

 

Violations 

291.303 

 

 

1.29 

 

 

2 

6.45 

0 

 

yes 
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isonaamidin

e D 

-

CMNPD96

69 

C21H19N5O

4 

Molecular weight 

(<500Da)  

 

LogP (<5)  

 

H-Bond donor (5)  

 

H-bond acceptor 

(<10)  

 

Violations 

405.412 

 

 

 

2.45 

 

 

3 

 

 

7.5 

 

 

0 

 

yes 

 

3.3.5. Visualization of the Docked complexes: 

The ligand docking calculations were performed using the extra precision (XP) mode of 

Glide. Based on the ADME analysis and docking scores, we selected three ligands as the best hits. 

• Ligand 1, XXL xyloglucan oligosaccharide, exhibited a high binding score of -18.93. 

The docking results revealed 14 short hydrogen bonds formed with the amino acids on CP. 

• Ligand 2, Lycoperoside F (TIP011972), achieved a docking score of -15.5. It formed 

11 hydrogen bond interactions and 5 hydrophobic interactions with CP. 

• Ligand 3, Ardimerin digallate (TIP009181), demonstrated a binding score of -13.6. 

It engaged in 7 hydrogen bonds with CP, along with a salt bridge with Lys619 (Figure 49). 

Furthermore, Uttroside B (TIP012195) exhibited a binding score of -13.6, forming 8 

hydrogen bonds and 4 hydrophobic interactions with CP. Mukurozioside IIb (TIP011396.1) formed 

10 hydrogen bonds and 8 hydrophobic interactions with CP, also with a binding score of -13.6. 
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Figure 49. Interaction of ceruloplasmin with phytochemicals showing highest binding 

affinities in the order: a)Ligand 1: XXL xyloglucan oligosaccharide-Hit 1, b)Ligand 2: 

Lycoperoside F (TIP011972)-Hit 2, c)Ligand3:  Ardimerin digallate (TIP009181)-Hit 3 

respectively. 

 

All three top ligands exhibited a minimum of 7 hydrogen bonds and 5 hydrophobic 

interactions, indicating their potential as promising hits for further analysis through MD simulations. 

 

iii) Evaluation of selected inhibitor(s) using Molecular Dynamics Simulation 

 

MD was performed on all 5 best hits obtained after docking and ADME analysis, using 

Desmond Simulation Package from Schrodinger which was run to check ligand – protein binding 

stability over 100ns. 

 

3.3.6. Protein RMSD: 

The protein RMSD analysis provides insights into the structural conformation changes of 

the protein and ligand during the simulation. It involves aligning all frames of the protein to a 
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reference backbone and calculating the RMSD based on atom selection. Changes greater than 1-3 

Å indicate significant conformational changes in the protein during the simulation. 

Figure 50 depicts the root mean square deviation (RMSD) of the three ligands with the 

highest binding scores. The atomic positions for the regions corresponding to CP and Hit1 (XXL 

xyloglucan oligosaccharide) exhibit notably small variations, indicating a stable binding of the 

ligand to the protein. Smaller RMSD values indicate a more stable ligand-protein complex(Kufareva 

& Abagyan, 2012). 

In the case of the Hit2 (Lycoperoside F) complex, the protein shows insignificant deviation 

and attains stability (< 4.5 Å) throughout the simulation. However, the ligand exhibits larger 

deviations towards the end (> 10 Å). 

In the Ardimerin digallate CP complex, the protein remains stable throughout the simulation, 

while the ligand displays comparably stable behavior (< 4 Å) with minor fluctuations (> 5 Å) around 

100 ns. These fluctuations decrease to 3.5 Å by the end of the simulation. This indicates that the 

selected natural compounds binding to the CP-MPO interaction site result in a stable protein 

conformation with minimal or no conformational changes during the 200 ns simulation. 

The control  amitriptyline, shows substantial deviation with an RMSD value of 105 Å at 35-

40 ns, which decreases to 45 Å at 100 ns and then reaches a stable equilibrium state until the end of 

the 200 ns simulation.  

The simulations for Hit 2 and Hit 3 binding to CP show more variation in RMSD values for 

these ligands before stabilizing around a fixed value. The ligand RMSD values indicate the stability 

of the ligand in relation to the protein's binding site. Similar RMSD values between the ligand and 

the protein in Hit1 and Hit2 suggest that the ligands remain bound to the protein's binding site 

throughout the simulation. In the case of Hit 3, the lower RMSD values towards the end suggest 

that the ligand moves away from the binding pocket. 
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Figure 50. a) Protein-Ligand RMSD of CP-control, b) RSMSD of CP-Hit1, c) RMSD of 

CP-Hit2, d)RMSD of CP-Hit3. The simulation for Hit 2 and Hit3 binding at ceruloplasmin shows 

more variation in RMSD values for these ligands before getting stabilized around a fixed value. The 

atomic position's behavior is notably small for the regions corresponding to the CP and Hit1 i.e., 

XLLG xyloglucan oligosaccharide. 

 

3.3.7. Protein-ligand contact mapping: 

During the MD simulation, we analyzed the interactions between the protein amino acids 

and our ligands. The docked complexes were examined for four types of protein-ligand interactions: 

hydrogen bonds, hydrophobic interactions, ionic interactions, and water bridges. The stacked bar 

charts in Figure 51 illustrate the normalized protein-ligand interactions over the course of the 

trajectory(Dubey et al., 2014). 
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For the first hit, hydrogen bonds and water bridges were predominantly observed throughout 

the simulation, with minimal hydrophobic interactions (Figure 51). Hydrogen bonds play a crucial 

role in drug specificity, absorption, and metabolism. On the other hand, all three hits displayed 

hydrophobic interactions, and hit 3 also exhibited ionic interactions. These findings make Hit 2 and 

Hit 3 more promising drug candidates for docking with CP (Wade & Goodford, 1989). 

In the XLLG xyloglucan oligosaccharide complex, Glu704, Ser706, and Phe708 residues 

formed hydrogen bonds for 100% of the simulation time. Gln821 and Glu844 residues showed 

hydrogen bond formation for more than 75% of the total simulation duration. Additionally, Val888 

formed water bridges for 30% of the simulation time and exhibited hydrophobic interactions for 

10% of the duration. Trp669 displayed hydrophobic interactions for 40% of the time and also formed 

water bridges for 30% of the simulation. 

In the Lycoperoside F complex, hydrogen bonds were observed with residues Lys619, 

Asp671, Thr672, Glu673, and Asp705 for 100% of the simulation. Trp669 showed hydrophobic 

interactions for 50% of the time and formed water bridges. Asp554 formed water bridges for 50% 

of the time, along with ionic interactions for 10% of the duration, and hydrogen bonds for the 

remaining 45%. 

In the Ardimerin digallate complex, Trp669 and Tyr709 residues exhibited hydrophobic 

interactions for 40% and 25% of the 200 ns simulation, respectively. They also formed water bridges 

for about 20% of the time. GLN673 formed water bridges for over 70% of the simulation period. 

Gly844 formed hydrogen bonds for 100% of the simulation time, while Glu704 and Gln702 formed 

hydrogen bonds for approximately 70-75%. 

The residues in the control amitriptyline complex mostly showed hydrophobic interactions, 

with only Glu633 forming hydrogen bonds for 40% of the duration. 

Based on the overall analysis of the MD simulation, Lycoperoside F displayed potential 

dynamic stability compared to the other selected natural compounds and the control molecule. 
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Figure 51: Protein-Ligand interaction over more than 30.0% of the simulation time in the 

selected trajectory (0.00 through 200.01 nsec) of control (a) Hit 1(b), Hit2 (c), Hit3(d). The docked 

complexes are analyzed for the following protein-ligand interactions: Hydrogen Bonds, 

Hydrophobic interaction, Ionic interaction and Water Bridges 

 

3.3.8. RMSF analysis: 

The RMSF (Root Mean Square Fluctuation) value provides insight into the specific 

variations of atoms/residues in each complex's protein and ligand molecules. The Protein RMSF 

analysis of the three selected phytochemical complexes revealed low fluctuations throughout the 

simulation time. The protein residues in all docked complexes exhibited stability (< 3 Å) with minor 

residual fluctuations (Figure 52(a)). However, the ligand RMSF analysis showed some atomic 

fluctuations. In the case of XLLG xyloglucan oligosaccharide, the ligand residues exhibited 

fluctuations with RMSF values below 3 Å. On the other hand, the ligand molecule of Lycoperoside 
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F displayed substantial fluctuations, reaching a maximum RMSF value of 8 Å. Hit 3 Ardimerin 

digallate showed atomic stability (< 3 Å) with acceptable fluctuations. Interestingly, the control 

compound amitriptyline showed a very high RMSF (Figure 52a, b). 

 

i) 
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ii) 

 

Figure 52(i): Protein RMSF graph of the protein-ligand complex viz control 

Amitriptyline, a: Hit1 b: Hit2 c: Hit3 (ii) Ligand RMSF of a: Hit1 b: Hit2 c: Hit3 and controls 

 

3.3.9. Comparative Analysis of a) radius of gyration, b) hydrogen bonding, and c) 

SASA of CP protein and control and selected drugs: 

The three selected ligands were compared with the control. The RMSD analysis showed 

good stability of all hits throughout the 200 ns simulation. Similarly, the hydrogen bonds remained 

stable throughout the simulation, with Hit 2 and Hit 1 exhibiting higher stability. Hit 1 also showed 

the highest Solvent Accessible Surface Area (SASA) (Figure 53). 
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Figure 53. a) RMSD over the entire simulation of the Control and Hit 1, 2and 3, b) Radius 

of gyration (Rg) over the entire simulation, using time (ns) as the abscissa and Rg as the ordinate. 

c) Total H-bond count during the course of the simulation d) Solvent accessible surface area 

(SASA), with time (ns) as the abscissa and SASA as the ordinate. 

 

Evaluation of Stable Protein-Ligand Interactions during MD: 

Further analysis was conducted to evaluate the stable protein-ligand interactions during the 

MD simulation. The interactions were examined for subtypes of hydrogen bonds, such as backbone 

acceptor, backbone donor, side-chain acceptor, and side-chain donor. Protein-ligand hydrogen 

bonds were considered strong when the distance between the donor and acceptor atoms was 2.5 Å 

(D—H•••A), and the donor-hydrogen-acceptor atoms formed an angle of ≥120° (D—H•••A). The 

hydrogen-acceptor-bonded atom should have an acceptor angle of ≥90° (H•••A—X). Additionally, 

π-Cation, π-π, and other non-specific interactions were divided under the category of hydrophobic 

interactions (Varma et al., 2010) 
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For Hit 1, we observed 96% and 92% hydrogen bond interactions within the ligand (Fig. 

11a). 

Hit 2 displayed 10 hydrogen bonds along with three water bonds (>30%). It showed an 83% 

hydrogen donor bond interaction with SER703 (Fig. 11b). 

Hit 3 exhibited 4 hydrogen bonds and one pi–pi stacking interaction. Considering hydrogen 

bonds are the strongest, we conclude that hit 2 i.e., Lycopersicon esculentum (TIP011972) is the 

best ligand to use for docking studies against CP. 

 

Figure 54. Desmond MD calculated protein−ligand contacts at CP binding site with Hit 

1(a), 2(b), 3(b) 

Discussion of part 3.3: 

Following molecular docking studies, MD was used to rank the three compounds according 

to their binding energies and ADME characteristics as follows: Hit 2: Lycoperoside F> Hit1: XLLG 

xyloglucan oligosaccharide> Hit3:  Ardimerin digallate 

The above data shows all three drugs can be further explored and validated through further 

experimentation. 

 

Hit 1: XLLG xyloglucan oligosaccharide: 

PubChem CID: 52940189 
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A backbone of glucosyl residues that are β-(1→4)-linked glucosyl residues and α-(1→6)-

substituted with xylosyl residues makes up xyloglucan. The majority of xyloglucan structures allow 

for the extension of the xylosyl substituents with galactosyl and fucosyl residues. The cotyledons of 

tamarind seeds can be used to obtain xyloglucans, which are mostly present in the main cell walls 

of higher plants and are commercially accessible as a thickening, stabilizer, gelling agent, ice-crystal 

stabilizer, and starch modifier. Clinical trials are being conducted with xyloglucan oligosaccharide 

on individuals with diarrhea and irritable bowel syndrome. In order to protect and strengthen the 

intestinal barrier, they created Gelsectan, a medical device combining xyloglucan (XG), pea protein 

and tannins (PPT) from grape seed extract, and xylo-oligosaccharides (XOS).In order to create drug-

functionalized cellulosic biomaterials, efforts are being made to employ doxorubicin and xyloglucan 

glycoconjugates due to the severe side effects of anthracycline anticancer agents(Bliman et al., 

2018).  

XLLG showed a docking score of -18.93 in our docking studies with CP.         

 

 

Xyloglucan oligosaccharide 

Hit 2: Lycoperoside F:  

Lycoperoside f is a steroidal alkaloid glycoside from tomato (Lycopersicon esculentum) 

with Pubchem ID 21577181(Yoshizaki et al., 2005). 

Lycoperoside f obtained from Lycopersicon esculentum (TIP011972.sdf) that docked at our 

site of interest with a binding score of -15.553 with significant number of hydrogen bonds as well 
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as hydrophobic interactions. It showed good results of ADMET and drug likeness. Hence 

Lycoperoside f can be a suitable drug that can be further validated through invitro studies for binding 

at the MPO-CP interaction site.  

 

 

Lycoperoside F 

 

Hit3:  Ardimerin digallate 

PubChem CID: 16681402 

A C-glycosyl molecule called ardimerin digallate was discovered in the entire plants of 

Ardisia japonica. It is a dimeric lactone that has inhibitory effects on the enzymes Ribonuclease 

H226 and HIV-1. It functions as a metabolite and an inhibitor of the enzyme retroviral ribonuclease 

H. It is a C-glycosyl compound, a lactone, an aromatic ether and a gallate (C. F. Liu, 2022). 

 

                                                           Ardemerin digallate 
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CHAPTER 4  

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 
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CP, an abundant copper-binding protein, has been implicated in various aspects of tumor 

biology. In tumors, CP expression and activity has been seen to exhibit significant alterations, 

leading to potential implications for tumor progression and therapeutic outcomes. 

One aspect of CP's involvement in tumors is its role in regulating oxidative stress. CP has 

antioxidant properties and can scavenge reactive oxygen species (ROS), thereby counteracting 

oxidative damage in tumor cells. Its ability to bind copper allows for efficient oxidation of 

substrates, including ferrous iron, which is important for tumor cell proliferation and survival. 

Moreover, CP has been associated with angiogenesis, the process of new blood vessel formation 

that is crucial for tumor growth and metastasis. CP can modulate angiogenesis by influencing the 

activity of pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), and 

facilitating the remodeling of the extracellular matrix(Figure 55). 

 

Figure 55: Proposed mechanism of ceruloplasmin action in oral cancer pathways 
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In addition to its roles in oxidative stress management and angiogenesis, the upregulation of 

CP in tumors may impact immune responses. It has been shown to regulate immune responses and 

modulate the function of immune cells within the tumor microenvironment. CP can influence the 

polarization of immune cells, such as macrophages, towards tumor-promoting phenotypes, thereby 

facilitating tumor immune evasion and immunosuppression. Furthermore, our network analysis 

results suggests a potential association between CP and cancer metastasis. CP may affect the 

epithelial-mesenchymal transition (EMT), a process involved in tumor cell invasion and metastasis. 

It can influence EMT-related signaling pathways, such as the transforming growth factor-beta 

(TGF-β) pathway, thereby promoting tumor cell migration and invasion.  

Our study reports associations between CP expression levels and clinicopathological 

features, including tumor stage, grade, and patient survival rates, in HNC patients. The upregulation 

of CP in tumors has clinical implications as well. Elevated levels of CP have been associated with 

poor prognosis, advanced tumor stage, and reduced survival rates in certain cancer types. Therefore, 

CP upregulation may serve as a potential prognostic biomarker for assessing tumor aggressiveness 

and predicting patient outcomes. 

The interaction between CP and MPO can suppress the peroxidase activity of MPO under 

normal physiological conditions. This inhibition prevents the production of HOCl (Hypochlorous 

acid) by MPO in Tumor-Associated Neutrophils within the tumor microenvironment. As a result, 

HOCl-mediated caspase activity, which typically leads to apoptosis, is suppressed. This mechanism 

may contribute to tumor survival in later stages. Our Tumor Immune Infiltration analysis revealed 

that high CP expression is correlated with the expression of PDL1 and TIM3, both of which activate 

NETosis (Neutrophil Extracellular Traps formation). These NETs have previously been linked to 

promoting tumor metastasis. Therefore by targeting CP-MPO interaction we are targeting CP's role 

in immune regulation in patients with head and neck cancer(Figure 56). 
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Figure 56: Proposed Role of MPO-CP interaction in the Tumor micro environment 

 

Xyloglucan oligosaccharide and Ardimerin digallate metabolites showed good docking 

scores at the CP- MPO interaction site. We also identified the phytochemical lycoperoside f obtained 

from Lycopersicon esculentum (TIP011972.sdf) that docked at our site of interest with good binding 

score along with significant number of hydrogen bonds as well as hydrophobic interactions. They 

all showed good results of ADMET and drug likeness. This inhibition enables myeloperoxidase to 

carry out its chlorinating function, producing HOCl that triggers the caspase enzyme to kill tumor 

cells. Additionally, MPO and CP interaction shield CP from proteolysis. In order to achieve greater 

proliferation rates, tumor cells up-regulate CP to combat the elevated ROS caused by increased iron 

absorption. Therefore, CP is destroyed in the absence of MPO, which causes iron to build up inside 

of the tumor cells and eventually cause ferroptotic tumor cell death. We suggest further research 

into these compounds through additional in vitro and in vivo validation studies since they may be 

potential leads in the drug development for cancer therapy. 
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In summary, the upregulation of CP in tumors is associated with multiple aspects of tumor 

biology, including oxidative stress management, angiogenesis, immune modulation, and metastatic 

potential. Understanding the mechanisms underlying CP upregulation and its functional 

consequences in tumors has provided valuable insights for the development of novel therapeutic 

strategies targeting this protein in cancer treatment. Examining whether modulating CP expression 

or activity could have therapeutic benefits, either alone or in combination with existing therapies, 

could be an important area of future research. 

The protein CP previously illustrated as a biomarker of cancer progression. Further,in this 

study, we revealed structure-based site specific docking investigations of a variety of active 

phytochemical compounds and marine chemicals against CP protein.  Lycoperoside F, XLLG 

xyloglucan oligosaccharide, and Ardimerin digallate, which have the highest binding affinities to 

ceruloplamsin and exhibit strong interactions with the amino acids involved in CP-MPO interaction, 

raise the possibility of using these substances to inhibit CP-MPO. Invitro research could be used to 

learn more about these substances. With these advancements we hope drug repurposing could 

significantly contribute to the development of therapeutic medications and the efficient management 

of cancer. 
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