Name:

Enrolment No.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End semester Examination- Even Semester, June 2021**

Course: Discrete Mathematics Semester: II Programme: B.Tech LLB (cyber law) Time: 03 hrs

Course code: CSEG1012 Max. Marks: 100

SECTION A Each question will carry 5 marks

S. No.	Question	CO
Q1.	Find the minimal, maximal, greatest and least elements of the following poset $(S,)$, (i.e. the relation as divisibility) $S = \{2,3,5,30,60,120,180,360\}$	СОЗ
Q2	"Set of all even integers with respect to addition forms a group". The statement is true or false.	CO5
Q3	Consider the following relation a set $A = \{1,2,3,4,5,6\}$, $R = \{(1,1),(2,2),(3,3),(4,4),(1,3),(3,1),(5,6),(6,5)\}$ Write only whether or not R is reflexive, symmetric, antisymmetric and transitive.	CO1
Q4	Define tautology and contradiction.	CO2
Q5	Define order of a group. Hence state the Lagrange theorem.	CO5
Q6	A tree has two vertices of degree 2, one vertex of degree 3 and three vertices of degree 4. How many vertices of degree 1 does it have?	CO4

S. No.	Question	
		CO
Q7	Using mathematical induction, show that	
	$3^n > n^2$, for $n \ge 2$	CO1

Q8		
	Consider the set $A = \{\{2\}, \{4\}, \{6\}, \{2,4\}, \{6,4\}, \{2,4,6\}\}$. Draw the Hasse diagram of A under the set inclusion relation " \subseteq ". Hence Find GLB and LUB (if exists)	CO3
Q9	Determine the validity of the following argument:	
	Either I will pass the examination, or, I will not graduate.	
	If I do not graduate, then I will go to Canada.	
	I failed.	CO2
	Thus, I will go to Canada.	
Q 10	Solve the following recurrence relation	
	$a_n - 4a_{n-1} + 4a_{r-2} = (n+1)^2$, given $a_0 = 1$, $a_1 = 1$.	CO1
11	Let $M_2(Z)$ be the ring of all 2×2 matrices over the integers and	
	$\{R = \begin{bmatrix} a & a+b \\ a+b & b \end{bmatrix}, a, b, \in Z\}.$	CO5
	Prove or disprove that R is a sub-ring of M_2 (Z).	
	SECTION C Each question carries 20 marks	
Q12	a. Using the decomposition theorem, determine the chromatic polynomial, and hence the chromatic number of the graph as shown below.	
		CO4

b. Determine the minimal spanning tree of the weighted graph using Prim's algorithm

