UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Course: Avionics System Design
Program: ASE+AVE
Course Code: AVEG 4007
Semester: VIII
Time : 03 hrs.
Max. Marks: 100

Instructions:

Instruc	SECTION A		
(5Qx4M=20Marks)			
S. No.		Marks	CO
Q 1	Discuss the term Autopilot and its types	4	CO1
Q 2	What are generalized error coefficients?	4	CO2
Q 3	Define positional constant	4	CO3
Q 4	List the time domain specifications.	4	CO4
Q 5	Sketch the response of a second order under amped system.	4	CO4
	SECTION B		1
	(4Qx10M = 40 Marks)		
Q 6	For the system with following transfer function, determine type and order of the system $(1) \ G(s)H(s) = \frac{K}{s(s+1)(s^2+6s+8)} \qquad (2) \ G(s)H(s) = \frac{20(s+2)}{s^2(s+3)(s+0.5)}$ $(3)G(s)H(s) = \frac{(s+4)}{(s-2)(s+0.25)} \qquad (4) \ G(s)H(s) = \frac{10}{s^3(s^2+2s+1)}$	10	CO2
Q 7	A unity feedback system has a open loop transfer function of $(s) = \frac{10}{(s+1)(s+2)}$. Determine the steady state error for unit step input.	10	CO3
Q 8	The characteristic polynomial of the system is , $s^7 + 9s^6 + 24s^5 + 24s^4 + 24s^3 + 24s^2 + 23s + 15 = 0$, Determine the location of the roots on s- plane and hence the stability of the system.	10	CO 4
Q 9	The characteristic polynomial of the system is , $s^7 + 9s^6 + 24s^5 + 24s^4 + 24s^3 + 24s^2 + 23s + 15 = 0$, Determine the location of the roots on s- plane and hence the stability of the system.	10	CO4
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Construct the routh array and determine the stability of the system whose characteristic equation is $s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 +$	20	CO1

