Name		UPES				
Enrolment No:						
End Semester Examination, Dec 2017 Course: MATH 306-Applied Numerical Methods Programme: B. Tech. (Civil) Semester: III (ODD-2017-18)						
Time: 03 hrs.Max. Marks:100						
Instructions: Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).						
Section A						
	(Attempt all questions) Write general form of a second order linear Partial Differential Equation. Classify it in					
1.	Parabolic, Elliptic and Hyperbolic equations.		[4]	CO6		
2.	Mention two non - iterative methods to solve an Ordinary Differential Equation	on.	[4]	CO6		
3.	Write down one - dimensional Heat Equation and its finite difference scheme		[4]	CO6		
4.	Can we apply Simpson one third and Simpson three eight rule for Numerical Integration for any number of sub intervals? If not then what is to be taken into consideration.		[4]	CO3		
5.	Solve $\frac{dy}{dx} = x^2 - y$; $y(0) = 1$ by Taylor Series method for y (0.1) in single s	step.	[4]	CO6		
SECTION B						
(Q6-Q9 are compulsory and Q10 has internal choice)						
6.	Solve by Picard's method: $\frac{dy}{dx} = x$, $\frac{dz}{dx} = x^3(y+z)$, where $y = 1 \& z = \frac{1}{2}$ at $x = 0$. Obtain the values of y and z when $x = 0.2$ correct up to two places of		[8]	CO6		
_	Solve the equation $\frac{dy}{dx} = x + y$ with initial condition $y(0) = 1$ by Runge-Kutta	method		6 6 f		
7.	of 4 th order from $x = 0$ to $x = 0.2$ with $h = 0.1$.		[8]	CO6		
	Define $D, E, \Delta \& \nabla$ operators of the finite difference and deduce the followin	g.				
8.	(a) $\Delta \log f(x) = \log \left\{ 1 + \frac{\Delta f(x)}{f(x)} \right\}$ (b) $e^x = \left(\frac{\Delta^2}{E}\right) e^x \frac{Ee^x}{\Delta^2 e^x}$ where the indifferencing being unity.	terval of	[8]	CO1		
		<u> </u>				
9.	Use the method of fixed point iteration to find a positive root of the $xe^x = 1$ between 0 and 1.	equation	[8]	CO4		

10.	Show that the third divided difference with arguments x_0, x_1, x_2 and x_3 of the function $\frac{1}{x}$ is $(-1)^3 \frac{1}{x_0 x_1 x_2 x_3}$. Using Newton's divided difference formula for Interpolation find the value of y for x = 9.5 for a function $y = f(x)$ which has following set of values . x = 7 8 9 10 y = 3 1 1 9	[8]	CO2		
SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)					
11.A	Use LU decomposition method of Crout to solve the system of equations 2x + y + 4z = 12; 8x - 3y + 2z = 20; 4x + 11y - z = 33	[10]	CO5		
11.B	Solve by Horner's method to find the root correct to two places of decimal $x^3 + 9x^2 - 18 = 0.$	[10]	CO4		
12.A	Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial^2 x}$ satisfying the conditions $u(0, t) = 0, t \ge 0$; $u(5, t) = 0, t \ge 0$ and $u(x, 0) = 10x(5 - x), 0 \le x \le 5$. Compute u for five time- step by Bender Smith scheme taking $h = 1$ and $k = 1$. OR Solve the above problem by Crank Nicholson Method for two time steps.	[10]	CO6		
12.B	Solve steady state 2-D heat flow problem $u_{xx} + u_{yy} = 0$ with following conditions using Liebmann's iteration process: $0 \le x \le 4, 0 \le y \le 4, u(0, y) = 0, u(4, y) = 8 + 2y,$ $u(x, 0) = \frac{x^2}{2}, u(x, 4) = x^2$ where $u(x, y)$ is temperature at the point (x, y) . OR Solve the equation $u_{xx} + u_{yy} = -10 (x^2 + y^2 + 10)$ over the square mesh with sides x = 0, x = 3, y = 0 and $y = 3$ with $u = 0$ on the boundary and mesh length equal to 1.		CO6		