Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: Linear Algebra Program: B.Sc. (Hons.) Mathematics & Int. B.Sc. - M.Sc. Mathematics Course Code: MATH 1047 Semester: II Time : 03 hrs. Max. Marks: 100

Instructions:

- 1. Section A has 5 questions. All questions are compulsory.
- 2. Section B has 4 questions. All questions are compulsory. Question 9 has internal choice to attempt any one.
- Section C has 2 questions. All questions are compulsory. Question 11 has internal choice to attempt either (a), (b) or (c), (d).
 SECTION A

(5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Show the vectors of the set $\{p_0(x), p_1(x), \dots, p_n(x)\}$ are linearly independent in $P_n(F)$, where $p_k(x) = x^k + x^{k+1} + \dots + x^n$ for $k = 0, 1, \dots, n$.	4	CO1	
Q 2	Is the set of linearly independent vectors $\{(1,0,0,0), (0,2,3,0), (0,0,1,4)\}$ form the basis of vector space R^3 ? If not then give your justification.	4	CO1	
Q 3	In R^3 , let $\alpha = \{(1,0,0), (0,1,0), (0,0,1)\}$ and $\beta = \{(1,1,1), (1,1,0), (1,0,0)\}$ be the ordered bases of R^3 . Calculate change of coordinate matrix.	4	CO2	
Q 4	Let <i>A</i> be the matrix of linear operator <i>T</i> with respect to the basis β . Find the minimal polynomial of <i>T</i> if <i>A</i> is given as below $A = \begin{bmatrix} 3 & -1 & 0 \\ 0 & 2 & 0 \\ 1 & -1 & 2 \end{bmatrix}.$	4	CO3	
Q 5	Show that the operator $T \in L(C^2)$ defined by $T(w, z) = (z, 0)$ is not diagonalizable. (Here, C represents set of complex numbers).	4	CO3	
SECTION B				
(4Qx10M= 40 Marks)				
Q 6	For the data $\{(1,2), (2,3), (3,5), (4,7)\}$, use least square approximation to find the best fit linear function.	10	CO4	
Q 7	Show that the set $W = \{(a, b, c): a, b, c \in R \text{ and } a + b + 2c = 0\}$ is a subspace of vector space R^3 .	10	CO1	

Q 8	Let $T: P_2(R) \to P_3(R)$ be the linear transformation defined by			
	$T(f(x)) = 2f'(x) + \int^{x} 3f(t)dt.$	10	CO2	
	Show that T is one-to-one but not onto.			
Q 9	Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by T(x, y) = (x + 3y, 0, 2x - 4y). Find the matrix representation of T with respect to standard ordered bases for \mathbb{R}^2 and \mathbb{R}^3 . OR Find the null(T)and range(T) of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x - y, 2z).	10	CO2	
SECTION-C (2Qx20M=40 Marks)				
Q 10	 (a) The linear operator T: R² → R² defined by T(x, y) = (3x + 2y, x). Let β be the standard ordered basis for R². Find the matrix of dual map T' with respect to the dual basis β'. (b) Let T be the linear operator on R² defined by T(a, b) = (a + 2b, -2a + b) and β be the standard ordered basis for R². Verify Cayley-Hamilton theorem for operator T. 	20	CO3	
Q 11	 (a) Give the definition of self-adjoin operator on an inner product space. (b) Let V = P(R) with the inner product ⟨f(x), g(x)⟩ = ∫¹₋₁ f(t)g(t)dt, and consider the subspace P₂(R) with the standard ordered basis β. Apply Gram-Schmidt process to replace β by an orthogonal basis {v₁, v₂, v₃} for P₂(R), and then use this orthogonal basis to obtain an orthonormal basis for P₂(R). OR (c) Give the definition of normal operator on an inner product space. (d) Calculate the minimal solution of the following system of equations x + 2y - z = 1 2x + 3y + z = 2 4x + 7y - z = 4 	20	CO4	