Name:

> UPES

Enrolment No:

END SEMESTER EXAMINATIONS, DECEMBER 2017
Course: NUMERICAL METHODS IN ENGINEERING
Course Code: CHPL 7003 / MATH 701
Programme: M.Tech Pipeline Engineering
Semester: I (ODD-2017-18)
Time: 03 hrs. Max. Marks:100

Instructions:
Attempt all questions from Section A (each carrying 4 marks); attempt all questions from Section B (each
carrying 8 marks); attempt all questions from Section C (each carrying 20 marks).

Section A
( Attempt all questions)

The table below gives the results of an observation: 6 is the observed temperature
in degrees centigrade of a vessel of cooling water; ¢ is the time in minutes from the
beginning of observation

1. t 1 3 5 7 9 4] | co1
] 85.3 74.5 67.0 60.5 543

Find the approximate rate of cooling at =3.

Using Newton’s method, find a root between 0 and I of x3 = 6x — 4 correct to 4
2. | decimals [4] co2

Solve the following equations by Gauss-elimination method.
3. |3x+4y+52=182x—y+8z=13,5x — 2y + 7z = 20 [41 | CO2

Using Taylor series method, compute y(0.2) givenj—z =1-2xy,y(0) =0 by . CO3
considering the terms up to third derivative. 4]

Find the regions in which the equation u,, + 4uy,, + (x* + 4y*)u,,, = sin(x +y)
5 | is (1) elliptic (i1) hyperbolic (iii) parabolic. [4] CO4




SECTION B
(Q6-Q9 are compulsory and Q10 has internal choice)

A tank contains 1000 gallons of oil at t=0 hours. The following figure shows the
rate of change of the volume for 0 < ¢t < 50. Estimate the total amount of oil in the
tank at t = 50 hours.
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Solve the modified radio activity equation Z—IZ = —aN — y using Euler’s method
7. | with step size 0.5 over the interval =0 to t=2 for « = 0.1 and y = 10 where 8] CO3
N(0)=1000.
Solve the following system of equations using relaxation method.
-2 =2
8. [ 1 10 =2 [8] CO2
-1 -1 10
The following system of equations is designed to determine concentrations in a
series of coupled reactors as a function of the amount of mass input to each reactor:
—3c¢; + 18¢c; — 6¢3 = 1200
15C1 - 3C2 - C3 = 3800
9. —4c, — ¢y, +12c3 = 2350 8] Co2
Obtain the concentration values correct to 2 decimals by using Gauss-Seidel
iterative technique with initial approximate solution as
[c1©@, ¢, @, ;@] = [300, 220, 310].
Using Crank-Nicholson’s scheme, solve u,, = 16u;,0<x<1,t>0 given
u(x,0) =0,u(0,t) = 0,u(1,t) = 100t. Compute u for one time step in t
direction taking h = 0.25.
10. OR [8] CO4

Apply Bender-Schmidt recurrence equation to solve uy, = 32u,, taking h = 0.25
fort > 0,0 <x <1andu(x,0) =0,u(0,t) =0,u(l,t) =t,upto5 time steps.




SECTION C
(Q11 is compulsory and Q12A, Q12B have internal choice)

The equations for the deflection y and rotation z of a simply supported beam with a
uniformly distributed load of intensity 2 kips/fi and bending moment M(x) = 10x — x?
can be expressed as

dy
dx -
.2
11.A dz _10x —x7 [10] | cos
dx El
where E is the modulus of elasticity, and / is the moment of inertia of the cross section of
the beam.
Taking EI=3600 kips/ft,y(0) = 0, and z(0) = —0.02, find the deflection at x = 0.5 and
rotation at x = 1 using fourth order Runge-Kutta method with Ax = 0.5.
Debye’s formula for the heat capacity Cy of copper is given by the formula
Cy =9+ N * K x g(u) where
1/u xteX
=13 S |
g(u) u -[0.1 (ex — 1)2 X
The terms in the equation are:
11.B [10] CO1
N=number of particles in the solid, K=Boltzmann constant= 1.38x 10723 u = T/@,
T = absolute temperature and @ =Debye temperature=343.5 K.
Compute the number of particles if €y =40 units andT = 343.5K by using an
appropriate numerical integration technique.
2
A steady state heat balance for a rod can be represented as %— 0.15T = 0.
Considering four sub intervals, obtain a solution for a 2 meter rod with
T(0) = 240 & T(2) = 150 by finite difference technique.
12.A [10] CO3

OR
Apply Galerkin’s method to the boundary value problem y"” +y+x =0,
(0<x<1),y(0) =y(1) =0, to find the coefficients of the approximate solution
y(x) = c;x(1 — x) + c,x2(1 — x).




12.B

Given the values of u(x, y) on the boundary of the square in the figure below. Find
the initial approximate values of u(x,y) satisfying the Laplace equation V?u = 0
at the pivotal points by standard/diagonal five point formula and tabulate the values
of u(x, y) obtained by perform two iterations of Liebmann’s iteration process.
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OR

Solve the partial differential equation V2u = —10(x? + y? + 10) over the square
with sides x = 0 = y,x = 3 = y with u = 0 on the boundary and mesh length = 1.

[10]

CO4
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