Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Program: B. Sc. (Hons.) Mathematics **Course:** Riemann Integration and Series of Functions **Course Code: MATH 2014** Semester: IV Time : 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory

SECTION A				
(All questions are compulsory)				
S. No.		Marks	СО	
Q 1	Prove that the function defined as $f(x) = \begin{cases} \frac{1}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$ is not Riemann integrable on [0, 1].	4	CO1	
Q 2	Examine the convergence of $\int_0^1 \frac{1}{x^2} dx$.	4	CO2	
Q 3	Show that the series $x^4 + \frac{x^4}{1+x^4} + \frac{x^4}{(1+x^4)^2} + \frac{x^4}{(1+x^4)^3} + \cdots$ is not uniformly convergent on [0, 1].	4	CO3	
Q 4	Suppose that f is a function defined on $[a, b]$ and that f is Riemann integrable on each closed subinterval of (a, b) . Give an example to show that f may not be Riemann integrable on $[a, b]$.	4	CO1	
Q 5	Prove that $\Gamma(m + 1) = m\Gamma(m)$.	4	CO2	
	SECTION B			
(All questions are compulsory Q9 has internal choices)				
Q 6	Prove that if f is integrable on $[a, b]$ then f^2 is also integrable on $[a, b]$.	10	CO4	
Q 7	The function f is defined on $[0, \infty)$ by $f(x) = (-1)^{n-1}$, $n-1 \le x \le n$, $n \in N$ then show that the integral $\int_0^\infty f(x) dx$ does not converge.	10	CO2	
Q 8	Show that the function $f(x) = x^2$ is Riemann integrable on any interval [0, k].	10	CO1	
Q 9	Show that the series $\sum_{n=1}^{\infty} \frac{x}{(nx+1)\{(n-1)x+1\}}$, is uniformly convergent on any interval $[a, b], 0 < a < b$, but only pointwise on $[0, b]$. OR Show that the serie $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n+x^2}$ s is uniformly convergent but not absolutely for all real values of x .	10	CO3	

SECTION-C					
(All questions are compulsory, Q 10 has two parts each of 10 marks, Q11 has internal choices)					
Q 10	A. Let $\langle f_n \rangle$ be a sequence of functions such that $\lim_{n \to \infty} f_n(x) = f(x)$,				
	$x \in [a, b]$ and let $M_n = \sup_{x \in [a, b]} f_n(x) - f(x) $ then $f_n \to f$ uniformly on $[a, b]$	20	CO4		
	if and only if $M_n \to 0 \text{ as } n \to \infty$.				
	B. If a power series $\sum a_n x^n$ converges for $x = x_0$ then it is absolutely				
	convergent for every $x = x_1$, when $ x_1 < x_0 $.				
Q 11	A. Show that $\sum \frac{1}{n^2} = \frac{\pi^2}{6}$, $n \in N$.				
	B. Show that $\sum \frac{\log n}{n^x}$ converges uniformly for all real $x \ge 1 + \alpha > 1$.				
	OR				
	A. Prove that the power series $1 + \frac{a.b}{1.c}x + \frac{a(a+1)b(b+1)}{1.2.c.(c+1)}x^2 + \cdots$, has unit	20	CO3		
	radius of convergence.				
	B. Discuss the uniform convergence with respect to x of the series, $\sum_{n=1}^{\infty} \frac{x^n}{n^{\alpha}}$.				