Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2022

Programme Name: B.Tech ECE Course Name: Analog Electronics II Course Code: ECEG 2014 Nos. of page(s): 3

Semester: IV Time: 03 hrs Max. Marks: 100

S. No.	SECTION A (5Qx4M=20Marks)	Marks	CO
1	Draw the hysteris loop for Shemitt trigger with proper deficnition of Transition voltages.	4	CO1
2	The overall gain of a multistage amplifier is 140. When negative voltage feedback is applied, the gain is reduced to 17.5. Find the fraction of the output that is fedback to the input (feedback gain).	4	CO2
3	Define the "Barkhausen criterion" for sustained oscillations?	4	CO1
4	Define the Slew rate for op-amp. Compute the maximum input frequency if $Vo = 100 \text{mSin} 2\pi \text{ft}$ for SR = 10V/us.?	4	CO2
5	Evaluat the expression of the output voltage Vo for the given op-amp circuit shown in Figure 1? $V_1 \xrightarrow{33 \text{ k}\Omega} +9 \text{ V}$ $V_2 \xrightarrow{10 \text{ k}\Omega} +9 \text{ V}$ Figure 1	4	CO3
SECTION B			
(4Qx10M= 40 Marks)			
6	Prove that duty cyle of the A-stable schmitt trigger is 50 %. Comute the expression for Charging and discarging time of the capacitor by using proper waveforms.	10	CO2
7	Consider the given op-amp network as shown in Figure. 2 and sketch the V_{OUT} waveform with proper explanation and working?	10	CO3

