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Abstract 

 

      Breast cancer is one of the major modern day problem in medical science 

that causes the death of thousands of women worldwide. One of the effective 

measures to confront this disease is early detection using an electron microscope 

generally applied by pathologists and clinicians on biopsy slides. The human 

intervention process of exposition of biopsy slides imply the identification of 

breast cut (e.g., masses part of biopsy), the segmentation of sample breast cut 

boundaries, the classification of it based on their color after staining, structure, 

emergence, and textural features. The manual analysis of breast cut from biopsy 

slides represents a large exposition variability amongst pathologists. This kind 

of problems and mutability can be reduced with the adaptation of the technique 

called computer aided diagnosis (CAD) that can assist the pathologists for 

analysis of breast lesions (cut) with clarity and high precisions. However, the 

CAD system is very useful in a clinical labs that efficiently help to clinicians to 

classify the breast lesions as malignant or benign as the extended scope of the 

work. 

      Digital pathology is strongly evolved in the last two decades and training 

for the changes and development is required for the pathologists. It includes 

both the imaging of tissues and remote consultations, also called telepathology, 

widely used as an option for a second opinion. To support the pathologists and 

clinicians to make a more comfortable and accurate diagnosis of the biopsy 

slides, it is developed the digital Whole Slide Imaging (WSI) system. 

Automated identification of the hot spots, image segmentation, and the 

classification of breast lesions are majorly the three steps involved in advanced 

CAD to analyze the WSI samples. Due to a large size of the whole slide images, 

it is difficult to display, read, process, identify and localize the region of 

interests (ROIs), and archives the digital slides. 

The machine learning algorithms have a vital role to implement the clinical 

decision support system (CDSS) used for pattern recognition and 

classifications. The CDSS is an integrated part of CAD. The WSI is supported 



iv 

 

by fluorescence, immunohistochemistry (IHC), and multispectral imaging 

concepts.  It is observed the computational challenges because of the complexity 

and large size of WSI sample. The goal of the research work is to identify and 

localize the ROIs on WSI slides and try to grade the breast cancer based on the 

proliferation score. The Ki-67 antigen is one of the suitable biomarkers to 

identify and differentiate between the immunopositive and immunonegative 

cells. The unsupervised machine learning algorithm is supported by shape 

formulas and morphological features implemented on ICIAR 2018 BACH 

datasets for finding and localizing the ROIs.  The achieved accuracy of the work 

is 85.5% using the similarity measure formula intersection over union (IoU). 

The accuracy is better than many existing state-of-the-art machine learning and 

deep learning algorithms.  

Grading of cancer is achieved by counting of immunopositive and 

immunonegative nuclear sections in a sample that determines the proliferation 

score. The BreCaHAD dataset contains a variety of malignant cases of different 

patients. It provides 40x magnification H&E stained microscopic 

histopathology images saved in .tiff format with RGB band. The procedure 

begins with preprocessing, which focuses on resizing, smoothing, and 

enhancement in this study. After preprocessing, the RGB sample is decomposed 

into the HSI color space. The BreCaHAD data set is stained with H&E, with 

brown and blue colour levels playing a key role in distinguishing 

immunopositive from immunonegative nuclear sections. A natural trait of H&E 

Ki-67 is the Blue color in RGB and the Hue in HSI color space. After 

segmentation, it is using Otsu’s thresholding and unsupervised machine 

learning to compute the shape parameters. The morphological operators aid in 

the resolution of the problem of overlapping nuclear sections in sample images, 

allowing for accurate counting and automatic segmentation.  

It is effectively possible to predict the label or grade of breast cancer using 

major morphological features and an unsupervised machine learning technique 

on the BreCaHAD dataset. The performance measures like accuracy: 90.8%, f-

score: 94.74%, precision: 95.7%, recall: 93.8%, specificity: 0.6803, Balance 

Classification Rate (BCR): 0.7975 and Mathew’s Correlation Coefficient 
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(MCC): 0.5855 are obtained in proposed methodology which is better than 

existing techniques. 
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Introduction and Motivation 

 Cancer Statistics 

Cancer has always affected human life. Until recently, the global impact and 

dispersion of cancer were only known in a few countries and communities. But 

nowadays, due to the technological enhancement, the information has been 

expanded globally and has a reasonable basis for the estimation of cancer data 

globally. One of the main reason of premature casualty is cancer to those aged 

30 to 69 in 134 out of 183 nations, and it ranks 3rd or 4th in the remaining 45 

countries. A total of 15200,000 early deaths were registered from 

noncontagious illness worldwide in 2016 and 4.5 million about 29.8% were due 

to the various cancer types. Top six most general carcinomas found worldwide 

are lung cancer, cervical cancer, stomach cancer, breast cancer, prostate cancer, 

and colorectal cancer with global trends in cancer occurrence and death [1]. 

Lung cancer is the regular cancer in the world in terms of both occurrence (2.1 

million new instances in 2018) and death (18000000 deaths in 2018). Smoking 

Tobacco is the strong reason of lung cancer, accounting for 63 percent of overall 

fatalities. More than 90 percent of lung cancer casualties in countries where both 

men and women smokes. The 3rd leading cancer type is colorectal cancer 

throughout the world, affecting both men and women (1800000 new cases in 

2018). In terms of casualties, it is ranked second (880000 casualties in 2018). 

The data shows that the death is much lower than occurrences reflects the most 

cases have a positive prognosis. The countries which have high HDI, relatively 

have high trends of colorectal cancer [2]. In women, breast cancinoma is the 

most typical diagnosed cancer. The reported diagnosis was 2100000 new cases 

in 2018. In 2018, the major cause of cancer death in women was estimated to 

be over 627000 deaths worldwide. Globally, prostate cancer is diagnosed as 

men's second most common cancer. In 2018, 1300000 new cases were estimated 

and total 13.5 percent of all new cancer cases were found in male. It is a fewer 
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common cause of cancer-related death, accounting for 360000 (6.7% of 

casualties due to cancer in men) in 2018 [3]. The 5th most common cancer type 

is stomach cancer worldwide, with an expected 1000000 new cases (5.7 percent 

of all new cancer cases) in 2018. Although, it ranks third in terms of fatality due 

to its dismal prognosis (783 000 deaths in 2018). With an anticipated 570000 

new cases and 311000 casualties in 2018. The fourth most frequent cancer type 

is cervical cancer happened in women globally in terms of both occurrence and 

casualties [4]. The global map is representing the different zones and the 

respective national ranking of death due to cancer at ages below 70 Years in 

2015 is appeard in Figure 1.1. 

 

 

Figure 1.1: The World Health Organization (WHO) published a global map depicting the 

national rankings of cancer as a cause of death in people under the age of 70 in 2015 

1.1.1 Global and Local Scenario 

       In emerging countries like India, cancer is projected to be a serious 

issue. The “GLOBOCAN (An International Agency for Research on Cancer)” 

accounted with a projected occurrence of 1000000 cases in 2012 and 1700000 

cases in 2035. It is anticipated that the India's cancer growth to nearly quadruple. 

In addition, cancer fatalities are anticipated to increase from 680,000 in 2012 to 

1.2 million in 2035 [5]. According to the GLOBOCON 2018, it is calculated 

18000000 new cancer cases (excluding nonmelanoma skin cancer estimated as 
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17000000) and 9600000 casualties due to cancer each year (excluded 9500000 

cases of nonmelanoma skin cancer). The most general diagnosed category of 

cancer is lung cancer (11.6 percent of all cases) and the major cause of casualties 

due to cancer (18.4 percent of all cancer deaths) in both men and women, closely 

followed by female breast cancer (11.6 percent), colorectal cancer (6.1 percent), 

prostate cancer (7.1 percent), and incidence stomach cancer (8.2 percent) and 

colorectal cancer (9.2 percent). Lung carcinoma is the most common cancer 

among men and the primary of reason of casualty. The next type of cancer 

caused for death is the prostate and colorectal cancer then liver and stomach 

cancer. The most general diagnosed cancer among women is breast cancer, and 

it is also one of the leading cause of casualty due to cancer. Colorectal and lung 

cancers steps second and third, respectively, in terms of incidence and death. 

The fourth most general malignancy in both ways, casualty and incidence is 

cervical cancer [4]. 

India's mortality to incidence ratio of 0.68 is significantly greater than that 

of high HDI countries (0.57) and very high HDI countries (0.38). Although few 

of this discrepancy might be because of over diagnosis due to screening in 

developed countries, part of it is because of inequitable distribution and 

inaccessibility of healthcare resources to vast parts of the country [6]. In 

underdeveloped nations, lower survival rates are likely attributable to a 

combination of advanced stage diagnosis, limited access to high-quality cancer 

care, and patients' inability to finance the best treatment options. These issues 

need to be addressed on multiple fronts: Patients and primary care physicians 

need to be more aware of cancer as a curable disease, making cancer treatment 

accessible to individuals at their homes, and discovering novel, cost-effective 

diagnostic and treatment methods. 

 There are differences in the occurrence and casualty due to the cancer in 

different regions of Republic India. The standards of cancer diagnosis and 

prognosis may differ considerably between institutions, states, and geographical 

subregions [7]. There is a lack of uniformity in criteria set for prevention, early 

diagnosis, evidence-based treatment, and follow-up of patients with cancer. 

This disparity has manifested primarily because of a lack of an established 
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network of cancer centers across the country to implement common standard 

management guidelines. Though regional cancer centers exist in all parts of the 

country and geographically cover the population, they too have varying 

standards of care. One of the biggest challenges and needs for effective cancer 

control in India is for uniformly high standards of care to be provided 

throughout the country. Dissemination of high-quality cancer care across the 

country and ensuring uniformity of standards would eliminate the need for 

patients to have to travel long distances for optimal medical care.  

To war against cancer Government of India had constituted the “National 

Cancer Grid” in Aug 2012 with the directive of connected cancer centers across 

India. It began as a small endeavor with 14 cancer centers, but it has quickly 

grown to encompass 52 major cancer centers across the country, making it one 

of the world's largest cancer networks. The NCG, which is funded by the Indian 

government's Department of Atomic Energy, has the primary goal of achieving 

uniform standards of care across India by implementing evidence-based 

management practices across these institutions. It also aims to ease the sharing 

of expertise among centers and to establish a ready network of cancer research 

centers [8]. 

The global impact of cancer is also very harsh. It was surveyed that 14.1 

million new cancer instances found worldwide in 2012. In 2008, cancer claimed 

the lives of 169.3 million healthy people around the world. By 2030, there will 

be 23.6 million new cancer instances every year over the world (estimated). 

According to Cancer Research Manchester (UK), more than four out of ten 

cancers originate in nations with a low or medium Human Development Index 

(HDI).   

Based upon the World Cancer Report, the most thorough global analysis of 

the disease to date, cancer growth rate could rise to 15 million new cases by 

2020. Central and South America, Africa, and Asia region count for more than 

60% of total new cases each year globally. These areas account for 70% of all 

cancer fatalities worldwide. Cancer appears to be strengthening its grip on India, 

with a million new cases reported each year. According to experts, the fatal 

disease's occurrence in India is anticipated to increase five-fold by 2025 [6]. 
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To address challenges of turn-round time and costs in Pathology Operations, 

the project would offer customized, integrated & advanced technological 

products & solutions. Integrated Digital slide imaging and management would 

be the niche offering (in Whole Slide Imaging Segment), making it easy for 

hospitals, Research Organizations, Educations Institutes, etc. to efficiently and 

effectively manage cancer diagnostic cases. The solutions aim at enabling ease 

of access for Pathologists to analyze slides with Clarity & Precision. 

Every year, it is diagnosed around 1000000 new cases of cancer in India, 

with a total occurrences of 2.5 million. Cancer is responsible for 6% of adult 

fatalities in the country, out of a total of 700000 deaths per year. Among various 

diseases, cancer has become one of the enormous threats to our society. 

According to census data of India, the rate of mortality due to cancer was high 

and a worrying situation, with around 806000 cases reported by the turn of the 

century. With nearly 0.3 million fatalities each year, cancer is India's 2nd most 

common disease and one of the leading cause of casualty. This is due to the 

disease's lack of prevention, diagnosis, and treatment options. The skin, lungs, 

breast, stomach, esophagus, prostate, liver, cervix, rectum, bladder, blood, 

mouth, and other organs cancer subtypes have been found among Indian 

population. The major reason of evolution of such diseases categorized as 

Internal (hormonal, inadequate immune conditions, genetic, mutations,) and 

external (population overgrowth, food habits, industrialization, social, etc.) 

variables may be to blame for the high incidence rates of various malignancies 

[6]. 

In India, the “National Centre for Disease Informatics and Research 

(NCDIR) - National Cancer Registry Programme (NCRP), Bengaluru (India)”, 

part of the “Indian Council of Medical Research (ICMR)”, presented a three-

year study on 27 “Population-Based Cancer Registries (PBCR)” from 2012 to 

2014 as listed in Table 1.1. Individual core data was provided by PBCR. The 

NCDIR-NCPR in Bengaluru, India, performed quality control checks, 

tabulations, and statistical analysis. The report is about the information on 

cancer incidence in India. 
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Table 1.1: Total number of cases registered for all 27 PBCRs provides information about 34 

geographical areas 

 

According to all the 27 PBCRs pooled data records, it is shown that ten 

leading sites of cancer, city wise for males (2012-14) in Table 1.2 and the same 

for women in Table 1.3 [7]. The relative proportion (%) of cancers based on 
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different methods of diagnosis, considered as most valid are represented in 

Figure 1.2. The data says that for 85.3% male and 86.9% female patients, the 

medium of diagnosis is imaging and microscopic concepts. The choices for rest 

are DCO, Clinical, X-Ray, and others [8]. 

 

 

Figure 1.2: Relative Proportion (%) of Cancers Based on Different Methods of Diagnosis – 

All PBCRs (Pooled Data) 

  

 

Figure 1.3: Proportion (%) of Cancers based on Different Methods of Diagnosis - All PBCRs 

for Males 
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Table 1.2: Ten Leading Sites of Cancer City Wise for Males (2012-14) 

Table 1.3: Ten Leading Sites of Cancer City Wise for Females (2012-14) 
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Figure 1.4: Proportion (%) of Cancers based on Different Methods of Diagnosis - All 

PBCRs for Females 

After analysis of data from Figures 1.2, 1.3, and 1.4 we can observe that the 

most preferable diagnosis type is imaging and microscopic concepts. It is a 

vibrant area of research. The digital pathology is one of the affective technique 

which can furnish an efficient and optimized solution. 

 

 Digital Pathology 

Cancer is a term used to describe a disorder in human body characterized by 

abnormal cell proliferation that has the possibilities to infiltrate to other portions 

of the human body. Oncology is a medical specialty that deals with cancer 

prevention, diagnosis, and therapy. The following are the three components that 

have enhanced cancer survival: 

i) Prevention - This is accomplished by reducing risk factors such as 

cigarette and alcohol intake. 

ii) Early diagnosis - Common cancer screening, as well as full 

diagnosis and staging 
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iii) Treatment - Treatment in a comprehensive cancer center’s and 

multimodality management by discussion in a tumour board [9] 

Due to the technical enhancement and usage of computer science in medical 

applications, digital pathology has a vital role in this field. Digital Pathology is 

an image-based vibrant platform that allows pathology information to be 

acquired, managed, and interpreted from a digitized glass slide. Digital 

pathology is quickly gaining traction as a proven and necessary technology, 

with special support for tissue-based research, education, the practice of human 

pathology, and drug discovery globally. It's a breakthrough dedicated to 

lowering laboratory costs, increasing operational potential, productivity, and 

enhancing prognostic decisions and patient care (“Digital Pathology 

Association” 2013). Life science applications include high production scanning 

of glass slides, real-time web-based consultations with qualified pathologists, 

quantitative analysis of entire slide pictures, and secure archiving of pathology 

data. Figure 1.5, demonstrates the overall working of a traditional and digital 

pathology.  

 

Figure 1.5: Digital Pathology Overview 
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A traditional approach is a non-digitized mode of slides and conventionally it is 

diagnosed by the experienced pathologist under a microscope. In certain cases, 

it requires a second opinion that is done by emailing the slides sample to the 

other pathologists to subjective analysis and delayed the diagnosis results. On 

the other hand, digital pathology helps in all ways to assist the pathologist to 

decide within a lesser time duration and multiple reviewers can examine and 

debate the digitized slides and supporting papers at the same time that can help 

to make the correct decision [10].  

1.2.1 Hardware Support and DICOM Standard 

Digital pathology requires high end hardware device like digital scanners of 

high capacity that enables to scan the sample up to x100 zoom capacity. There 

are many multinational companies like Leica, Aperio, Hamamatsu, Nikon, 

Olympus, 3D Histech, Philips, Siemens, etc are the pioneer to manufacture such 

scanners. These devices are enabled with an array of photosensitive elements 

(pixels) sensors like CMOS or CCD that convert the optical signals of the slides 

to digital signals and produce compressed high resolution images following 

quality standards. To address the challenges of turn-round time and costs in 

Pathology Operations, it is required customized, integrated, and advanced 

technological solutions. Integrated Digital slide imaging and management are 

some of the niche concepts (in WSI Segment), making it easy for hospitals, 

Research Organizations, Educations Institutes, etc to efficiently and effectively 

manage cancer diagnostic cases. The solution should enable ease of access for 

Pathologists to analyze slides with “Clarity & Precision”. Whole Slide Imaging 

(WSI) principles are supported by the “Digital Imaging and Communications in 

Medicine (DICOM)”. Instruments that acquire WSI digital slides should save 

these images into commercially accessible “Picture Archive and 

Communication System (PACS)” systems utilizing DICOM-standard 

messaging to make WSI adoption easier in hospitals and laboratories. After 

then, the PACS system’s competent to store, archive, retrieve, search, and 

manage these new types of images. Whole slide images are very large. The 

pathologist cuts the sample that is cancerous affected body part (tissues) for 

biopsy [11].  
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1.2.2 Resolution and size of WSI Images 

A typical WSI sample can be 20mm × 15mm in size, with a resolution of 

0.25 micrometers per pixel (mpp). Most of the optical microscopes have a 10X 

magnification ocular lenses, utilizing a 40X objective lens results in 400X 

magnification. Images captured with a resolution of 0.25mpp are referred to as 

40X, images captured with a resolution of 0.5mpp are referred to as 20X, and 

so on, despite the fact that instruments that digitize microscope slides do not use 

ocular lenses or microscope objective lenses. As a result, the image is around 

80000 by 60000 pixels in size, or 4.8 gigabytes. Because most images are 

recorded in 24-bit color, the image data size is around 15GB. Sometimes the 

sample sizes up to 50mm x 25mm require higher resolution. In this case, we use 

z-plane concepts. Data size may vary between 1GB to 1TB depends on cases 

[12]. 

1.2.3 Staining and Imaging of Cells 

To enhance the visualization of features of the cells or the cellular 

components under a microscope, it is required the staining of the tissues. After 

staining it makes it easier to read and visualize the cells by pathologists and they 

can differentiate the dead and alive as well malignant and benign cells. The 

different types of staining evolve the different colors for the nuclei of tissues. 

The various important histological stains are Carmine, Hematin and 

Hematoxylin, Eosin and Hematoxylin (E&H), Gram Stain, and Trichrome 

Stains [13]. It can be used various kinds of imaging techniques for a cancer 

diagnosis like CT Scan, MRI Scan, X-Ray, Mammography, Nuclear medicine 

scans, and Ultrasound [14]. 

1.2.4 Cellular and Tissue Level Analysis 

Due to the advancements in optical technologies that can generate macro 

and micro level images. This improved visualization is helping clinicians with 

the depth observation of the tissues and helping for effective decision making. 

With the help of various staining techniques and optical technology like WSI 

concept and the use of fluorescence spectroscopy to detect cervical squamous 
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intraepithelial pre-malignancies and cancers is a promising technology [15]. 

These technologies helping to raise the patient's standard of living and also 

reducing the overall medical cost of the diagnosis. The various software tools 

that have been developed and are supported by artificial intelligence that works 

at a cellular level are assisting the pathologists and clinicians for improved 

decisions. 

 

 Computer-Aided Diagnosis (CAD) 

CAD was first offered in the early 1990s, barely a few years after the WSI 

concept was discovered. The CAD system could assist the pathologist in many 

ways to provide the image measurements that can be used to decide on various 

diagnoses. The USFDA has now accepted the histological CAD used for 

diagnosis and also allowed the WSI system for clinical use. It has taken 

approximately two decades for the WSI system to achieve clinical diagnosis 

usage [16]. The CAD supports identifying the potential region of interests 

(ROIs) that helps to reduce the time of diagnosis because the ROIs may cover 

only a small fraction of the input sample [17]. The other metrics that are 

supported by the CAD system are cell density [18], mitotic event counts [19], 

nuclei shape, and other feature metrics that help to identify the malignancy of 

the nuclei [20][21]. Overall it would be good to say that the CAD system might 

support early detection and the grade/level of various cancers supported by 

pathological processes. 

 

 Research Challenges 

While the digitization of pathology slides are opening with various 

advantages but also some challenges discussed below: 

1.4.1 Cost and Computational Challenges 

Initial infrastructure cost is high for digitizing the pathology slides and its 

supporting environment like high resolution display, high speed network, good 
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storage capacity for archiving the digital slides, training to the pathologist about 

the system and scanners, etc. It also requires the high performance computing 

devices to process and analyze the slides within a short duration. It must be 

enabled with AI that is a big challenge to localize the ROIs and differentiate 

between malignant and nonmalignant tissues, finding the features. Because of 

the high resolution and large number of samples needed for each patient, it takes 

time to read the samples and execution the supporting models that are again a 

very challenging factor. 

1.4.2 Unavailability of the labeled dataset 

This is an interdisciplinary research work and the combination of medical 

sciences and computer engineering. 

1.4.3 The Absence of Gold Standard 

      For pathology specimens, there is not enough admissible ground truth is 

another equally difficult issue. Even within the pathology community, the 

concept of an appropriate and widely accepted gold standard can be contentious. 

Manual tracing of regions of interest, for example, has been found to be 

unreliable and should not be used as the gold standard's only source [22]. This 

demonstrates the importance of getting a multiple opinion that is frequently 

gained with the help of another person (a subject-matter expert) or computer-

aided technology. 

       Extended patient consequences, in combination with other prognostic 

methods and biological aspects, it can be examined as an acceptable gold 

standard. Such kind of processes comprises more costing and time-consuming, 

and for some circumstances, they might not be available.  

 Research Gap and Direction 

1.5.1 Problem Definition 

The major concern of this research program is to achieve utmost accuracy 

for finding the “Region of Interest (ROI)” and to improve the performance of 

existing works. 
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1.5.2 Research Objective 

The objective of the research work is the Development of Pattern Analysis 

and Machine Learning Technique for Cancer Diagnosis. 

Sub Objectives: 

i. To study the Whole Slide Imaging technique.  

ii. Review of existing works on WSI.   

iii. Reading of high dimensional images 

iv. Image Viewing/Zooming/Panning and creating digital slides 

repository.   

v. Devising the efficient algorithm for feature extraction and 

pattern analysis.  

vi. Devising algorithm for localizing on Region of Interest. This is 

the novel unique approach for localizing the ROI based on the 

frequency of the nuclei 

vii. Implementing the newly devised algorithm.  

viii. Performance testing of the new algorithm and comparing the 

existing algorithms to show the efficiency of the new one.  

 

 Research Contribution 

1.6.1 Cost-Effective Methodology 

The aim of this work is to develop a cost-effective model to identify the 

region of interest within optimized resources and time duration. The developed 

methodology will assist the pathologist to do a better diagnosis. 
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1.6.2 A Novel Approach To Localize Region Of Interest 

Fluorescence, immunohistochemistry, and multispectral imaging ideas 

facilitate whole-slide imaging. Finding ROI on a cancerous sample image is 

difficult due to the large size of WSI images and its calculation. To discover the 

relevant region of interest, unsupervised machine learning and computable 

analysis of cancerous samples are supplemented by morphological 

characteristics and shape formulas. Due to computational constraints, it is better 

to start by working on small patches, integrating the data, and automatically 

detecting or localizing the ROI. It is also compared to the manual and automated 

ROI of ICIAR2018 dataset. 

1.6.3 Evaluation and Prediction of Cancer Grade 

       It is always a challenging task to analyze automatically the 

immunohistochemically Ki-67 stained images due to irregular color intensities 

distributions among different cell types. The other challenge is, 

immunohistochemical detection of Ki-67 antigen is suffering from a 

nonstandardized procedure for Ki-67 assessment and interpretation used for the 

marker's clinical utility. To solve the issues and giving a standardized 

procedure, unsupervised machine learning techniques like clustering of local 

associated features are suggested in the proposal. Unlike a traditional approach, 

the algorithm segments the sample image of the cells based on texture and color 

space. The segmentation helps to characterize the cells with certain tumor 

grading de facto criteria for reference to effective and qualitative pathological 

analysis. The quantitative results of the algorithm showed effective nuclear 

section segmentation with high accuracy and robustness. 

 

 Thesis Navigation 

       The thesis is organized into the following chapters. The first chapter 

brief about the introduction and motivation about the work. It includes the local 

and global scenario of cancer statistics, digital pathology, Computer Aided 
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Diagnosis (CAD), research challenges and gaps, research objective, and 

contribution. 

       The second chapter brief the background of technologies and literature 

survey related to breast cancer diagnosis. It includes the topic of application of 

medical imaging in cancer diagnosis, preprocessing, feature extraction and 

selection, and implementation of advanced machine learning techniques in 

cancer diagnosis. 

       The model for a clinical decision support system is concluded in chapter 

third. It includes the sub-topics biomarkers, quality control over digital slides, 

quantitative image description, predictive modeling, visualization, and 

exploratory analysis.  

       The fourth chapter is describing a novel approach to localize the ROI 

in WSI, supported by shape formulas and morphological features on ICIAR 

2018 BACH dataset. The fifth chapter is brief about the prognostic evaluation 

and grading of breast cancer using the BreCaHAD dataset. 

 

 



18 

 

  

 

Background and Literature Survey 

 Medical Imaging in Cancer Diagnosis  

The data structure used to describe image data can make or break an image 

processing task's success. The image pyramid is one such structure that has 

gotten a lot of attention. The image pyramid extends a useful image depiction 

for many tasks. Pyramid filtering is more efficient to compute than the 

equivalent filtering done with a quick Fourier transform. Because the nodes at 

each level reflect information that is localized in both space and spatial 

frequency, the information is also available in a format that is easy to utilize. 

[23]. The classification algorithms for tissue histology based on strong depiction 

of morphometric factors mentioned in Table 2.1, which are developed at nuclear 

level morphometric features for different positions and scales within the 

“Spatial Pyramid Matching (SPM)” framework. These methods are 

implemented and tested on two distinct datasets and tumors gathered from “The 

Cancer Genome Atlas (TCGA)” [24].                    

Table 2.1: Morphometric features of tissue and its description 
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2.1.1 Input Images 

There are various capturing technology of input images as depicted in Figure 2.1. 

 

              Figure 2.1: Different modes of input images to CAD 

2.1.1.1 Mammography  

     In current scenario, mammography is one of the most efficient method 

for the identification of breast cancer in its early stages. The sample of 

mammographic specimens of breast cancer is shown in Figure 2.2. It has some 

edges and challenges. Casualty reduction, enhanced early illness treatment, 

enhanced quality assurance of the diagnostic chain are the effectiveness of 

mammography. As a result of radiation dangers, the risk of false alarm or a FP 

and FP alarm, radiologists miss 10% to 30% of breast cancinoma and interval 

cancinoma, and overdiagnosis are the major demerits of mammography [25].  

 

 

 

Figure 2.2: Representing the mammographic images of breast cancer 
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      Tomosynthesis, are observed at various angles that help to produce thin 

cross-sections. It is developed as 3D mammography that has been consented by 

“Food & Drug Administration (FDA)” to screen the breast carcinoma in which 

x-rays of the 3D breast images using standard CT scan technology. It is applying 

various state-of-the-art ML models to effectively identify the breast carcinoma 

to exert mammograms. Deep Learning models are applying on specimens from 

the INbreast data repository where initial training needed lesion annotations that 

has an AUC of 0.95 per image, with four-model averaging increasing the 

accuracy to 0.98 [26]. Another cutting-edge breast lesion identification 

technique is based upon a non-ionizing technology that uses dielectric 

characteristics to distinguish between cancerous and non-cancerous tissues. A 

microwave equipment used to gather clinical data of breast lesion specimens. 

These specimens are used to train the various classifiers likes “KNN (k-nearest 

neighbor)” algorithm, “Multi-Layer Perceptron (MLP) Neural Network”, and 

“SVM (Support Vector Machine)” achieved the prediction accuracy of 98% 

[27]. 

2.1.1.2 Ultrasound 

Ultrasound is a systematic technique to assess the breast carcinoma and it 

can be suggested during lactation and pregnancy. In case of dense and smaller 

breast ultrasound is more suggested technique to compare various 

mammography results. It is always preferred before biopsy to reduce inessential 

biopsy. The color Doppler Imaging and ultrasound echo-enhancing yield further 

knowledge that helps to differentiate cancerous and non-cancerous samples 

with good accuracy [28]. Such type of CAD system is very useful for 

interpreting images and training of junior radiologists. 

The radio frequency signals gathered from the tumor and its environments 

and the information fetched are compile to find out the quantitative measures 

like texture parameters, shape parameters, and entropy. A multi-parametric 

classifier are implemented and attained an AUC of 0.83 and 0.92 for inner and 

outer tumor data respectively [29]. The sample of normal, benign, and 

malignant ultrasound images are shown in Figure 2.3. 
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Figure 2.3: Representing the ultrasound image samples of different labels like Normal, 

Benign, and Malignant 

 

2.1.1.3 Magnetic Resonance Imaging (MRI) 

     Breast MRI technique is an eventual substitute, however, due to the 

expensive cost, it is not generally available as mammography and ultrasound. 

MRI is advised for screening high-risk women for breast cancer, as well as 

analyzing suspicious areas identified by mammography to assess the size of the 

lump as illustrated in Figure 2.4. MRI acquisition does not use ionizing 

radiation. The process of interpreting MRI sample images takes a long duration 

and need a lot of radiologist knowledge to discover and distinguish malignant 

and benign tumors [30]. MRI and evolution in a 3D printed surgical guide 

produced by a 3D printer marking the primary tumour is really useful. MRI has 

yielded as one of the accurate method to assess the residual tumors after 

neoadjuvant chemotherapy [31]. 

 

 

Figure 2.4: Representing the MRI images of breast cancer 

 



22 

 

2.1.1.4 Biopsy Histopathologic Images 

     When mammography or other modalities reveal any form of 

abnormalities, the biopsy is considered the final step. “Fine-Needle Aspiration 

Biopsy (FNAB)”, surgical biopsy, and core biopsy are all types of biopsies in 

which a specimen is taken from a suspected lesion and inspected under the 

microscope by a skilled pathologist. Revolutionaries in digital pathology the 

field of computer vision-based biopsies, in which physical slides are 

transformed into digital slides. It can also be defined as WSI that are scanned 

by high competent scanners in Figure 2.5.  

 

. It is possible to obtain numerous opinions for aberrant samples within 

hours using a virtual microscopic concept. For the same issue, obtaining a 

second opinion requires a physical sample that can take several weeks or 

months. Immunostaining procedures such as IHC, H&E, and others help to 

color the images so that they are more readable by pathologists and the system. 

Hematoxylin stains turn the nuclei of the cells blue, while Eosin stains turn the 

tissue pink. There are a variety of deep learning algorithms that may be used on 

different datasets to categorize them with an accuracy of more than 90% [32]. 

Pathologists believe that H&E will continue to be one of the best practices for 

the next 50 years, based on a lengthy history of H&E, a vast amount of data 

produced, multiple state-of-the-art procedures, and high-quality research 

publications [33]. The CAD system in medical imaging is developed to detect, 

Figure 2.5: Representing the H&E histopathologic image sample in A. The red arrow 

showing the mitosis figures, rest are tumor nuclear sections in B 

A  

B 
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diagnose, and forecast disease prognosis using digitized histopathological 

specimens. The lack of a clinically annotated histopathology dataset to train the 

various classifiers is a significant impediment in achieving accurate and 

effective findings. For processing and training high dimensional histopathology 

or WSI images, high computing systems such as graphics processing units 

(GPUs) are necessary [34]. 

2.1.2 Image Pre-processing 

     The role of image pre-processing is critical in CAD to produce optimal 

results. Through the frequency and spatial domains, this phase focuses on image 

resizing, noise removal, and image intensity improvement. Color and 

illumination normalization is one of the first and most significant techniques for 

both fluorescent and bright field histopathology images. Normalization aids to 

lower the dissimilarity in tissue specimen due to the disparity in staining and 

scanning surroundings. By applying the illumination pattern or using calibration 

targets, fitting polynomial surfaces can be used to rectify illumination 

disparities [35]. Other methods for correcting spectral and spatial illumination 

differences include histogram equalization and matching. Various color spaces, 

such as HSI, LUV, and CMYK, can also be utilized to improve an image's 

quality during preprocessing. 

 

 Feature Extraction and Selection  

There are so many algorithms for feature extraction. A “Dominant Local 

Binary Patterns for Texture Classification” that an innovative method for 

extracting picture characteristics for texture classification. The directed 

attributes are less susceptible to histogram equalization and noise, and are robust 

to image rotation. It is made up of two sets of features: DLBP in a texture image 

and additional attributes take out from circularly symmetric Gabor filter 

outputs. The presiding local binary pattern method captures descriptive textual 

information by using the most often occurring patterns, whereas Gabor-based 
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features try to supplement the DLBP features with extra global textural 

information [36]. 

It is listed in Table 2.2, the distinction between malignant and non-

cancerous cells. Mostly based on features, color, and structure differences, it 

can be formulated the differences. Image traits are taken from the ROI after 

segmentation to detect and assess possible malignancies. One of the most 

crucial processes in the examination of biopsy pictures is feature extraction. For 

better predictions, characteristics are retrieved at the tissue and cell levels of 

microscopic biopsy pictures. It extract the shape characteristics like 

anticircularity, contour irregularity, and area irregularity of nuclei to throw back 

the asymmetry of nuclei in biopsy specimen using both contour and region-

based approaches to capture the shape data more effectively.  

Table 2.2: Difference between Normal and Cancerous cells 
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 The selected feature target to assess the behavior of each cell at the cellular 

level, without taking into consideration spatial dominion between them. The 

shape and morphology, textural, histogram of wavelet features, and directional 

gradients are retrieved from biopsy images for each cell. The tissue-level 

characteristics aid in quantifying the cell distribution throughout the tissue, and 

they generally rely on either the grey level reliance of the pixels or the spatial 

dependency of the cells [37].  

 

Shape, texture, and color-based descriptors are some of the picture 

descriptors utilized for feature extraction. To locate the required features, 

various filters, fractals, and morphological operators can be utilized. It is always 

necessary to choose the suitable one so that a classifier can predict the label of 

the input sample image with ease. The memory size, computational cost, and 

robustness of the effective feature extraction technique should always be 

optimized. Gabor wavelet-based algorithms can help diagnose breast cancer by 

extracting aberrant features from mammography specimens [38]. Most of the 

time the important features for breast carcinoma detection using 

Table 2.3: Summary of the object-level characteristics used in histopathological 

image analysis 
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histopathological specimens are defined by clinicians. The development of 

computer vision methods is critical that will be efficient of object level and 

spatial-relation characteristics analysis based on graph structure as depicted in 

Tables 2.3 and 2.4 [34]. 

                                                                                                                                            

 

 Implementation of Machine Learning Algorithms in 

Cancer Diagnosis 

Machine learning started to use for various applications in the early 1990s. 

Arthur Samuel nicely defined it as giving “computers the ability to learn without 

being explicitly programmed”. Nowadays machine learning algorithms have a 

wide scope in healthcare especially in CAD for automatic diagnosis of various 

major diseases including cancer. Machine learning algorithms are used in CAD 

to distinguished and classify abnormalities. It is the most important component 

of CAD that helps to an automatic diagnosis of various cancer diseases. 

Table 2.4: Summary of spatial order of characteristics used in histopathological image 

observation 
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Figure 2.6: Hierarchy of Machine Learning Algorithms 

Machine learning is primarily have three classes: supervised learning, 

unsupervised learning, and reinforcement learning. Many state-of-the-art ML 

models for classification are achieving accuracy levels of over 90% shown in 

Figure 2.6 [39].  

2.3.1 Supervised Learning Algorithms  

Supervised learning is a data processing task in which the training data is 

annotated and labelled appropriately. It is always necessary to have a sufficient 

amount of training data that covers all of the labels in a balanced manner, as 

well as data for testing and validation. The user supplied ground truth make up 

the training dataset. If the training data is insufficient or unbalanced, the output 

will be poor, and the performance will suffer as a result. The problem of 

overfitting and underfitting could be a concern. Regression and classification 

are two highly related prediction methods under supervised learning as shown 

in Figure 2.6. The regression models are suitable for continuous target datasets 
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and classification models used for a finite set of values [40].  It is defined the 

parameters and using a predictive model for evaluating breast cancer 

survivability. The goal of this project is to discuss the importance of stability 

and to propose a viable paradigm. The SVM, RF, and ANN Machine learning 

algorithms have been deployed and compared based on performance. In this 

study, it is defined the prognostics elements for breast cancer survivability 

shown in Table 2.5 [41].  

Most of the elements are related to behavior and features and based on this 

the final grade of cancer and the survivability period will be predicted. For 

convolution neural network training, an expectation-maximization (EM) based 

algorithm is suggested that automatically selects discriminative patches. 

 

Table 2.5: Prognostics elements for breast cancer survivability  
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2.3.2 Unsupervised Learning Algorithms  

    Unlike supervised learning, where the training dataset is labelled, 

unsupervised learning does not have a labelled training dataset. Clustering 

algorithms are the most prevalent type of unsupervised learning. Clustering is 

the division of a collection of data objects into bunch of clusters, with objects 

within each cluster having a great deal of similarities while being substantially 

different from objects in other clusters. There is a wide application of 

unsupervised learning and healthcare is one of them. Clustering is very useful 

to find the patterns and outliers. The k-means clustering is a kind of partitioned 

based algorithm and one of the most famous clustering techniques. It employs 

a heuristic approach to swiftly arrive at a local optimum [40]. The k-means 

clustering based segmentation is used for breast cancer diagnosis by 

distinguishing malignant from benign cases. The RGB color space is supported 

by adaptive thresholding that was helping to separate the red blood cells from 

other objects with good accuracy [42]. One of the most crucial processes in 

determining the ROI is segmentation. Separating one region to another region 

is based on either color space or texture. The color space LAB has been used 

and applied color clusters. All color attributes are allowed and employed for 

segmentation, and it recognizes the respective cross correlation intrinsically 

[43]. The scope of unsupervised learning is limited and it is primarily used for 

segmentation based on color and other features. 

 

2.3.3 Classical Machine and Deep Learning Algorithms 

Classical machine learning is successfully adopted by the various expert 

system and AI-based tools used in medical science for years. The importance of 

expert input and evaluation in these algorithms cannot be overstated. Classical 

machine learning can be used for anomaly detection, correlation, finding the 

ROI, disease diagnosis, cancer grading, and prediction, etc. These algorithms 

use the subject knowledge and the large training dataset to explore and find the 

strong patterns and levitate them to achieve the prediction tasks. 
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As previously said, one of the key drawbacks of trivial machine learning 

algorithms, it requires domain experts. Otherwise, the labeling of the training 

data will be not authentic and the model can wrongly predict. Because of this 

constraint, its forecasting capacity is saturated, making it only suitable for 

specific datasets and inefficient for new datasets derived from unlike tissue 

types or in a dissimilar form, system, or environment. 

In the last decade, there is a great evolution in machine learning algorithms 

and now it became more data-driven and dynamic in behavior. This evolution 

is also supported by high-performance computing. Deep learning is a subtype 

and advance version of machine learning, it can automatically locate the 

representation required for identification or classification that allowing the 

model to straight map and input an image sample to an output vector. 

A convolution neural network is implemented on whole slide images. The 

automatic recognition of cancer subtypes,  after training a CNN to Whole Slide 

Tissues Images (WSI) of gigapixel resolution is computationally impossible in 

current hardware limitations [44]. It is proposed to discuss and underline the 

impact of a large public database of histopathological data like TCGA. It is 

implemented the de novo solutions which are based on feature extraction that 

apprehend features of an image at pixels, semantic, and object levels. It utilizes 

the image properties for diagnostic or prognostic purposes. It is a kind of clinical 

decision support system that enables image processing capabilities in place of 

clinical decision-making thorough data analysis [45].  

Digital pathology and histologic image analysis are supporting to transform 

the practice of pathology increasingly towards a quantitative science. Both the 

concept should be co-evolve and develop a mutually beneficial connection that 

yields high-quality, repeatable objective data. Image analysis should be treated 

as a complementary of trivial histopathology evaluations. The combination 

provides a complete understanding of the pathologic processes and 

experimental steps with the support of morphologic changes [46]. Another 

paper related to deep learning-based algorithms investigates the concepts 

through different unique digital pathology factors like nuclei segmentation, 

mitotic detection and counts, tissue classification either cancerous or 



31 

 

noncancerous to produce similar in many cases and better outputs from the 

various state‑of‑the‑art manually feature‑based classification algorithms. The 

calculated F-score of nuclei segmentation is 0.83 and for mitosis detection, it is 

0.53 [47].  

 Various computer-assisted diagnosis (CAD) algorithms support 

pathologists to decide within less throughput time. Mammography, MRI, 

Ultrasound, and biopsy histopathologic images are the different modes of input 

images to CAD. When mammography or other modalities reveal any form of 

abnormalities, the biopsy is considered the final step. Biopsies, such as "Fine-

Needle Aspiration Biopsy (FNAB)", "core biopsy," and "surgical biopsy," are 

procedures in which a sample is taken from a suspicious lesion and examined 

under the microscope by a pathologist. Revolutionaries in digital pathology the 

field of computer vision-based biopsies, in which physical slides are 

transformed into digital slides. It's also known as WSI images scanned using 

high-capability scanners as shown in Figure 2.7. It is possible to obtain 

numerous opinions for aberrant samples within hours using a virtual 

microscopic concept. The physical sample takes a few weeks, if not months, for 

a second opinion on the same issue. IHC and H&E are used to colorize images 

so that they are more understandable by pathologists and the system. 

Hematoxylin stains turn the nuclei of the cells blue, while Eosin stains turn the 

tissue pink. There are a variety of deep learning algorithms that may be used on 

different datasets to categorize them with an accuracy of over 90%[32]. The 

pathologists believe that H&E will continue to be one of the best practices for 

the next 50 years, based on a lengthy history of H&E, a vast amount of data 

generated, multiple state-of-the-art methods, and high-quality research 

publications [33]. Using digitized histopathology pictures, a CAD system in 

medical imaging been developed for disease identification, diagnosis, and 

prognosis. 
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Figure 2.7: A) Specimen of WSI image, B) Zoomed the ROI by x40 

 

The lack of a clinically annotated histopathology dataset to train the various 

classifiers is a significant impediment in achieving accurate and effective 

findings. For processing and training high dimensional histopathology or entire 

slide images, high computing systems such as graphics processing units (GPUs) 

are necessary [34]. Another study was performed using computer-aided image 

analysis (CAI) on 1150 H&E stained images collected over 230 different 

patients suffering from “Invasive Ductal Carcinoma (IDC)” of the breast. It is 

used the pixel-wise SVM and the pathologist successfully extracted the 

prognostic information from H&E stained image samples [48]. “The Tumor 

Proliferation Assessment Challenge (TUPAC)” was conducted in 2016, one of 

the top three teams were used to build a CNN model to automatically detect the 

mitotic patterns in H&E stained breast cancer tissue using whole slide images 

[49]. BACH challenge was organized in 2018 to uplift the state-of-the-art 

methods for automatic detection and classification of breast cancer tumors using 

400 H&E stained microscopy images and 30 H&E whole slide images. The 

winner of this competition used the CNN model to obtain an overall accuracy 

of 87%, which was better than several other state-of-the-art algorithms [50]. 

 

 Research Challenges in CAD 

       CAD can assist pathologists and clinicians for the fact, accurate, 

efficient, and cost-effective decision making diagnosis of the diseases. 

Presently, CAD is an essential tool for various disease diagnoses especially for 
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cancer after the evolution of digital histopathologic images. The CAD system 

still has some issues to deal with and that can be rectified by the researchers in 

the future and it is a continuous process. The list of challenges is [51]: 

i) Data gathering and quality control 

ii) Development of advanced segmentation algorithms for medical 

imaging 

iii) Development of advanced feature extraction and selection algorithms 

iv) Development of better classification algorithms 

v) Dealing with big data that include high dimensional images 

vi) Development of standard performance assessment technique for CAD 

system 

vii) Lack of gold standards for clinical practice and data usage 

 

 Chapter Summary 

This chapter, it is explained the background and literature survey of the 

technologies supporting the CAD for different cancer diseases. It is explored 

the applications of digital medical images like ultrasound, mammography, MRI, 

and biopsy histopathologic specimens. It is discussed the application of various 

state-of-the-art machine learning and deep learning algorithms and their 

implementation in cancer diagnosis. The objective and research gaps are listed 

in the chapter. 
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Model for Clinical Decision Support 

System 

The major concern of this research work is to achieve utmost accuracy for 

finding Region of Interests (ROIs) and improve the performance of existing 

works. It is a very challenging task to visualize the very high-dimensional 

images on a screen. Archiving and retrieving such images is again a bigger 

challenge. It requires good hardware support. Initially, the focus will be reading 

the WSI images and implementing the various functions like zooming, panning, 

and sample view with target pointer. The clinical decision support system 

(CDSS) is an integrated part of CAD and has a very important role to assist 

pathologists or clinician's decisions.  

While diagnosis the cancer patients, pathologists do the observation of 

tumors and follow the biopsy-derived tissue slides. Based on their skill set and 

experience, it is tried manually to identify the most affected patches and inspect 

nuclear morphology, cellular properties, etc. It is eye crying and tedious task to 

manually examine the tissue samples containing millions of cells with different 

morphological behavior. It is also subjective and time consuming. To overcome 

such issues and to support or assist the pathologists or clinicians, it is observed 

to develop an efficient clinical decision support system (CDSS) as shown in 

Figure 3.1. The importance and demand of such systems led to several 

commercial CAD tools for the analysis and diagnosis of cancer disease. The list 

of the tools and the respective companies which has the copyright are GENIE 

from Aperio, AQUA Analysis of HistoRx, HALO of Indica Labs, and 

Visiopharm of Hoersholm. These all tools provide basic image processing 

capabilities but now due to the evolution in machine learning especially deep 

learning models, the tools are adopting advanced models to improve the 

prediction and decision making, also finding the region of interest. None of the 

above instrument come up with the absolute data analysis for clinical conclusion 
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purposes. It is always required an authentic and large database for such a clinical 

decision support system. It is led by “NCI Cooperative Prostate Cancer Tissue 

Resource” [52], the “Human Protein Atlas” [53], and the “NIH Cancer Genome 

Atlas” (TGCA) [54] for the establishment of a global cancer database. 

 

           

 

 

 Digital Imaging 

WSI is a type of Digital Imaging and is becoming more relevant for clinical 

trials, especially for cancerous tissues. It has the perspective to be employed in 

teleconsultation, tele pathology, digital pathology, clinical education, quality 

assurance, training, and digital image analysis to assist clinicians and 

pathologists [55]. Virtual Microscopy (VM) supports this concept. VM is a 

synthesis of optical microscope images, transmitting over a computer network, 

archived on disks. This concept is very helpful for second opinions or 

consultations and also solves the problem of the storage of physical tissues 

through archiving. The focus of the solution is image acquisition, store locally 

or remotely, transmission on the web, sharing images, viewing images, image 

analysis, reporting, and archiving. Virtual microscopy has a high potential for 

Figure 3.1: Model of CDSS for computable analysis of WSI samples of tissue biopsy 

specimen 
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various activities in training, pathology education, quality control, and clinical 

meeting activity [56]. 

3.1.1 Biomarkers  

      Biomarkers are becoming increasingly relevant in the clinical care of cancer 

patients as genetic profiling technology and molecular medicines become more 

widely available. A biomarker is a biological metric that can be used to describe 

an organism's normal or pathological biological state. Its presence in the body 

has the potential to impact or forecast the disease's occurrence [57]. 

  

Figure 3.2: The process of cancer biomarker growth 

From early discovery to validation and clinical adoption, biomarker 

development is a multi-step process as shown in Figure 3.2 [58]. Breast cancer 

biomarkers are divided into various categories. The predictive biomarkers that 

predict the responses to specific therapeutic interventions like HER2, KRAS. 

The prognostic biomarker helps physicians regarding the risk of clinical 

outcomes such as disease progression in the future or rate of impact. The 

conventional biomarkers generally suggested in all breast cancer patients are 

HER2, ER-alpha, , Ki-67, PR, and Histological grade [59].  

 

 Quality Control over Digital Slides 

  During image acquisition, various artifacts and batch effects can occur as 

a demerit that can influence the quality of histopathology WSI specimens. The 

whole digitized image file generally occupies in the range of 1GB to 20 GB of 

storage space. The file format of the sample images may be either TIFF or 

JPEG2000, a compressed one sand follows the standards of DICOM. 
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3.2.1 Image Artifacts 

         During the preparation of biopsy slides, there may be possibilities of 

anomalies led by mishandling of microscope or due to the wrong adjustment of 

its parameters, which is called image artifacts in WSI. The most common image 

artifacts are air bubbles, pen marks, shadows, blurred regions, mounting media 

with dirt, tissue folds, and the edge of coverslip as shown in Figure 3.4. If any 

such kind of artifact arises, the slide will be unsuitable for assessment and 

required rescanning [60]. These image artifacts can be eliminated by using 

different filters derived in image processing and unsupervised learning. The 

image artifacts are also represented as out-of-focus (OOF). ConvFocus based 

upon CNN model has been created to comprehensively localize and assess the 

importance of OOF sections on WSI slides. The patch level AUC achieved by 

the ConvFocus model is 0.95 [61].  

              

 

     

A B 

C D 

Figure 3.3: Showing the different types of image artifacts (A) edge of overlap, (B) 

Mounting media with dirt, (C) Air bubble, and (D) Tissue fold 
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3.2.2 Batch Effects 

       Variances in picture attributes between two batches could be due to 

dissimilarities in slide preparation, microscopy, and digitizing device. These 

discrepancies, known as batch effects, might cause predictive model 

performance estimates to be skewed. Color and scale batch effects are common 

in histopathological pictures. Color batch effects can be eliminated by 

normalizing an image's color at the pixel level. The other batch effects are object 

size, topology, and texture [62]. The changes in the distribution of image 

features between batches can be used to detect batch effects. 

 

 Quantitative Image Description 

Content-based picture attributes are also carried in WSI data. For 

quantitative prediction modelling and exploratory analysis, the content-based 

features are useful. Pixel, object, and semantic features are the three layers of 

classification [63]. 

        

3.3.1 Pixel-level Features 

       Pixel is the smallest unit of a digital image. Pixel-level image features 

are at the bottom of the information structure. All image pixels carry the color 

and textures. The different color spaces are RGB, HSV, CMY, CIELUV, and 

CIELAB. The texture features measure image contrast, intensity change, 

sharpness, and edge discontinuities using sudden changes in grayscale values. 

The other feature selection algorithms like GLCM, wavelets, fractals, and 

Gabor filters can be used [64]. 

        

3.3.2 Object-level Features 

        Object-level features provide more information than pixel-level 

features. It discusses the cellular structure like nuclei, glands, and cytoplasm in 
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a WSI sample. To extract the information, it is required to segment the cellular 

structure of the object. The segmentation can be done based on color and 

texture. It may be automatic and semi-automatic. To improve the precision of 

segmentation, it is used pixel neighborhood properties like object graph, graph 

cut, Markov model, etc. Object-level features associated with shape, spatial and 

texture information in a WSI [62]. Shape-based characteristics can widely 

classified into the region and contour-based features. Region growing algorithm 

is used for segmentation and it is based on contours, shape number, perimeter, 

boundary fractal, etc. [65]. The features of object-level texture are comparable 

to those of pixel-level texture, but it captures only the associated subset image 

pixels of the tissue object. Nuclear features can help in cancer grading, 

subtyping, and separating malignant cells [64]. 

     

3.3.3 Semantic-level Features 

  A semantic-level feature is normally a statistical order based classification 

on a group of low-level characteristics like color, nuclear texture, and gray-level 

distribution. Generally, it requires preprocessing to catch the semantic feature. 

For semantic characteristics, the BoF (bag-of-features) algorithm is most widely 

employed. It always required a good number of annotated training data. 

Consequently, there is a scarcity of research on semantic-level descriptors for 

histopathology [66]. 

 

 Predictive Modeling 

   Predictive modeling is one of the most important parts of CDSS. The WSI 

prediction modeling has various phases: ROI selection, selection and reduction 

of features, as well as classification. 
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Figure 3.5 

 

Table 3.1: Current breast cancer detection technologies, datasets, and outcomes 

 

 

Figure 3.4: Work flow of a prediction model for cancer detection 

 

 



41 

 

It is demonstrated the workflow of an existing prediction model for cancer 

detection. The major components are listed there. In between training model 

can varies preceded by the segmentation process but depends on the behavior 

of the data and user requirements. Finally, classification is done based on the 

input model as shown in Figure 3.5. Segmentation is the major process that 

helps to target the ROIs in the WSI samples. Many researchers developed 

supervised models to identify the ROI with the help of pre annotated data for 

training purposes [75][76][77]. Now, unsupervised models are also using to 

target the ROIs. Due to the limitation of computation capacity and memory 

space, the WSI cropped into smaller tiles then easy to do preprocessing and 

feature extraction. After predicting the label of each tile, finally merging will 

produce the overall segmentation and final prediction result of the WSI [44]. 

The list of methods, dataset, and results are demonstrated in Table 3.1. 

 

 Exploratory Analysis and Visualization 

Pathology Predictive modelling has typically been the emphasis of imaging 

informatics. However, for two reasons, the study focus has shifted to a 

amalgamation of exploratory analysis and predictive modelling. For starters, 

large-scale studies like the TCGA aim to uncover new information regarding 

antagonistic cancer endpoints and identify new prognostic subtypes. Second, 

predictive modelling with high-dimensional data is extremely complex and 

necessitates the use of tools for assessing the biological applicability of 

characteristics as well as quantitative models. In addition, software applications 

known as "virtual microscopes" have arisen that allow for the spatial study of 

high-resolution digital WSI images. 

 

 Chapter Summary 

This chapter, it is explained the model for a clinical decision support system 

that is an integrated part of Computer Aided Diagnosis. It is discussed the 

different biomarkers helpful for different cancer, quality control over digital 
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slides, and how to handle the artifacts and other issues. It also included the 

quantitative description of an image at a pixel, object, and sematic level. In this 

chapter, the different predictive modeling and its visualizations aspects are 

discussed. 
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A Novel Approach to Localize the 

ROI in Whole Slide Images 

 Introduction 

       Recent technological improvements in digital pathology and 

microscopy have been accomplished to support pathologists and clinicians in 

clinical diagnosis of cancer disease, reducing costs and increasing efficiency. 

The FDA of the US has released standards for the method, quality, and 

development of DICOM-compliant digital whole slide image scanning systems. 

The standard digital slides helping to the experts via CAD to diagnose and 

prognosis of different cancer. The whole slide images are supported by IHC, 

multispectral imaging concepts, and fluorescence. Identifying the ROI in an 

input sample image is usually a difficult operation due to the high resolution of 

WSI images, which necessitates good computation. The project aims to 

determine the optimal ROI using unsupervised machine learning and 

computational analysis of cancerous WSI sample pictures backed by shape 

formulas and morphological features. Because of the computational challenges, 

it's best to start with small patches, consolidate the data, and automatically 

localize the ROI. The work is when contrasted to automated ROI to the 

handcrafted ROI provided in the ICIAR 2018 dataset. 

 

 Literature Survey 

4.2.1 Global Scenario of Breast Cancer 

       Due to different reasons, the number of cancer patients is increasing 

exponentially worldwide. World Cancer Report says in the year 2020, about 15 

million additional cases are projected. Cancer appears to be tightening its grip 

over the world, particularly in developing and underdeveloped countries in 
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Asia, Africa, and South and Central America, as millions of new cases are 

reported each year. Breast cancer is one of the major cause of casualty among 

the women of all ages around the world [78]. Early identification and diagnosis 

of breast cancer, combined with therapy, significantly slows the disease's 

progression and lowers its morbidity rate [79]. 

4.2.2 Existing Techniques to Identify ROI using WSI 

       Whole Slide Imaging is a digitized microscopic image and one of the 

progressive fields of digital pathology. It inspects the different techniques and 

applied to upgrade cancer diagnosis and clinical care. Gilbertson and Wetzel 

formulated the first automated high-resolution WSI method in the history of 

digital pathology in 1999. Following numerous developments and adjustments 

in digital imaging hardware and methodologies, digital pathology practitioners 

have now incorporated these technical advancements and are steadily 

developing [60]. WSI provides virtual slides with a high resolution of less than 

0.5m/pixels, which may be examined and inspected using interactive software 

on a good computer screen, in addition to the traditional pathology approach 

[80].  

       The WSI system makes great promises in the field of digital pathology. 

Similarly, various difficulties limit this concept, including inability to view the 

complete slide in high resolution, image quality, navigation control, excessive 

time to accurately study the slides, and adaptability to the system. Pathologists 

and clinicians are under pressure to improve patient safety, quality, and 

diagnosis accuracy with high clarity and precision. These factors prompted the 

manufacturer to create a system that would do better approach to multiple expert 

opinions and highly specialized pathological assistance while still providing a 

user-friendly interface. Digital pathology networks with virtual microscopes are 

a viable answer to all of these issues, and they will likely to play a key role in 

the future. Because it focuses primarily on the adaption of modern technologies,  
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Figure 4.1: Methodology of proposed work 

 

many hospitals and healthcare organizations have accepted it. The 

authentication of the WSI system is described in the expanding research and 

literature review. However, finding the ROI is always a difficult operation due 

to gigapixel size and heavy computation. After training on picture patches rather 

than the entire image, a patch level classifier like CNN was constructed. Many 
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similar efforts have been done in the last decade, with the majority of them 

relying on machine learning. It is recommended that the model be trained using 

CNN with picture patches of 500x500 pixels derived from big WSI datasets 

[44].      

      Following patch extraction, segmentation and likelihood in an Expectation-

Maximization (EM) based approach are used to find eligible patches for training 

the CNN model. The WSI now allows pathologists and researchers to view 

digitized slides and obtain a better grasp of cancer diagnosis and decision-

making processes. It was created a model that successfully detects the relevant 

ROIs with an accuracy of 74% using a a visual BoG and sliding window 

approach [75]. 

 

 Materials and Methods 

4.3.1 ICIAR 2018 WSI Data Samples 

       The ICIAR 2018 conference on BACH consists of histology 

microscope images stained with H&E samples from the entire slide [81]. There 

are 30 WSI accessible for training and 10 WSI available for model testing. All 

ten WSI malignant samples include pixel-wise annotated areas for the Benign, 

Invasive Carcinoma, and In Situ Carcinoma classifications, which have been 

labelled by pathologists and specialists. All of the slide photographs were 

captured using a Leica SCN400 in .svs format, in RGB color space, with a scale 

of 0.467m/pixels and an image size of (42113 x 62625) pixels. The python 

programming language (Python 3.6, 32-bit) is used to read the data and perform 

other tasks, and it is backed by open-source supporting library packages such as 

opencv, numpy, , imutils, sklearn, scikit-image, matplotlib, and openslide. 

4.3.2 Proposed Methodology, Workflow, and Algorithm                                                   

The proposed methodology adopted a stepwise approach to proving the 

research task in Figure 4.1.  
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Figure 4.2: Workflow of the proposed methodology to localize ROI on WSI image 
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With the help of image segmentation and nucleus counting, feature 

extraction, and pattern analysis, all of the essential procedures are involved in 

detecting accurate ROI on WSI images as shown in Figure 4.2. The scanned 

WSI samples are given as input to the model and the final output is the targeted 

ROIs. All the steps are mathematically discussed in Algorithm 4.1. 
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4.3.3 Split WSI into Patches and Segmentation using k-Means Clustering 

As an input, scanned microscope WSI pictures are used. Because of the high 

resolution of the WSI sample images, computing the entire image at once is 

quite complex. The sample image has a resolution of 15368 by 17496 pixels 

and three color channels. It is preferable to divide it into several patches. As a 

result, the sample image has been divided into 64 separate patches, each with a 

dimension of 1921 x 2187 as shown in Figure 4.3.  

  

Figure 4.3: Split high-resolution WSI sample image (A) into low dimensional patches in (B) 

 

Even yet, if the dimension is larger, it can be divided further until the 

scanner's true range of operation is reached. Every patch is now segmented 

using one of the most efficient unsupervised learning methods, k-means 

clustering as discussed in Algorithm 4.2 [40].  It smoothed the sample image 

and suppressed the abnormalities as sown in Figure 4.4. 
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Figure 4.4:  A) Implementation of k-means clustering algorithm on an image patch at a 

magnification level of x40 and B) results after clustering at the same magnification level 

 

4.3.4 Usage of Otsu’s Threshold and Canny Edge Detection Algorithm 

After eliminating anomalies and smoothened the sample image, convert the 

image patches into an 8-bit gray-level image. Apply Otsu's thresholding method 

in the next stage [82][83]. It is always applied to the gray-level histogram and 

is one of the most effective approaches for obtaining threshold values. Let's say 

a given image pixels are depicted by L grey levels [1, 2... L]. Total number of 

pixels is calculated as N = n1 + n2 +…+ nL, while the number of pixels at level 

i is denoted by ni. The grey-level histogram is normalized and viewed as a 

probability distribution to simplify the discussion and written in Equation 4.1: 

                              𝑝𝑖 =
𝑛𝑖

𝑁
 , 𝑝𝑖 ≥ 0, ∑ 𝑝𝑖

𝐿
𝑖=1 = 1                                    (4.1)                                                                     

It depicts Otsu's method, which is within-class dissimilarity, represented as 

the sum of the two differences multiplied by their related weights, after applying 

the iterative methodology written in Equation 4.2. 

                          𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 (𝑡) = 𝑤𝑜(𝑡)𝜎0

2 + 𝑤1(𝑡)𝜎1
2                                (4.2)                                                                                         
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Figure 4.5: Implementation steps and the results at the magnification of x40 (A) represents 

the output of k-means clustering algorithm, (B) represents the 8-bit gray-level image, (C) 

represents the output of Otsu's method and canny edge detector, and (D) represents the 

localization of nuclei 

 

Where, 

         𝑤𝑜(𝑡) = ∑ 𝑝𝑖
𝐿
𝑖=0 ,      𝑤1(𝑡) = ∑ 𝑝𝑖

𝐿−1
𝑖=𝑡  

𝜎0
2   = The below threshold value represents the abrupt changes of the pixels  

         values to the background 

𝜎1
2   = The above threshold value represents the abrupt changes of the pixels  

         values to the foreground 
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The global threshold value and edges in patches were found using Otsu's 

technique and the Canny edge detector, respectively as shown in Figure 4.5C. 

The discriminative ROI on sample data can be found using morphological 

features and different shape algorithms. Various textural and morphological 

properties such as nuclear section area, solidity, roundness, compactness, and 

so on play a critical role in identifying the nuclear section of sample photos. 

Experts (pathologists) start the process of determining the approximate size of 

the nuclear section; after that, the system takes over and detects the nuclei 

automatically. Finally, it will calculate the effective and approximate nuclei 

Table 4.1: Illustrating morphological shape and feature formulas 
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counts for each patch. It is simple to define the proper ROI on the whole WSI 

sample using nuclei counting. 

In order to continue with the final result, the output of k-means clustering 

is turned into an 8-bit gray-level image as shown in Figure 4.5B. The Canny 

edge detection technique has been built after utilizing Otsu's method for 

detecting acceptable edges as shown in Figure 4.5C. The nuclei in the patch 

must be targeted and accurately counted as the next most essential step. Nucleus 

segmentation and localization are demonstrated in Figure 4.5D.  

The morphological shapes and their formulas are listed in Table 4.1 that 

will help to calculate the parameters like nuclei area, perimeter, solidity, 

convexity, elongation, roundness, and compactness. 

4.3.5 Target the ROI Based on Counting of Nuclei / Patch 

The steps to target and localize the ROI are represented, as well as the results 

are shown in Figure 4.6. It is required the WSI sample images as an input. .

 

Figure 4.6: Steps and results of targeting ROI (A) high-resolution H&E stained sample 

image, B) split it into equal low dimension patches, (C) counting of nuclei present in each 

patch, and (D) represents pixel-wise points of interest (nuclei) at a magnification level of x40 
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Figure 4.6A shows the input sample image, which is divided into 64 equal 

patches as shown in Figure 4.6B. Figure 4.6C shows the quantitative 

representation of each low-resolution patch from Figure 4.6B. The nuclei 

counting of a targeted patch is observed to be at a maximum of 375 of the patch 

location (1, 2), as illustrated in Figure 4.6D. The number of nuclei in the other 

regions is extremely low. The threshold frequency is determined using 

statistical calculations such as mean, standard deviation, and variance. As a 

result, the patch located at (1, 2) will be most suited to become the ROI.  

 

 Experimental Process and Results 

This section has described the novel approach to localize the ROI. To 

demonstrate the work, there are important steps that to follow. It started with 

reading high-dimensional WSI images, image viewing with the different zoom 

levels, panning, and creating digital slide repositories. In the second step, 

devising the efficient algorithm for feature extraction and its results for pattern 

analysis. In the third step, after working on different patches and the pattern 

analysis of each patch, it will be a localized region of interest (ROI) supported 

by shape and morphological operators on high dimensional images with 

achieved accuracy of 85.5% [84]. After localizing of ROI, the performance 

analysis will be done based on different quantitative accuracy measures. 

Experimental setup  

       It is used HP workstation with i3 processors and 4GB of RAM. Based 

on experience, it is recommended to our research community not to use less 

than 4GB of RAM. It is listed the system configuration, programming language, 

and supporting python library packages in Table 4.2. It is targeting this research 

work for breast cancer. This effort will assist in locating the desired ROI. The 

snapshots of the developed tools and the results are given below to display and 

process the high-resolution images. It is used the pyramid concept for 

developing this tool. This tool is compatible with extensions of ndpi, svs, tiff, 

jpeg, etc. 
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Table 4.2: System configuration and Open Source tools used 

Requirement Specifications 

Operating System Windows 10, 64-bit 

Processor Core i3, 2.00GHz 

Installed memory (RAM) 4 GB 

Hard Disk Memory 100GB 

Programming Language Python, Java, JavaScript 

Library Packages OpenSlide, OpenLayer, 

Numpy, Sklearn, 

Matplotlib, OpenCV etc. 

 

 

 

It is also used open layers packages. To create a directory, it is used JSON 

and javascript are embedded in HTML for web pages. This is very helpful to 

display the whole slide images. After analysis of such images on a high 

definition display monitor, the pathologist able to diagnosis different types of 

cancers. This tool is capable of zoom an image up to x40 and more as per the 

requirement and quality of the input image. It can add multiple images from 

Figure 4.7: All the above snaps (A), (B), (C), and (D) are the samples repository and 

respective zoomed images. It will help pathologist to diagnose on high resolution screen 

A  B  

C  D 



56 

 

various formats in the list that is showing on the left side of the tool shown in 

Figure 4.7.  

 

 

The BACH dataset, a collection of breast cancer histology image samples 

are used to validate the findings. WSI samples of H&E stained breast histology 

microscope images make up the BACH dataset. Only ten pixel-wise labelled 

WSI cancerous samples are being studied in this study. Many pathologists and 

medical specialists are the members of the ICIAR 2018 organizing team and 

helped to label and annotate all of the available 10 samples. Each image has 

Table 4.3: Relevant measures' mathematical definition/formula 
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three classifications: benign, in-situ cancer, and invasive carcinoma. The 

image's remaining unnamed area will be regarded normal. Before beginning the 

work, all three kinds of benign, in-situ carcinoma, and invasive carcinoma are 

grouped into one category termed affected area or targeted ROIs, which is 

shown by red, while the rest (background) is represented by black. 

The similarity index of the actual and projected results is used to calculate 

the work's accuracy measurements. The relevance of intersection over union is 

highlighted (IoU). It is one of the most often used object detection benchmarks. 

The overlapping notion is used to compare the similarity of two arbitrary forms 

using the IoU metric that derived in Algorithm 4.3 [85]. 

 

It is listed the mathematical formula for relevant measures in Table 4.3 that 

are finally calculated and listed in Table 4.4. Different accuracy measures are 

compared with IoU in Table 4.4. This research will aid pathologists in 

accurately diagnosing cancer patients with greater clarity and precision in less 

time. The majority of a pathologist's time is spent diagnosing sample tissues. It 

takes so much time and effort due to the complexity of visualization and various 

ROIs. To define these ROIs and train probabilistic classifiers that help predict 

similar ROI on WSI samples, the visual BoG model with texture and colour 

features was implemented. This study included 240 WSI breast biopsies from 5 

various degrees of malignancy, ranging from benign to malignant. And 

achieving a 79.8% accuracy rate in locating the correct ROI [75]. 

Another study used a rapid segmentation method combined with an 

instinctive multiclass supervised classification to construct a map of a WSI and 

spotted biological ROIs. Expert information was conveyed as morphological 

annotations [86]. A deep learning algorithm is also used to discuss the entire 

slide cancer diagnosis. It presented a strategy for mastering the potential to 
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automate subject expert like diagnostic ability and convert the gigapixels 

straight into a series of fine predictions, providing multiple opinions, and 

fostering clinical pathology consensus [87].  It is applied the v3 DCNN model 

and generating a FROC of 83.5 percent. It is employed in this research. For 

clinicians, the Camelyon16 dataset automatically generates a WSI heatmap and 

extracts polygons of lesion areas [88].  

The ICIAR 2018 BACH WSI dataset is used in all of the studies below. An 

ensemble of CNN is used to offer an automated classification approach for 

recognizing the microstructures of tissues that has a 55.26% of accuracy[89]. In 

microscope and WSI annotated data set, a classification and localization 

strategy for clinically relevant histopathological classes is proposed. The 

presented technique was an upgraded version of state-of-the-art CNN model 

that achieved an average accuracy of 69% for automatically recognizing and 

classifying the ROI [50]. By using smart tactics like mirroring, rotating, and 

fine-tuning of pre-trained networks, it has been attempted to lower the cost of 

collecting medical data. 

In order to continue this effort, a DCNN (ALEXNET) was fine-tuned and 

reached an average accuracy of 75.73% [90]. After fine-tuning the Inception-

v3 the CNN algorithm is proposed. It extracts patches based on nuclear density 

and eliminates areas with a low number of nuclei. Every patch with a high 

nuclear density is accepted, and the nuclear classes are defined with an average 

accuracy of 79& based on majority voting [91]. For automatic classification of 

the WSI dataset, a patch-based classifier based on CNN is presented. The patch-

based classifier predicts the class label of each patch using OPOD, and then uses 

majority voting procedures to make a final judgement on the WSI sample 

image's final class label. The algorithm's average patch-wise classification 

accuracy is 81.05% [92]. For the categorization of breast cancer histopathology 

samples, a novel hybrid convolutional and recurrent DNN is presented. 

The approach is based on multilayer feature representation and incorporates 

advantages of CNN and RCNN. The spatial association between patches, both 

short-term and long-term, is preserved. For the typical class, it achieved an 

average accuracy of 82.1% [93]. 
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It is demonstrated one sample WSI of the ICIAR 2018 BACH dataset in 

Figure 4.8. After executing all the steps of Figure 4.2, it found the automated 

annotation of the predicted patches. These predicted patches are based on the 

counting of nuclei for each segment. The predicted patches are finally validated 

by corresponding manually annotated patches that are done by experts. 

This work is done on the ICIAR 2018 conference on breast cancer histology 

specimen to validate the results. The H&E stained breast histology microscopic 

slides are scanned and archived as a collection. Although there are several WSI 

data samples but this study focuses only on 10 pixel-wise labelled WSI. 

Figure 4.8: Steps implemented on BACH high resolution WSI sample images (A) H&E 

stained malignant sample image, (B) split it into low  dimension, (C) target the patch based 

on highest counting of nuclei (D) using algorithm, count the number of nuclei for each 

patch, (E) manually annotated by experts, and (F) automated annotation of target patches. 
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cancerous examples. Only six WSI image samples in Figure 4.9A are shown in 

the results section. Two medical specialists who are members of the organizing 

Figure 4.9: Targeted ROI on WSI image samples (A) represents WSI malignant samples 

of breast cancer in .svs format with a pixel scale of 0.467μm/pixels, (B) represents labeled 

and annotated by medical experts of the BACH challenge, and (C) represents automated 

localized ROI based on counting of nuclei 
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team who are responsible to label and annotate all the available 10 samples. 

Each image has three classifications: benign, in-situ, and invasive carcinoma. 

The image's remaining unnamed area will be regarded normal. Before 

beginning work on this article, all three types of benign, in-situ, and invasive 

carcinoma are grouped into one category termed affected area or targeted ROIs, 

which is represented by red, while the rest is represented by black. The expert's 

advice is followed for all of the goals shown in Figure 4.9B and finally, the ROI 

is predicted and shown in Figure 4.9C. 

 

 

 

 

It is implemented the accuracy measures MSE, RMSE, SSIM, Pixel 

Accuracy, Kappa Score, F1 Score, and IoU are mentioned in Table 4.3. The 

corresponding average calculated values are 2.3%, 1.5%, 88%, 90.04%, 0.69, 

86.3%, and 85.5% respectively for total of 10 WSI samples as shown in Table 

4.4.  

 

Table 4.4: Comparison of different accuracy measure implemented on proposed 

segmentation results 
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Figure 4.11: Graphical representation of comparison of different accuracy measure implemented 

on proposed segmentation results 

Table 4.5:  Quantitative accuracy comparison of different method vs this research work 
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It is applied Algorithm 4.1 to automatic identification of ROI on WSI 

samples. It is accepted the IoU based average accuracy of 85.5% which can be 

projected as a more optimized result in comparison to other methods listed in 

Table 4.5. The graphical representation of the segmentation accuracy of Table 

4.4 is shown in Figure 4.10. To compare the visual difference of segmentation 

accuracy, it is illustrated the comparisons of the output of the proposed 

algorithm and ResNet classifier that is one of the state-of-the-art algorithms 

shown in Figure 4.11. 

 

 Chapter Summary 

       This chapter is describing a novel approach to localize the ROI in WSI, 

supported by shape formulas and morphological features on ICIAR 2018 

BACH dataset. It is discussed the existing model to identify the ROI on WSI 

Figure 4.12: Comparison of the results of this work with one of the state-of-the-art work (A) 

represents WSI malignant samples of breast cancer in .svs format with a pixel scale of 

0.467μm/pixels, (B) represents labeled and annotated by medical experts of the BACH 

challenge, (C) represents this work of automated localized ROI based on counting of nuclei, 

and (D) represents the results of Ensemble Network supported by ResNet classifier to region 

identification 
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sample images. The proposed methodology, its framework and algorithm are 

explained supported by results and limitations. 
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Prognostic Evaluation and Grading of 

Breast Cancer Using Ki-67 Antigen 

This research work aimed significance of the Ki-67 antigen biomarker and 

computed the proliferation score based on the counting of immunopositive and 

immunonegative nuclear sections with the help of machine learning to predict 

the grading of breast cancer. 

 

  Literature Survey on Ki-67 Antigen and Biomarker 

The Ki-67 antigen is a nuclear protein used as a cellular biomarker for breast 

cancer proliferation and is widely used in immunohistochemistry (IHC). It is 

observed on recent data, the grading of Ki-67 above the range 10%-14% mark 

out a high-risk category of cancer in terms of prognosis [94]. At the St Gallen 

Consensus in 2009, the expert panel suggested that the labeling index of Ki-67 

is significant for selecting the treatment using radiotherapy and chemotherapy. 

The values of Ki-67 suggest grading the tumors as low, medium, and high 

proliferated based on the proliferation score of ≤ 15%, 16%-30%, and > 30%, 

respectively [95]. Many studies have been conducted to assess the routine use 

and utility of Ki-67 as a prognostic grading index marker in breast cancer, with 

the goal of improving clinical care and avoiding needless chemotherapy. The 

“International Ki-67 in Breast Cancer Working Group” published their 

contribution based on current evidence in the areas of Ki-67 evaluation and 

quantifiable description, research to establish strong inter-laboratory chemistry, 

and scientific acceptance of the marker in clinical practice as one of the strong 

biomarkers studied and measured by immunohistochemistry (IHC) [5]. Because 

of insufficient quality commitments, the “American Society of Clinical 

Oncology (ASCO) Tumor Marker Guidelines Committee” did not recommend 

using Ki-67 for prognosis with newly diagnosed breast cancer in the beginning 
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[6]. The same is suggested in the original article “Ki-67 as a prognostic marker 

according to breast cancer molecular subtype” [9].  

       After working on a total of 107 selected cases of invasive breast cancer 

that the proliferation score of Ki-67 may be treated as a successful biomarker 

and it can be used for the treatment. The ki-67 grading index is a strong 

biomarker to contemplate neoadjuvant chemotherapy [96]. Patients with higher 

cell proliferation scores like Ki-67 > 25% may be treated by neoadjuvant 

chemotherapy. It is advised after studying breast cancer among 92 cases that the 

Ki-67 grading index manifested by immunohistochemical methods may be 

recognized as a potential biomarker and it can provide prognostic statistics like 

pathological tumor grading, size, and lymph node connection to decide benign 

or malignant tumor [97]. 

      After analyzing all the above descriptions and different techniques, it is 

observed that segmentation is still one of the competitive tasks especially when 

there are high dimension images in digital pathology. Digital pathology 

involved the steps in which histology slides are digitized and generate high-

dimensional images with the help of high configured whole slide digital 

scanners. The segmentation methods help to find the ROIs.  The image analysis 

tasks can be performed after segmentation like capturing cell nuclear sections, 

tissue grading (classification), differentiating cancerous and noncancerous cells, 

feature extraction, nuclei count, etc. The nuclei detection of a cell is an 

important task in the overall segmentation process. There are many existing 

techniques to localize the cell nuclei in 2D whole slide microscopic images. 

About 302 surgically excised Ki-67 labelled breast cancer specimens were 

subjected to Digital Image Analysis (DIA) on WSI samples. The tumour 

classifier method is used to identify tumour tissue automatically, but it hasn't 

been taught to differentiate between invasive and non-invasive cancer cells [98]. 

Cell nuclei yield the quantitative information to find the disease and its impact. 

In this regard, it is proposed an unsupervised machine learning for detecting cell 

nuclei and their segmentation using the matching-based technique. This method 

is validated on a total of 25 E&S liver histopathology images and 35 

Papanicolaou-Stained thyroid images [99]. 
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  Materials and Methods 

5.2.1 BreCaHAD Dataset 

   The BreCaHAD dataset of 162 breast cancer biopsy image samples 

prepared and released by the University of Calgary. It contains microscopic 

histopathological specimen at 40x magnification and keeps it in uncompressed 

image style .tiff contains a 3-color band of RGB with 8-bit depth in each band. 

The breast cell biopsy slides are stained with H&E. It is freely available and 

accessible on figshare at “https://doi.org/10.6084/m9.figshare.73791 86”. “The 

Alberta Health Research Ethics Board” has approved the relevant ethical 

approvals (HREBA.CC-17-0631). Various malignant cases are included in the 

dataset. This study gathered data from a variety of patients during their usual 

diagnoses. The University of Calgary was responsible for the preparedness and 

digitization of the dataset. Patients were not harmed in any way for the purpose 

of research [100]. 

 

5.2.2 Proposed Methodology to Grade Breast Cancer 

    All the important steps that deal with the identification of nuclear section, 

segmentation, pixel clustering on color intensity, and texture of nuclear sections 

are described in Figure 5.1. It is established that all the described techniques 

were executed under the regulated standards and guidelines. The decision of 

benign and malignant specimen tissue and its prognosis is dependent on the 

proliferation score (PS). The Ki-67 is the strong biomarker for calculating the 

proliferation score and describing the classification of the cells. The research 

work proposed an automatic detection of cell nuclei with the help of certain 

mathematical parameters to enhance the efficiency and reduce the duration of 

diagnosis spend by a pathologist to take a correct decision. The algorithm is 

coded in python programming language (Python 3.6, 32-bit) and it is supported 

by various open-source library packages like imutils, numpy, opencv, sklearn, 

matplotlib, and scikit-image. 
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5.2.2.1 Tissue Preparation, Staining and Image Acquisition  

 

The Breast Cancer Histopathology Annotation and Diagnosis (BreCaHAD) 

dataset contains 162 breast cancer biopsy pictures that can be used to evaluate 

and improve the proposed method's performance and efficiency [100][101]. 

Under controlled clinical conditions, the pathologist does a biopsy and execute 

various staining process. Hematoxylin and eosin (H&E) staining was employed 

on histological images annotated as mitosis, apoptosis, tumour nuclei, non-

tumor nuclei, tubule, or non-tubule in this study. Each sample has a resolution 

of 1360 x 1024 pixels with a 0.514m x 0.527m per pixel at a magnification of 

x40 and is saved in uncompressed (.TIFF) format, 3-color band (RGB) with 8-

bit depth in each band, and resolution of each sample is 1360 x 1024 pixels with 

Figure 5.1: Workflow of proposed unsupervised leveling of Ki-67 on BreCaHAD dataset 

images and quantifying the proliferation score 
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a 0.514m x 0.527m per pixel at a magnification of x40. Each slide is manually 

focused [102].  

 

5.2.2.2 Preprocessing and Decomposition of Data Samples   

       It is discussed that the k-means clustering algorithm is unsupervised 

learning used to make the clusters of nuclei based on similarity. Before using 

the input images directly for feature extraction, it is always preferred to follow 

the steps of pre-processing. It results to improve the quality of input images. 

Usually, H&E stained images have problems like pigment gathering on stained 

tissues and abnormal distribution of small pigment particles around the tissue 

[94]. In this work, it is combined the Gaussian filter for smoothing and the 

laplacian filter of size 3x3 for enhancement of image quality. It is also used 

Otsu’s thresholding technique having different parameters that can help to 

identify the nuclei [103]. 

5.2.2.3 Tissue Segmentation 

Tissue segmentation includes three consecutive steps as shown in Figure 

5.1. After allocating the diameter of a nuclear section by pathologist selected on 

an input image, another local feature extraction is then implemented. It is 

suggested to include important parameters that help to extract local features of 

nuclei. The first parameter is the B channel (blue color intensity) in RGB and 

the second is the H channel (hue intensity) in HSI color space. Both are intrinsic 

characteristics of the H&E Ki-67 antigen. Brown and blue colour levels play an 

important role in distinguishing immunonegative from immunopositive nuclei 

[104]. It is shown in Table 5.1, the color intensity of brown is 0 in the blue band 

and 30 in the hue channels, while the same for blue is much higher 255 and 240 

in RGB and HSI color space respectively. The difference between the two bands 

generates one of the highly relevant features for classification. Because of the 

characteristics of H&E, both the channels are highly scattered in different 

nuclei. To support the above points and color decomposition from original 

images is shown in Figure 5.2. 



70 

 

          

           

          

          

     

 

 

 

 The mean and standard deviation of each pixel and behavior of its 3 x 3 

neighborhood pixels are the second parameter. In the blue and hue intensity 

channels, the third parameter is local texture features, which include kurtosis 

and skewness of a single pixel and its 3 x 3 neighborhood pixels, respectively.  

The morphological operations like chess-board distance measurement and 

watershed boundaries algorithms can try to solve the problem of merged and 

superimposed nuclei. For solving such types of problems, it is suggested 

mathematical parameters related to formalizing the texture of different nuclei, 

which will help to improve the automation. It is discussed some important 

shape, structure, and morphological features that will help to identify the 

nuclear sections. 

Figure 5.2: Representation of color decomposed from original images. (A) Sample of 

BreCaHAD dataset image, (B) HSI conversion of sample (A), and (C), (D), (E) 

corresponds to Hue, Saturation and Intensity channel respectively of HSI space 

Table 5.1: Illustrating brown and blue color values in   RGB and HSI channels 
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In Figure 5.3, it is shown that there are few samples of and immunopositive 

and immunonegative nuclear sections [105]. There are samples of false-

negative and false-positive nuclear sections. It helps to develop a more effective 

and optimized decision-making algorithm. There is a substantial link between 

Ki-67 antigen levels and histology cancer grade. To find the correct counting of 

immunonegative and immunopositive nuclei, the morphological and biological 

parameter characteristics must be strong. It may be possible that some of the 

nuclear sections may be wrongly classified that can harm the final proliferation 

score and the error can propagate up to the final grading of cancer for a specific 

specimen sample. Hence, at some instant, the proposed algorithm can improve 

the grading result because of the cumulative effect of intensity, structure, and 

shape parameters on the nuclear section and can help to reduce the 

discrepancies.  Figure 5.3, it is shown the different textures and colors of 

immunopositive nuclear sections.  

Figure 5.3: List of different texture and colors of Ki-67 nuclear sections (A) Sample of 

Immunopositive Nuclear Sections, (B) Sample of Immunonegative Nuclear Sections, (C) 

False negative nuclear section, and (D) False positive nuclear section 
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Table 5.2: Illustrating morphological shape and feature values corresponding to 

Immunopositive Nuclear Sections in Figure 5.3(A) 

A  

C  D     

Figure 5.4: Results of immunopositive nuclear sections segmentation without clustering 

(A) Sample of 40x zoomed stained image, (B) Gray level image of input image using 

Otsu’s threshold value, (C) Converted gray level image into contours, and (D) 

Automatic segmented immunopositive nuclear sections using various shape and 

structure features 

  B   
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The sample images are morphologically and mathematically listed in Table 

5.3. It contains the various important parameters that are sufficient to describe 

the size and structure of any nuclear section like its radius, area, convexity, 

Figure 5.5: Results of immunopositive nuclear sections segmentation using k-means 

clustering (A) Sample of 40x zoomed stained image, (B) Output of sample (A) after 

clustering, and applying automatic segmented immunopositive nuclear sections using various 

shape and structure features mentioned in Table 4.1, (C) Representing HSI after conversion 

of original BGR image into HSI, (D) Representing saturation channel of HSI image, (E) 

Illustrating k-means clustering on saturation channel, (F) Invert the output of clustering, (G) 

Representing automated immunopositive nuclear sections, (H) Representing hue channel of 

HSI image, (I) Representing output of k-means clustering on hue channel, (J) Showing 

inversion of clustering, (K) Representing automated immunonegative nuclear sections and 

(L) Representing automated segmentation after applying morphological operators like 

Closing and Dilation to improve the accuracy of  immunonegative nuclear sections counting 
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solidity, perimeter, roundness, and compactness. Segmentation and automatic 

identification of immunopositive nuclei are demonstrated in Figure 5.4. To 

improve the segmentation process and automatic identification of 

immunopositive and immunonegative nuclei as demonstrated in Figure 5.4, it 

is adopted the k-means clustering algorithm, unsupervised learning that is 

implemented on HSI images as shown in Figure 5.5 [105].  

5.2.2.4 Proliferation Score to Grade Breast cancer    

After all the above calculations and getting the final count of 

immunopositive and immunonegative nuclear sections, calculate the 

proliferation score using Equation 5.1 [104][106]. 

 𝑃𝑟𝑜𝑙𝑖𝑓𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 (𝑃𝑆) 𝑂𝑅 (𝑘𝑖 − 67 𝐼𝑛𝑑𝑒𝑥) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑚𝑚𝑢𝑛𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑐𝑙𝑒𝑎𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑢𝑐𝑙𝑒𝑎𝑟 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 x 100       (5.1)                                                                              

Where,  

       Total number of nuclear sections = Number of immunopositive nuclear sections 

+ Number of immunonegative nuclear sections 

Based on the proposed methodology, the counting of immunopositive 

nuclear sections is 110 and immunonegative nuclear sections are 193 as 

illustrated in Figure 5.5. The proliferation score for the known counting after 

applying Equation 5.1 is calculated by 36.3%. After following the percentage 

of grading based on the proliferation score mentioned in Figure 5.1, it is found 

that the label of the sample stained image is high. 

 

  Results and Discussion 

To the validation of the proposed method, it is using the total available 162 

H&E stained BreCaHAD dataset which allows the researcher to optimize, 

evaluate, and usefulness of the proposed algorithm. The images have the 

dimension of 1360 x 1024 with a 40x magnifier in uncompressed (.TIFF) image 

format. The method is written in python programming language and deployed 

on PC with a configuration of 2GHz CPU and 4 GB RAM. It took 7.4 seconds 

on average to execute the single sample. If the configuration of the system will 

be improved, it will reduce the execution time and will adequate to meet the 
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clinical real-time requirements. It is compared and confirmed the automated 

nuclear section segmentation against the manual nuclear section segmentation, 

and also evaluated the consistency after counting of nuclear sections for the 

proposed algorithm.  

     Another major challenge is the overlapping of the nuclear section that 

encourages to inaccurately count the number of nuclear sections. It has been 

observed that due to limitation of acquisition capability, it happens mostly the 

overlapping of the nuclear section. It is mentioned the problem of overlapping 

and it has found the solution with the watershed algorithm [37]. It is effectively 

working but it has also found some limitations. In Figure 5.5L, the paper has 

implemented morphological operators like opening and closing. It is helping to 

split the overlapped nuclear section as well as the unwanted region of interest 

and increases the counting accuracy. It is discussed more in the result section. 

In Figure 5.6, it is illustrating the problem of overlapping of nuclei.  

 

Under the steps of tissue segmentation in Figure 5.1, it is mentioned to 

allocating size to the nuclear section. It is not always possible that the size of 

nuclear sections will be fixed for all samples as well as each level of 

magnification. As this method is assisting the pathologist for prediction 

purposes, so with the consent of the user (pathologist), will be selected two 

Figure 5.6: Sample of H&E stained images with the problem of overlapping of the 

nuclear section 
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points on the sample image that will be strongly directed for the diameter of the 

nuclear section. This part of consent is not required for this study. It is known 

that counting is a major issue for grading cancer and overlapping of the nuclear 

section can affect the results. To minimize this, calculate the area of the ideal 

nuclear section as already mentioned by the user (pathologist). There will be a 

threshold band for the area of the region and other parameters like roundness, 

solidity, compactness, etc. If the area will be less than the lower threshold band, 

it will be considered as no nuclear section and it will not be counted. If the 

measured parameters are in between the lower and upper band it will be counted 

as one. Otherwise, if the area is above the upper band of the threshold value, 

generally it will be the case of overlapping and the algorithm will increase the 

number of counts accordingly.  

 

The effectiveness and performance of the above classifier are judged over 

the confusion matrix, for which is calculated the value of TP, TN, FP, and FN. 

The definition and formula are illustrated below: 

Figure 5.7: Accurate and efficient segmentation of BreCaHAD dataset image (A) 

Representing original BreCaHAD dataset, (B) Representing intensity channel of HSI 

image, (C) Result of dilation preceded by closing of intensity channel, (D) Result after 

applying k-means clustering, (E) More accurate automated segmentation result with 

good counting accuracy, and (F) Ground truth of sample (A) and the nuclear sections 

are in red circle 
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Accuracy. Accuracy of any classification method defined as the counting of 

exactly classified samples i.e., TP and TN is shown as [107]: 

                                          𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

N
∗ 100                                    5.2 

  Where, 𝑁 = 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

Sensitivity. The sensitivity is calculated as the number of positive samples 

divided by the number of negative samples which are rightly classified [37] and 

is calculated as: 

                                         𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝐹𝑁+𝑇𝑃
                                                         5.3                                                            

Where the sensitivity ranges varies from 0 to 1. ‘0’ signifies worst and ‘1’ best 

classification. 

Specificity. The specificity is defined as the ratio of negative samples which are 

rightly classified [108]. It is shown as: 

                                        𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃+𝑇𝑁
                                              5.4                                                                     

Where the specificity ranges varies from 0 to 1. ‘0’ signifies worst and ‘1’ best 

classification. 

F-Measure. It is defined as the harmonic mean of recall and precision. It is 

shown as: 

                     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝐹𝑃+𝑇𝑃
 ,       𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝐹𝑁+𝑇𝑃
                               5.5  

                                    F −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                          5.6                                                                          

Where the value of F-measure ranges varies from 0 to 1. ‘0’ signifies worst and 

‘1’ best classification. 

Balanced Classification Rate (BCR). It is defined as the geometric mean of 

sensitivity and specificity is recognized as a balanced classification rate [9]. It 

is shown as: 

                                            𝐵𝐶𝑅 =  √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦                  5.7                                                           

Mathew’s Correlation Coefficient MCC). It is a measure of the eminence of 

binary classifications [108]. It is defined as:  
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                                       𝑀𝐶𝐶 =
𝑇𝑁∗𝑇𝑃−𝐹𝑁∗𝐹𝑃

√((𝐹𝑁+𝑇𝑃)(𝐹𝑃+𝑇𝑃)(𝐹𝑁+𝑇𝑁)(𝐹𝑃+𝑇𝑁))
                 5.8                                               

The measure of MCC ranges from -1 to +1, where -1, +1 and 0, signifies the 

worst, best, and random predictions respectively. 

Ethics and consent statements. The BreCaHAD dataset is freely available 

and accessible on Figshare at “https://doi.org/10.6084/m9.figshare.73791 86”. 

All the necessary ethics approval has been granted by the “Health Research 

Ethics Board of Alberta (HREBA.CC-17-0631)” [100]. 

 

Figure 5.7 is illustrated the output of all the phases of the proposed 

methodology. It is also adopted morphological operations like closing and 

opening to improve the segmentation results to better identify the nuclei.  Table 

5.4 is representing the performance comparison of the proposed model with 

other’s work in same domain. It is observed that after applying this algorithm 

on 162 different BreCaHAD datasets, the value of F-score is recommendable, 

accuracy is approximate 0.9088, and sensitivity is 0.938 which also better than 

others, BCR is 0.7975 which is also better than Random Forest and Fuzzy KNN. 

It is illustrated in Figure 5.8, the H&E stained WSI sample images, the 

automated localization of nuclear sections where the nuclear sections are 

encircled by thin lines, and the manually annotated and labeled sample images 

by experienced pathologists in blue dots in Figure 5.8(A, B, and C) respectively.  

 

 

 

Table 5.3: Quantitative comparison of Different Method vs Paper Results based on 

proposed methodology 
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All the comparisons with a graphical representation of the segmentation 

algorithm with different performance parameters are shown in Figure 5.9. 

Potentially, this method will be highly supportive to the pathologists for fast, 

efficient, and accurate computation of Ki-67 proliferation score on breast H&E 

stained cancer images. If the number of sample images will increase, it will 

improve the accuracy and other dimensions of the model. The proposed method 

is compared to the different existing models as shown in Table 5.6. 

 

Figure 5.8:  Localization of nuclear sections on H&E stained WSI image samples (a) H&E 

stained WSI samples of breast cancer tissues, (b) Automated localized nuclear sections, 

and (c) Samples labeled and annotated by medical experts of the BreCaHAD dataset 
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Research 

Papers 

Comparison Parameters 

Image 

Type 

Sample 

Size 

Image 

Size 

Image 

Magnification 

Methodology used Accuracy (%) 

and other 

measures 

Krishnan et al. 

(2011) [109] 

Histology 

Images 

158 800 x 800 40x Support vector machine 

(SVM) 

88.38 

N. Khan et al. 

(2014) [110] 

Neuroend

ocrine 

Tumor 

57 10000 × 

5000 

40x Conventional technique 

(Perceptual clustering) 

94.60 

(implemented on 

a very small 

dataset) 

Kumar R., 

(2015) [37] 

Histology 

Images 

2828 Not 

Available 

 

 

 

5x, 10x, 20x, and 

40x 

KNN 
Sensitivity = 

94.01, 

Specificity = 

81.99, Recall = 

64.6, 

Accuracy = 

92.19, 

BCR =88.02, 

F-measure = 

75.94, 

MCC = 71.74 

P. Shi et 

al.(2016) [94] 

Human 

nasophary

ngeal 

carcinoma 

Xenograft

s 

100 2040 × 

1536 

40x Conventional techniques 

(smoothing, color channel 

decomposition, local 

feature extraction, K-

means, watershed 

segmentation) 

Mean 

Accuracy=75.1±

6.7%, where 

𝜎𝑑 = 6.7% 

Paramanandan 

M., et al. 

(2016) [111] 

Histopath

ology 

Images 

39 1024 x 

1280 

40x LBP algorithm on a MRF 90 

Nawaz W., et 

al. (2018) [90] 

H&E 

stained 

images 

400 2048 x 

1536 

20x CNN (ALEXNET) 81.25 

Awan R, et al. 

(2018) [112] 

Histology 

Images 

400 512 x 512 20x CNN+SVM 83.33 

Aresta G., et 

al. 

(2019) [50] 

Histology 

Images 

500 2048 x 

1536 

40x CNN 87 

Proposed 

Methodology 

Histology 

Images 

162 1360 x 

1024 

40x Machine Learning 

supported by morphological 

operators 

90.8 

 

Table 5.4: Comparison with Existing Methods vs Proposed Methodology 
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 Chapter Summary 

This chapter is mainly focusing on prognostic evaluation and grading of 

breast cancer. This section of work is implemented on the BreCaHAD dataset 

to automatic identification of nuclei used for tissue segmentation.  The Ki-67 

antigen is targeted in this section to calculate the proliferation score that is used 

to grade breast cancer as low, medium, and high. 

Figure 5.9:  Graphical representation of a comparison of different segmentation 

algorithms like Random Forest, SVM, Fuzzy KNN, and KNN with performance 

parameters like accuracy, specificity, sensitivity, BCR, F-measure, and MCC 
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Conclusion and Future Direction 

. 

 Summary and Main Contributions 

 This research uses the BACH dataset from the ICIAR 2018 Grand 

Challenge. The proposed methodology was successfully localized the region of 

interest with an accuracy of 85.5% on a total of 10 WSI annotated testing 

cancerous samples. It uses IoU to allow unsupervised machine learning with 

morphological features and shape formulae. The proposed study focuses on 

locating the region of interest in order to assist pathologists in making accurate 

and timely decisions about the amount of malignancy and subsequent treatment. 

This algorithm can be inbuilt with the existing CAD solutions as an option in 

the tool. It could be a friendly and good assistant for the pathologist that can 

reduce the effort and span of diagnosis. Through this novel research findings, 

one of the key obstacles of all neural network learning-driven systems, it has 

been discovered, is the availability of labelled data, which must be real. It is 

necessary to tune the neural network classification model for diverse datasets 

on a regular basis. 

 

 Contributions 

The accuracy of localizing the ROI is found 85.5% and measured by 

similarity metrics intersection over union (IoU). It outperforms a variety of 

state-of-the-art algorithms. Pathologists use their specific knowledge to make 

diagnoses from sample photos. The pathogenic notion and computer vision 

features have a semantic mismatch. The proposed model is adaptive for such 

changes and mismatch after concerning to pathologists, it can be added the more 
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cell features to make the method more robust and it will be more helpful to the 

pathologists to take a correct decision. 

The BreCaHAD dataset was used to create an efficient automated nuclei 

segmentation model for cancer grading. The proposed work is based on using 

Ki-67 antigen that helps to differentiate between immunopositive and 

immunonegative cells. The achieved accuracy of the segmentation is 90.8% that 

is better than many existing algorithms. 

 

 Future Research Directions 

For future perspective and scope of improvement, the work can be extended 

to various authentic datasets based on availability. If there are enough and 

diverse annotated WSI sample datasets, the outcome can be improved. 

Hardware advancements are, of course, as significant. This work is only 

implemented on H&E stained images. Other staining methods can be also 

implement on these samples where it is to be tested. Although, due to 

unavailability, it is not done. One of the most common problems of WSI sample 

images is the overlapping of the nuclei. It is very difficult to correct the counting 

of nuclei if the number of overlapping increases. Another limitation is the 

different biomarkers. The color and structural behavior of the tissues varies 

according to the different biomarkers. So it is one of the important points of 

concern. There is no standard benchmark for the annotation of the dataset. This 

work has the potential to commercialize if supported by the Cancer Research 

Center regarding the availability of WSI samples to increase its performance. 
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