Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2022

Course: BA Eco (Hons.) Program: Time Series Econometrics Course Code: ECON 3016 Semester: VI Time: 03 hrs. Max. Marks: 100

Instru	ctions: Attempt all the questions.		
	SECTION A 100x2M=20Marks		
S. No.		Marks	СО
Q 1	 Which of the following correctly identifies a difference between cross-sectional data and time series data? a. Cross-sectional data is based on temporal ordering, whereas time series data is not. b. Time series data is based on temporal ordering, whereas cross-sectional data is not. c. Cross-sectional data consists of only qualitative variables, whereas time series data consists of only qualitative variables. d. Time series data consists of only qualitative variables, whereas cross-sectional data does not include qualitative variables. 	2	CO1
Q 2	A stochastic process refers to a:a. sequence of random variables indexed by time.b. sequence of variables that can take fixed qualitative values.c. sequence of random variables that can take binary values only.d. sequence of random variables estimated at the same point of time.	2	CO1
Q 3	 The sample size for a time series data set is the number of: a. variables being measured. b. time periods over which we observe the variables of interest less the number of variables being measured. c. time periods over which we observe the variables of interest plus the number of variables being measured. d. time periods over which we observe the variables of interest. 	2	CO1
Q 4	The model: $Y_t = \beta_0 + \beta_1 c_t + u_t$, t = 1,2,n, is an example of a(n): a. autoregressive conditional heteroskedasticity model. b. static model. c. finite distributed lag model.	2	CO1

	d. infinite distributed lag model.		
Q 5	 Which of the following is an assumption on which time series regression is based? a. A time series process follows a model that is nonlinear in parameters. b. In a time series process, no independent variable is a perfect linear combination of the others. c. In a time series process, at least one independent variable is a constant. d. For each time period, the expected value of the error u_t, given the explanatory variables for all time periods, is positive. 	2	CO1
Q 6	If an explanatory variable is strictly exogenous it implies that:a. changes in the lag of the variable does not affect future values of the dependent variable.b. the variable is correlated with the error term in all future time periods.c. the variable cannot react to what has happened to the dependent variable in the past.d. the conditional mean of the error term given the variable is zero.	2	CO1
Q 7	 Which of the following statements is true? a. The average of an exponential time series is a linear function of time. b. The average of a linear sequence is an exponential function of time. c. When a series has the same average growth rate from period to period, it can be approximated with an exponential trend. d. When a series has the same average growth rate from period to period, it can be approximated with a linear trend. 	2	CO1
Q 8	Adding a time trend can make an explanatory variable more significant if: a. the dependent and independent variables have similar kinds of trends, but movement in the independent variable about its trend line causes movement in the dependent variable away from its trend line. b. the dependent and independent variables have similar kinds of trends and movement in the independent variable about its trend line causes movement in the dependent variable towards its trend line. c. the dependent and independent variables have different kinds of trends and movement in the independent variable about its trend line causes movement in the dependent variable towards its trend line. d. the dependent and independent variables have different kinds of trends, but movement in the independent variable about its trend line causes movement in the dependent variable towards its trend line.	2	CO3
Q 9	A seasonally adjusted series is one which: a. has had seasonal factors added to it. b. has seasonal factors removed from it. c. has qualitative explanatory variables representing different seasons.	2	CO3

	d. has qualitative dependent variables representing different seasons.										
Q 10	Dummy variables can be used to address the problem of seasonality in regression models.										
	a. True										
	h False										
	c. Uncerta										
	d. Non of	the above									
			SEC	TION B							
		T	4Qx5M=	= 20 Marks				1			
Q 11	Summary	RSANDR	Summary Statistics	RFORD			5	CO2			
	Moon	0.420552	Mean	2.313318							
	Median	0.430552	Median	0.000000							
	Mauian	0.993048	Maximum	61.27256	i						
	Miatimum	8.291442	Minimum	-69.70721							
		-11.65612	Std. Dev.	22.02277							
	Std. Dev.	3.555048	Skewness	0.211686							
	Skewness	-0.795726	Kurtosis	5.267709							
	Kurtosis	4.675522	Jargue-Bera	13.96959	1						
	Jarque-Bera	14.01775	Probability	0.000926							
	Probability	0.000904	Sum	145.7390	1						
	Sum	27.12476	Sum Sq. Dev.	30070.15							
	Sum Sq. Dev.	783.5787	Observations	63							
	Observations	63	oboorvationio								
0.10	turn on ford motors is		~~~								
Q 12	2 Null Hypothesis: RSANDP has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)										
			1	t-Statistic	Prob.*						
	Augmented Dicke	v-Fuller test statis	stic -	7.465370	0.0000						
	Test critical values	s: 1% lev	el -	3.540198							
		el -	2.909206								
		- rel	2.592215								
	*MacKinnon (1996										
	Augmented Dicke Dependent Variab Method: Least Sq Date: 02/28/20 T Sample (adjusted) Included observat										
	Variable	Coeffic	cient Std. Error	t-Statistic	Prob.						

	RSANDP C	(-1) ·	-0.968443 0.459694	0.1297 0.4593	25 -7. 25 1.	465370 000802	0.0000 0.3209				
	R-squared Adjusted R-squ S.E. of regressi Sum squared re Log likelihood F-statistic Prob(F-statistic)	ared on esid	0.481560 0.472919 3.597022 776.3139 -166.3243 55.73175 0.000000	Mean dep S.D. depe Akaike inf Schwarz o Hannan-G Durbin-Wa	endent va ndent var o criterion criterion Quinn criter atson stat	r 0. 4. 5. 5. r. 5. 1.	102201 954552 429816 498433 456757 954840				
	Is the return on S&P is stationary? Comment.										
Q 13	13 Explain the following chart. What kind of statistical relationship you infer from the following graph?									5	CO2
	Future and Spot Price of Crude Oil in India										
	20000										
	15000	<u>.</u>									
	$1^{13}8^{17}1^{1$										
Q 14	What is Random Walk Model? Explain different specification of Random Walk Model.										
	1			S 3Ox	SECTIO 10M=30	N-C Marks					
Q 15	Explain the mo	del building	process fo	or ARIMA.						10	CO3
Q 16	Derive the mo	ean and var	iance for	r AR (1) M	Iodel.					10	CO3
Q 17	Variable	ARM A(3	3,3)	ARM A(3,3)	ARMA(3,3)	ARMA(3	,3)		
	C	Coefficient	Prob.	Coefficient	Prob.	Coefficient	Prob. 0.1629	Coefficient	Prob.		
	AR(1)	(0.6838)	0.0006*	(0.9741)	0.0000*	(0.9312)	0.0000*	(0.9282)	0.0000*		
	AR(2)	0.4596	0.1458	-	-	-	-	-	-	10	CO4
	AR(3)	0.8727	0.0000*	0.5921	0.0000*	0.5408	0.0000*	0.5380	0.0000*		
	MA(2)	(0.4632)	0.1356	0.0065	0.7505	-	-	-	-		
	MA(3)	(0.8979)	0.0000*	(0.6078)	0.0000*	(0.5687)	0.0000*	(0.5661)	0.0000*		
	AIC/SBC	-5.502745 / -	5.491518	-5.503097 /	-5.493473	-5.502352 /	-5.494333	-5.502366 / -	5.495951		
	Adj. R-square	0.005	9	0.006		0.00	50 La1 3371 (0.004	8		
Among all the above models, which you think, is the best model. Why?											
				20x	15M = 30) Marks					

Q 18	You are asked to do the forecasting GDP data for Indian Economy. Write in detail how you will forecast the GDP data.										15	CO3	
Q 19	Explain different methods to decompose a time series data. Calculate the three and five year moving averages from the following data										15	CO4	
	Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		
	Production	18	19	20	22	20	19	22	24	25	26		