Name:											
Enrolment No:						UPES					
Cours Progr Seme Times Instru Attem	se Code: camme: ster: I (C : 03 hrs. uctions: upt all qu	EI Co CHPL 700 M.Tech Pip DD-2017-1	ND SEMES' ourse: NUI 3 / MATH 7 peline Engin [8) Section A (TER EXAM MERICAL 1 01 eering each carrying	g 4 marks);	S, DECEM S IN ENGIN attempt all c	BER 2017 NEERING questions fro] om Se	Max. Ma ection B (rks:100	
	6	// 1	1	So (Attemp	ection A ot all questi	ons)	<u> </u>				
1.	The tab in degr beginni	ble below gives centigrating of observed t	ves the resul de of a vesse vation 1 85.3	ts of an observation of cooling 1 of cooling	ervation: θ water; t is t 5 67.0	is the observ he time in n 7 60.5	ved tempera ninutes from 9 54.3	ature the	[4]	CO1	
	Find th	e approxima	ite rate of coo	bling at $t=3$.			I				
2.	Using Newton's method, find a root between 0 and 1 of $x^3 = 6x - 4$ correct to 4 decimals					to 4	[4]	CO2			
3.	Solve the following equations by Gauss-elimination method. 3x + 4y + 5z = 18, $2x - y + 8z = 13$, $5x - 2y + 7z = 20$						[4]	CO2			
4.	Using Taylor series method, compute $y(0.2)$ given $\frac{dy}{dx} = 1 - 2xy$, $y(0) = 0$ by considering the terms up to third derivative.) by	[4]	CO3			
5.	Find th is (i) el	e regions in liptic (ii) hyj	which the ec perbolic (iii)	uation u_{xx} -	+ $4u_{xy}$ + (x	$(x^2 + 4y^2)u_y$	$y_y = \sin(x - x)$	+ y)	[4]	CO4	

SECTION B						
(Q6-Q9 are compulsory and Q10 has internal choice)						
6.	A tank contains 1000 gallons of oil at $t=0$ hours. The following figure shows the rate of change of the volume for $0 \le t \le 50$. Estimate the total amount of oil in the tank at $t = 50$ hours. $r \text{ (gallons per hour)} \qquad r = \frac{dV}{dt}$ $r = \frac{dV}{dt}$	[8]	CO1			
7.	Solve the modified radio activity equation $\frac{dN}{dt} = -\alpha N - \gamma$ using Euler's method with step size 0.5 over the interval $t=0$ to $t=2$ for $\alpha = 0.1$ and $\gamma = 10$ where $N(0)=1000$.	[8]	CO3			
8.	Solve the following system of equations using relaxation method. $ \begin{bmatrix} 10 & -2 & -2 \\ -1 & 10 & -2 \\ -1 & -1 & 10 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 7 \\ 8 \end{bmatrix} $	[8]	CO2			
9.	The following system of equations is designed to determine concentrations in a series of coupled reactors as a function of the amount of mass input to each reactor: $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		CO2			
10.	Using Crank-Nicholson's scheme, solve $u_{xx} = 16u_t, 0 < x < 1, t > 0$ given u(x, 0) = 0, u(0, t) = 0, u(1, t) = 100t. Compute u for one time step in $tdirection taking h = 0.25.ORApply Bender-Schmidt recurrence equation to solve u_{xx} = 32u_t, taking h = 0.25for t > 0, 0 < x < 1 and u(x, 0) = 0, u(0, t) = 0, u(1, t) = t, up to 5 time steps.$	[8]	CO4			

SECTION C (Q11 is compulsory and Q12A, Q12B have internal choice)						
11.A	The equations for the deflection y and rotation z of a simply supported beam with a uniformly distributed load of intensity 2 <i>kips/ft</i> and bending moment $M(x) = 10x - x^2$ can be expressed as $\frac{dy}{dx} = z$ $\frac{dz}{dx} = \frac{10x - x^2}{EI}$ where E is the modulus of elasticity, and I is the moment of inertia of the cross section of the beam. Taking $EI=3600 \text{ kips/ft}, y(0) = 0$, and $z(0) = -0.02$, find the deflection at $x = 0.5$ and rotation at $x = 1$ using fourth order Runge-Kutta method with $\Delta x = 0.5$.	[10]	CO3			
11.B	Debye's formula for the heat capacity C_V of copper is given by the formula $C_V = 9 * N * K * g(u)$ where $g(u) = u^3 \int_{0.1}^{1/u} \frac{x^4 e^x}{(e^x - 1)^2} dx$ The terms in the equation are: N=number of particles in the solid, K=Boltzmann constant= 1.38×10^{-23} , $u = T/\emptyset$, T = absolute temperature and \emptyset =Debye temperature=343.5 K. Compute the number of particles if $C_V = 40$ units and $T = 343.5 K$ by using an appropriate numerical integration technique.	[10]	CO1			
12.A	A steady state heat balance for a rod can be represented as $\frac{d^2T}{dx^2} - 0.15T = 0$. Considering four sub intervals, obtain a solution for a 2 meter rod with $T(0) = 240 \& T(2) = 150$ by finite difference technique. OR Apply Galerkin's method to the boundary value problem $y'' + y + x = 0$, $(0 \le x \le 1), y(0) = y(1) = 0$, to find the coefficients of the approximate solution $\overline{y}(x) = c_1 x(1-x) + c_2 x^2(1-x)$.	[10]	CO3			
