Name:

Enrolment No:

: **IV**

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2021

Program Name : B. Tech. Appl. Petroleum Engg. Upstream Semester

Course Name : Optimization Techniques and Numerical Methods Time : 03 hrs

Course Code : MATH 2013 Max. Marks : 100

Nos. of page(s) : 02

SECTION A

(Attempt all questions; Each question carries 5 marks)

S. No.		CO				
Q1.	After first iteration by using iterative process $x_{n+1} = \frac{1}{2} \left\{ x_n + \frac{N}{x_n} \right\}$ the positive square root of 278, with initial solution $x_0 = 16$ is given by A. 16.6800 B. 16.6875 C. 15.6787 D. 17.0989	CO1				
Q2.	Consider the data $y(15) = 24$, $y(18) = 37$, $y(22) = 25$. If using Newton's divided difference formula the second degree polynomial for the above data is given by $p_2(x) = a_0 + a_1(x - 15) + a_2(x - 15)(x - 18), \text{ then value of } a_2 \text{ is most nearly}$ A. 24 B. 4.3333 C. -1.0476 D. -3	CO2				
Q3.	Using three points Simpson's $\frac{1}{3}$ rule an approximate value of the integral $\int_{1}^{2} \frac{\sin \pi x}{\ln x} dx$ is A. 0 B2.1678 C1.6442 D9.8652	CO3				
Q4.	On the coordinate axes $x=0$ and $y=0$, the partial differential equation $x^2u_{xx}-2xyu_{xy}-3y^2u_{yy}+u_y=0$ is A. Elliptic B. Parabolic C. Hyperbolic D. not classified.					
Q5.	The steepest descent direction to minimize the function $f(x_1, x_2, x_3) = 2x_1x_3^2 + x_1x_2x_3$ at the starting point $(1, -1, -1)$ is A. $\begin{pmatrix} -3\\1\\5 \end{pmatrix}$ B. $\begin{pmatrix} 3\\-1\\5 \end{pmatrix}$ C. $\begin{pmatrix} 3\\1\\-5 \end{pmatrix}$ D. $\begin{pmatrix} 3\\1\\5 \end{pmatrix}$	CO5				
Q6.	For what values of b the matrix $\begin{bmatrix} 2 & -1 & b \\ -1 & 2 & -1 \\ b & -1 & 2 \end{bmatrix}$ is positive semidefinite? A. $b \le -1$ B. $b \ge 2$ C. $-1 \le b \le 2$ D. $b \in \mathbb{R}$	CO6				

			SI	ECTION B							
	(Q7-Q10 are cor)			
Q7.	Apply Steepest descent method to minimize the function $f(x_1, x_2) = 4x_1^2 - 4x_1x_2 + 2x_2^2$							CO5			
	with initial point $x_0 = (2,3)$. Perform iterations until $ \nabla f < {1 \choose 1}$.							COS			
Q8.	Using Lagrange multiplier method solve the following constrained optimization problem. $\min_{x_1, x_2 \ge 0} x_1^2 - x_1 x_2 + x_2^2$ subject to $x_1^2 + x_2^2 = 1$.										
00											
Q9.	Use Fibonacci search method to minimize the function $f(x) = -\frac{1}{(x-1)^2} \left(\ln x - 2 \frac{x-1}{x+1} \right)$ in the range [1.5,4.5]. Reduce the size of the interval minimum $\frac{1}{5}$ of the original.										
Q10.	Evaluate the integral $\int_0^{\frac{\pi}{2}} \sqrt{\sin x} \ dx$ by Simpson's $\frac{3}{8}$ rule with step length $h = \frac{\pi}{12}$.										
Q11.	Estimate the number of students who secured marks between 50 and 55 from the following table.										
	Marks (x)	30 – 40	40 - 50	50 - 60	60 - 70	70 – 80					
	No. of Students (y)	31	42	51	35	31		~~ ^			
		1	OR					CO ₂			
	Fit a polynomial of degree three, which takes the following values, by Newton forward interpolation formula, and find $y(3.5)$.										
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	4	5	6						
	у	6	24	60	120						
	(010	0101 1 41		ECTION C		. 10					
					Each question						
Q12.	a. Use fourth order Runge-Kutta method to solve for $y(0.4)$ taking $h = 0.2$, for the										
	following initial value problem. $\frac{dy}{dx} = 1 + y^2, \text{ with the initial condition } y(0) = \lim_{x \to \infty} \frac{x^2}{2^x}.$										
	OR										
	Using finite difference method determine $y(1.25)$, $y(1.50)$ and $y(1.75)$ for the										
	following boundary value problem $\sin(x-1) = \sin(x-1)$										
	$x^2y'' + xy' - y = 0$ with $y(1) = \lim_{x \to 1} \frac{\sin(x-1)}{x-1}$, $y(2) = 0.5$.										
	b. Solve the Laplace equation $u_{xx} + u_{yy} = 0$ with $h = \frac{1}{3}$ over the boundary of a										
	square of unit length with $u(x,y) = 16x^2y^2$ on the boundary by Liebmann's										
	iteration process. Perform three iterations of Gauss Siedel method. OR										
	Solve $\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}$ with the conditions $u(0,t) = 0$, $u(4,t) = 0$, $u(x,0) = x(4-x)$										
	taking $h = 1$ and employing Bender-Schmidt method. Continue the soluthrough five time steps.										