Name: **Enrolment No:** ## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES ## **End Semester Examination, May 2021** Programme Name: B Tech EL Course Name : Electromagnetic Fields & Electrical Materials Course Code : ECEG2012 Semester : IV Time : 03 hrs Max. Marks : 100 Nos. of page(s) : 5 ## **Instructions:** - Attempt all questions. - Section-A consists 6 questions, first 5 are MCQs. - Assume any data if required and indicate the same clearly. Unless otherwise indicated symbols and notations have their usual meanings. - The answer should be neat and clean. Draw a freehand sketch for circuits/tables/schematics wherever required. ## **SECTION-A (30 Marks)** | Q1 | (i) Which of these is correct? | 1+1+1 | CO1 | |----|--|-------|-----| | | (a) $A \times A = A ^2$ (b) $A \times B + B \times A = 0$ | +2 | | | | (a) $A \times A = A ^2$ (b) $A \times B + B \times A = 0$ (c) $A \cdot B \cdot C = B \cdot C \cdot A$ (d) $a_x \cdot a_y = a_z$ | | | | | (e) $a_k = a_x - a_y$, where a_k is a unit vector | | | | | (ii) Which of the following is zero? | | | | | (a) grad div (c) curl grad | | | | | (b) div grad (d) curl curl | | | | | (iii) Equation $\nabla^2 V = -\rho/\epsilon$ is called the | | | | | (a) Poisson's equation (b) Laplace equation | | | | | (c) Continuity equation (d) None | | | | | (iv) A vector field is given by $A = 3xy a_x - y^2 a_y$. find $\int A \cdot dl$ along the curve $y = 2x^2$ in the | | | | | xy plane from $(0,0)$ to $(1,2)$ | | | | | (a) -9/2 (b) 7/6 (c) -7/6 (d) 2/3 | | | | Q2 | (i) In a uniform electric field, field lines and equipotential | 1+1+1 | CO2 | | | (a) are parallel to one another (b) intersect at 45° | +2 | | | | (c) intersect at 30° (d) are orthogonal | | | | | (ii) When a charge is given to a conductor | | | | | (a) It distributes uniformly all over the surface | | | | | (b) It distributes uniformly all over the volume | | | | | (c)It distributes on the surface, inversely proportional to the radius of curvature | | | | | (d) It stays where it was placed. | | | | | (iii) Two infinite parallel metal plates are charged with equal surface charge density of the | | | | | same polarity. The electric field in the gap b/w the plates is | | | | | () TDI | | | |----|--|-------|-----| | | (a) The same as that produced by one plate | | | | | (b) Double of the field produced by one plate | | | | | (c) Dependent on coordinates of the field point | | | | | (d) Zero | | | | | (iv) Consider the following statements regarding field boundary conditions: | | | | | 1. The tangential component of electric field is continuous across the boundary between | | | | | two dielectrics. | | | | | 2. The tangential component of electric field at a dielectric – conductor boundary is non | | | | | – zero | | | | | 3. The discontinuity in the normal component of the flux density at a dielectric conductor | | | | | boundary is equal to the surface charge density on the conductor. | | | | | 4. The normal component of the flux density is continuous across the charge free | | | | | boundary between two dielectrics. | | | | | Of these statements | | | | | | | | | | (a) 1,2 & 3 are correct (b) 2,3 & 4 are correct | | | | | (c) 1,2 & 4 are correct (d) 1,3 & 4 are correct | | 000 | | Q3 | (i) In ferromagnetic materials, the net magnetic moment created due to magnetization by | 1+1+1 | CO3 | | | an applied field is: | +2 | | | | (a) Normal to the applied field | | | | | (b) Adds to the applied field | | | | | (c) In line with magneto motive force | | | | | (d) Subtracts from the applied field | | | | | (ii) At what temperatures domains lose their ferromagnetic properties? | | | | | (a) Above ferromagnetic Curie temperature | | | | | (b) Below paramagnetic Curie temperature | | | | | (c) Above 4° K | | | | | | | | | | (d) At room temperature | | | | | (iii) Magnetic flux density at a point distance R due to an infinitely long linear conductor | | | | | carrying a current I is given by | | | | | (a) $\frac{1}{2\pi uR}$ (b)) $\frac{\mu I}{2R}$ (c) $\frac{\mu I}{2\pi R}$ (d) $\frac{\mu I}{2\pi R^2}$ | | | | | (iv) Plane $y = 0$ carries a uniform current of $30a_z$ mA/m. At $(1, 10, -2)$, the magnetic field | | | | | intensity is | | | | | | | | | | (a) $-15a_x$ mA/m | | | | | (b) $15a_x \text{ mA/m}$ | | | | | (c) $477.5\mathbf{a}_y m\text{A/m}$ | | | | | (d) 18.85 a _y nA/m | | | | Q4 | (i) Which of the following Maxwell's equations represents Ampere's law with correction | 1+2+2 | CO4 | | | made by Maxwell? | | | | | (a) $\nabla \cdot E = \rho/\epsilon_0$ (b) $\nabla \cdot B = 0$ | | | | | (c) $\nabla \times E = -\frac{\partial B}{\partial t}$ (d) $\nabla \times H = J + \varepsilon_0 \frac{\partial E}{\partial t}$ | | | | | | | | | | (ii) The electric field component of a wave in free space is given by $\mathbf{E} = 10 \cos(10^7 t +$ | | | | | kz) \mathbf{a}_y V/m. It can be inferred that | | | | | (a) The wave propagates along a _y | | | | | (b) The wavelength $\lambda = 188.5 \text{ m}$ | | | | | (c) The wave number $k = 0.33$ rad/m | | | | | (e) The wave attenuates as it travels | | | | | | | | | Q5 | (iii) Given that H = 0.5 e^{-0.1x} sin(10⁶t - 2x) a_z A/m, which of these statements are incorrect? (a) α = 0.1 Np/m (b) β = 22 rad/m (c) ω = 10⁶ rad/s (d) The wave travels along a_x. (i) Two identical coaxial circular coils carry the same current <i>I</i> but in opposite directions. The magnitude of the magnetic field B at a point on the axis midway between the coils is (a) Zero (b) The same as that produced by one coil (c) Twice that produced by one coil (d) Half that produced by one coil. (ii) Which of the following statements are not true about electric force F_e and magnetic force F_m on a charged particle? (a) E and F_e are parallel to each other, whereas B and F_m are perpendicular to each other. (b) Both F_e and F_m depend on the velocity of the charged particle. (c) Both F_e and F_m are produced when a charged particle moves at a constant velocity. (d) F_m is generally small in magnitude in comparison to F_e. (iii) Identify the statement that is not true of ferromagnetic materials. (a) They have a large χ_m. (b) They have a fixed value of μ_r. (c) Energy loss is proportional to the area of the hysteresis loop. (d) They lose their nonlinearity property above the curie temperature. | 2+2+1 | CO3 | | | |----|---|-------|-----|--|--| | Q6 | State the following laws: Coulomb's law; Gauss law. Also mention the applications of Gauss law. | 5 | CO2 | | | | Q1 | SECTION-B (50 Marks) Q1 If $A = \rho \cos(\emptyset) \ a_{\rho} + \sin(\emptyset) \ a_{\rho}$, evaluate $\oint A . \ dl$ around the path shown in Fig. 1. | | | | | | Q1 | Confirm this by Stokes's theorem. | 10 | CO1 | | |