Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Online End Semester Examination, May 2021

Course: Numerical Methods

Program: B.Sc. (Hons.) Physics/ B.Sc. (Hons.) Chemistry

Time: 03 hrs.

Course Code: MATH 2017G Max. Marks: 100

**Instructions: All questions are compulsory.** 

## **SECTION A (Each question carries 5 marks)**

| S. No. |                                                                                                                                                                                                                                                                                                                                                                                                      | Marks |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| Q1     | Which of the following relation is true?                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |  |
|        | A. $E = \nabla^{-1}$<br>B. $E = (1 + \nabla)^{-1}$<br>C. $E = (1 - \nabla)^{-1}$<br>D. None of these                                                                                                                                                                                                                                                                                                 | CO1   |  |  |  |  |
| Q2     | Newton-Raphson method states that.  A. $f(x) = 0$ , where $f$ assumed to have a continuous derivative $f'$ , $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ B. $f(x) = 0$ , where $f$ assumed to have a continuous derivative $f'$ , $x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$ C. $f(x) = 0$ , where $f$ assumed to have a continuous derivative $f'$ , $f'(x_n) = \frac{f(x_n)}{f'(x_n)}$ D. None of these | CO2   |  |  |  |  |
| Q3     | The factorial notation form of the polynomial $f(x) = 2x^3 - 3x^2 + 3x - 10$ is                                                                                                                                                                                                                                                                                                                      | CO3   |  |  |  |  |
| Q4     | The Value of the integral $I = \int_0^1 (1/(1+x)) dx$ by dividing the interval of integration into 8 equal part and by applying the Simpson's $1/3^{\text{rd}}$ rule is is                                                                                                                                                                                                                           | CO4   |  |  |  |  |
| Q5     | Match the following: A. Newton-Raphson B. Runge-kutta C. Gauss-seidel D. Simpson's Rule A. A2-B3-C4-D1 B. A3-B2-C1-D4 C. A1-B4-C2-D3 D. A4-B1-C2-D3                                                                                                                                                                                                                                                  | CO1   |  |  |  |  |

| Q6         | Which of th                                                                                                                                                                            | e followi  | ng is true f    | or backwa   | rd differen  | ce operator    | ?           |                 |                 |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|-------------|--------------|----------------|-------------|-----------------|-----------------|--|
|            | A. $\nabla^2 f(x) = f(x-2h) - 2f(x-h) + f(x)$                                                                                                                                          |            |                 |             |              |                |             |                 |                 |  |
|            | B. $\nabla^2 f(x) = f(x-2h) + 2f(x-h) + f(x)$                                                                                                                                          |            |                 |             |              |                |             |                 | CO <sub>3</sub> |  |
|            | C. $\nabla^2 f(x) = f(x-2h) - 2f(x-h) - f(x)$                                                                                                                                          |            |                 |             |              |                |             |                 |                 |  |
|            | D. Non                                                                                                                                                                                 | e of these |                 |             |              |                |             |                 |                 |  |
|            |                                                                                                                                                                                        | S          | ECTION 1        | B (Each qu  | iestion car  | ries 10 mar    | ks)         |                 |                 |  |
| Q7         | Solve the fo                                                                                                                                                                           | ollowing s | ystem of li     | near equat  | ions by Jac  | cobbi's met    | thod        |                 |                 |  |
|            | $11x_1 + 17x_2 + 18x_3 + 16x_4 = 10$                                                                                                                                                   |            |                 |             |              |                |             |                 |                 |  |
|            |                                                                                                                                                                                        |            |                 | $23x_1 +$   | $-27x_2 + 2$ | $5x_3 + 28x$   | $t_4 = 20$  |                 | COF             |  |
|            |                                                                                                                                                                                        |            |                 | $22x_1 +$   | $-32x_2 + 3$ | $34x_3 + 36x$  | $t_4 = 30$  |                 | CO5             |  |
|            | $12x_1 + 15x_2 + 41x_3 + 36x_4 = 40$                                                                                                                                                   |            |                 |             |              |                |             |                 |                 |  |
|            | Perform                                                                                                                                                                                | two itera  | tions.          |             |              |                |             |                 |                 |  |
| Q8         | Consider th                                                                                                                                                                            | e equation | $n x^2 - \ln x$ | -2 = 0.     | Rewrite th   | e equation     | in form of  | $x = \phi(x)$ , |                 |  |
|            | to find a re                                                                                                                                                                           | al root of | the equation    | on using F  | ixed point   | iteration m    | ethod Hen   | ce find the     |                 |  |
|            | to find a fe                                                                                                                                                                           | ui 100t 01 | the equati      | on using i  | ixed point   | iteration in   | etiloa. Hei | ice ima me      | CO2             |  |
|            | root of the equation which lies between 1 and 2. Perform four iterations.                                                                                                              |            |                 |             |              |                |             |                 |                 |  |
| <b>Q</b> 9 | Use Lagrange's interpolation formula to fit a polynomial to the following data. Hence                                                                                                  |            |                 |             |              |                |             |                 |                 |  |
|            | find y(1).                                                                                                                                                                             |            |                 |             |              |                |             |                 |                 |  |
|            | X                                                                                                                                                                                      | -1         | -1 0            |             |              | 3              | ]           |                 |                 |  |
|            | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                  |            |                 | 2           |              | 3              |             |                 | CO3             |  |
|            | y = f(x)                                                                                                                                                                               | x) -6      | 5               | 1           |              | 3              |             |                 |                 |  |
|            |                                                                                                                                                                                        |            |                 |             |              |                |             |                 |                 |  |
|            | A rocket is                                                                                                                                                                            | launched   | from group      | nd Its acce | eleration (  | $f(cm/s^2)$ is | registered  | during the      |                 |  |
| Q10        | A rocket is launched from ground. Its acceleration $(f \ cm/s^2)$ is registered during the first 60 seconds, and is given in table below. Find the velocity $(v \ cm/s)$ of the rocket |            |                 |             |              |                |             |                 |                 |  |
|            | at $t = 60$ seconds.                                                                                                                                                                   |            |                 |             |              |                |             |                 |                 |  |
|            | t                                                                                                                                                                                      | 0          | 10              | 20          | 30           | 40             | 50          | 60              | CO4             |  |
|            | f                                                                                                                                                                                      | 30         | 31.63           | 33.34       | 35.47        | 37.75          | 40.33       | 43.25           | _               |  |
|            |                                                                                                                                                                                        |            |                 |             |              |                |             | 1               |                 |  |

| Q11  | A slider in a machine moves along a fixed straight rod. Its distance 'x' cm along the road is given blow for various value of 't' second. Find the velocity and acceleration of the slider when t=0.1 sec. |       |       |       |               |       |       |       |     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|---------------|-------|-------|-------|-----|
|      | t:                                                                                                                                                                                                         | 0     | 0.1   | 0.2   | 0.3           | 0.4   | 0.5   | 0.6   | CO4 |
|      | X:                                                                                                                                                                                                         | 30.13 | 31.62 | 32.87 | 33.64         | 33.95 | 33.81 | 33.24 |     |
|      |                                                                                                                                                                                                            |       |       | •     | s question ca |       |       |       | l   |
| Q 12 | Find y for x = 0.1 and 0.2 for $\frac{dy}{dx} = \frac{y^2 - 2x}{y^2 + x}$ given that y(0)=1 by Runge-Kutta method of fourth order by taking h = 0.05                                                       |       |       |       |               |       |       |       |     |
|      | OR                                                                                                                                                                                                         |       |       |       |               |       |       |       |     |
|      | Using Euler's method, find y for x=0.1, 0.2, 0.3 given that $\frac{dy}{dx} = xy + y^2$ , y(0)=1                                                                                                            |       |       |       |               |       |       |       | CO6 |
|      | Continue the solution at x=0.4 using Milne's method.                                                                                                                                                       |       |       |       |               |       |       |       |     |