Name: **W**UPES **Enrolment No:** UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022 Programme Name: B. Tech in Applied Petroleum Engineering, Spl. Gas Semester : **IV** : Mass Transfer Operations **Course Name** Time : 03 hrs. **Course Code** : CHCE 2017 Max. Marks : 100 Nos. of page(s) :2 Instructions: The exam will be **OPEN BOOK and OPEN NOTES**. The students are allowed any textbooks, photo-copied and hand-written notes. Graph papers are needed for the solution. Please make necessary assumptions and mention them whenever and wherever necessary SECTION A [30] S. No. Marks CO Starting from $N_A = N$. $X_A + J_A$, show that $j_A + j_B = 0$ Q1. Here, N, N_A and J_A are the molar fluxes in kmol/m².sec and j_A and j_B are mass fluxes in [10] **CO1** kg/m².sec. ρ_A is the density and v_A , v are the velocities. A bubble of oxygen is dissolving in a pool of water inside a bubble column. The bulk Q2. concentration of oxygen in a bubble is 0.04 kmol/m³. You may assume a negligible concentration of oxygen in the water. The liquid-side and gas-side overall mass transfer coefficients are given by For the Liquid phase $Sh = 2 * Re^{0.8}Sc^{0.2}$ For Gas-phase $Sh = 1.1 * Re^{0.6}Sc^{0.1}$ The diameter of the column is 0.2 m, and the average velocities of oxygen and water are 0.15 m/s and 1 m/s respectively. [20] **CO2** Data: Oxygen Water Density (Kg/m³) 1000 6.5 Viscosity (Pa. sec) 2.04 x 10⁻⁴ 0.001 2 x 10⁻⁹ Diffusivity (m^2/sec) 1.65 x 10⁻⁹ 0.0001 0.0001 δ (m) (a) Calculate and decide which side (Gas or liquid) is controlling the mass transfer. (b) If the equilibrium condition is given by $y_{Ai} = 0.5X_{Ai}$, Calculate the interface concentrations. SECTION B [30] a) If you have a Liquid-Liquid mixture that needs to be separated what are the various Q3. criteria that you as an engineer will need to check before you decide its separation **CO3** [15] methodology?

	b) What are the major engineering problems that you expect to experience while handling solid-gas and solid-liquid mass transfer processes?c) As an engineer you noticed that the product specifications for an absorption process in a packed column are not being achieved. What all factors may be affecting the behavior of the column?		
Q4.	Sour water (H ₂ S+water) is added to a stripping column containing 0.98% H ₂ S in water at 450 kmol/hr. The process is carried out in a packed column of 2.5 m ² cross-sectional area and containing 1.5 mm ceramic saddle packings at 90°C and 1 atm. Pure steam is added from the bottom at 200 kmol/hr to remove 98% H ₂ S from the water. Calculate the height of the packing required for the process if the overall mass transfer coefficient is K_L . a = 150 kmol/hr.m ³ . The equilibrium relation is given by y = 1.58x . Assume no condensation of steam is occurring in the column. (<i>Hint: You may take necessary assumptions</i>)	[15]	CO4
SECTION C [40]			
Q5.	A distillation unit consists of a partial reboiler a bubble cap column and a total condenser. The overall plate efficiency is 65%. The feed is a 50% vapor-liquid mixture consisting of 60 mol% ethanol in water. This liquid is fed to the optimal plate. The column is to produce a distillate containing 95 mol% more volatile and bottoms of 95 mol% less volatile. Calculate the following for an operating pressure of 1 atm: a) The value for (L/D) _{min} b) Minimum number of real plates to carry out the desired separation c) If the optimum reflux ratio is 50% more than the minimum, calculate the actual number of plates needed d) Optimum feed tray location e) Molar flow rate (kmol/hr) of product and residue produced if 1000 kmol/hr of feed is fed The equilibrium data is as follows: $\frac{Y^* 0.21 0.37 0.51 0.64 0.72 0.79 0.86 0.91 0.96 0.98}{X 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95}$	[40]	CO4