Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination (Online), Jan.-Feb. 2021

**Course:** Engineering Mathematics

Semester: I

Course Code: MATH 1036

Time: 03 hrs.

Programme: B.Tech. (All SoCS Batches)

Max. Marks: 100

**SECTION - A** 

 $6 \times 5 = 30 \text{ Marks}$ 

- 1. Each Question will carry 5 Marks
- 2. Instruction: Select the correct option(s)

| Q 1 | Given the system of linear equations $x - 4y + 5z = -1$ , $2x - y + 3z = 1$ , | CO1 |
|-----|-------------------------------------------------------------------------------|-----|
|     | 3x + 2y + z = 3  has:                                                         |     |
|     |                                                                               |     |

A. Unique solution B. No Solution

C. Infinitely many solutions D. None of these

Q 2 If  $y_n(x) = p^n[1 + (-1)^n sin2px]^{1/2}$ , then the value of  $y_8(0)$  when p = 1/4 is:

A. 
$$\left(\frac{1}{4}\right)^{1/8}$$
 B.  $\left(\frac{1}{4}\right)^{1/4}$  C.  $\left(\frac{1}{4}\right)^{8}$  D.  $\left(\frac{1}{4}\right)^{4}$ 

Q 3 Find the particular integral of 
$$(D^2 + 5D + 6)y = e^x$$
:

A.  $\frac{e^x}{12}$  B.  $\frac{e^x}{6}$  C.  $\frac{e^x}{24}$  D.  $\frac{e^x}{30}$ 

Q 4 A number x is chosen at random from the numbers -2, -1, 0, 1, 2. Then the probability that  $x^2 < 2$  is?

A. 1/5 B. 2/5 C. 3/5 D. 4/5

Q 5 Using Newton-Raphson method, find the real root of xsinx + cosx = 0 CO5 which is near  $x = \pi$  correct to three decimal places:

A. 2.798 B. 1.798 C. 3.823 D. 3.141

Q 6 The value of  $\int_0^1 \frac{dx}{1+x}$  by Simpson's 1/3 rule is:

CO5

A. 0.96315 B. 0.63915 C. 0.69315 D. 0.69915

## **SECTION – B**

10 X 5 = 50 Marks

- 1. Each question will carry 10 marks
- 2. Instruction: Answer on a separate white sheet, upload the solution as image.

| Q 1 | Find the characteristic equation of the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence compute $A^{-1}$ . | CO1 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Q 2 | Change the order of integration and hence evaluate $\int_0^a \int_{\sqrt{ax}}^a \frac{y^2 dx dy}{\sqrt{y^4 - a^2 x^2}}$ .                           | CO2 |

| Q 3              | A slider in a machine moves along a fixed straight rod. Its distance $x$ (in cm) $C$ |                                         |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                       |                            |                        | CO5     |
|------------------|--------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------|----------------------------|------------------------|---------|
|                  | along the rod is given at various times $t$ (in sec.).                               |                                         |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                       |                            |                        |         |
|                  | t:                                                                                   | 0                                       | 0.1                                                  | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3                                       | 0.4                   | 0.5                        | 0.6                    |         |
|                  | x:                                                                                   | 30.28                                   | 31.43                                                | 32.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33.54                                     | 33.97                 | 33.48                      | 32.13.                 |         |
|                  | Evalu                                                                                | ate $\frac{dx}{dt}$ a                   | t $t = 0.1$ .                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                       |                            |                        |         |
| Q 4              | accide<br>proba<br>fatal a                                                           | ent during<br>bility tha<br>accident in | g a year is<br>t in a mir<br>n a year.               | 1/2400. Une employ:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ndividual co<br>Jse Poisson<br>ing 200 mi | s distribuners there  | tion to calc<br>will be at | culate the least one   | CO4     |
| Q 5              | Solve                                                                                | e, by the 1                             | nethod of                                            | variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of paramete                               | $\frac{d^2y}{dx^2}$ – | $y = \frac{2}{1 + e^x}$    | <del>.</del>           | CO3     |
|                  |                                                                                      |                                         |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OR                                        |                       |                            |                        |         |
|                  | Solve                                                                                | $(1-x^2)$                               | $\frac{d^2y}{dx^2} - 2z$                             | $x\frac{dy}{dx} + 2y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r=0 given                                 | that $y = x$          | ι is a soluti              | ion.                   |         |
|                  | ah Owa                                                                               | ation oou                               | wing 20 M                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ction – C                                 |                       | 1                          | $\mathbf{X} \ 20 = 20$ | ) Marks |
| 1 For            | _                                                                                    | suon car                                | 1 162 70 1A1                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                       |                            |                        |         |
| 1. Eac<br>2. Ins | tructio                                                                              |                                         | er on a se                                           | parate wh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ite sheet, u                              | ıpload the            | solution a                 | s image.               |         |
|                  | Solve 20 <i>x</i> + <b>a</b> )                                                       | the syste $y - 2z$ Jacobi               | m of linea<br>= 17; 3.                               | or equation $x + 20y -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | z = -18;                                  | -                     |                            |                        | CO5     |
| 2. Ins           | Solve 20 <i>x</i> + <b>a</b> ) <b>b</b> )                                            | the syste $y - 2z$ Jacobi's Gauss       | m of linea<br>= 17; 3.<br>s iteration<br>- Seidel it | ar equation $x + 20y - 100$ method, eration me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | z = -18; ethod.  OR                       | 2x - 3y               | y + 20z = 2                | 25. Using              | CO5     |
| 2. Ins           | Solve 20 <i>x</i> + <b>a</b> ) <b>b</b> )                                            | the syste $y - 2z$ Jacobi': Gauss       | m of linea<br>= 17; 3.<br>s iteration<br>- Seidel it | ar equation $x + 20y - 20y - 20y = 20y - 20y = $ | as $z = -18$ ; ethod.                     | 2x - 3y find the nu   | y + 20z = 1 merical sol    | 25. Using              | CO5     |