Roll No:	
-----------------	--

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B Tech Electrical Engineering
Subject (Course): Distribution Management
Course Code: ELEG-481
Semester – VII
Max. Marks : 100
Duration : 3 Hrs

No. of page/s: 3

Attempt all questions	Section A	(5*4)
Q1. (CO3) Discuss various methods for	or power factor improvement.	(4)
Q2. (CO4) Explain the function of Na	tional Load Dispatch Centre.	(4)
Q3. (CO6) Discuss various tariff struc	tures offered by Indian Utilities for energy acc	counting. (4)
Q4. (CO7) Differentiate between conv	ventional motors and energy efficient motors.	(4)
Q5. (CO2) Explain the concept of read	ctive power flow in power distribution network	k by giving
suitable example.	•	(4)

Attempt all questions

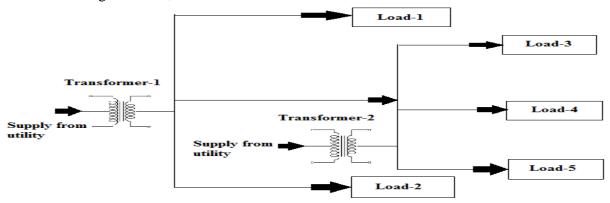
Section B

(4*10)

(2*20)

- Q6. (CO1) Discuss in detail how power system communication works by explaining the role of all the components required in the communication system. (10)
- Q7. (CO7) Explain the concept of Blackout and discuss the reasons of blackout that occurred in India in year 2001 by elaborating series of chain reaction occurred. (10)
- **Q8.** (**CO2**) A load of (66 + j60) MVA at the receiving end is being transmitted via a single circuit 220KV line having a resistance of 21 ohm and reactance of 34 ohm. The sending end voltage is maintained at 220kV. The operating conditions of power consumers require that at this load voltage drop across the line should not exceed 5%. In order to reduce voltage drop standard single phase 660V, 40 kVAR capacitors are to be switched in series in each phase of the line. Determine the required number of capacitors, and rated voltage neglect the losses. (10)
- **Q9.** (**CO7**) A 4 pole, 415V, 3-Phase, 50 Hz induction motor runs at 1440 RPM at 0.88 lagging and delivers 10.817 kW. The stator loss is 1060 W, friction and windage losses are 375W. Calculate
 - (a) Slip
 - (b) Rotor copper losses
 - (c) Line Current
 - (d) Efficiency (10)

Attempt all questions Section C


Q10.(a) (CO3) An industrial load consist of (i) synchronous motor of 100 metric hp (ii) induction motors aggregating 200 metric hp, 0.707 pf lagging and 82% efficiency and (iii) lighting load aggregating 30kW. The tariff is Rs. 100 per annum per kVA maximum demand plus 6 paise per kWh. Find the annual savings in cost if the synchronous motor operates at 0.8 pf leading, 93% efficiency instead of 0.8 pf lagging at 93% efficiency (10)

- (b) (CO5) Explain 5 important features of Electricity Act 2001 and also discuss the pros and cons of this act. (10)
- Q11. (CO5, CO7) Write short notes on the following
 - (i) NLDC

- (ii) Deregulation of Indian Power Sector
- (iii) Demand Side Management
- (iv) Electricity Supply Act-1948

(20)

Q12. (CO3, CO4)Consider the distribution system as shown below, two transformers are catering the loads,

Specifications of transformers are

	Rating	Line Current HV:	Line Current LV	Losses (no load + load	Guaranteed Losses (no load + load losses at 75 °C) (watts) @ 100 % rated load
Transformer-1	63kVA, 11kV/433V	3.306A	84A	380 W	1250 W
Transformer-2	25 KVA, 11kV/433V	1.31A	33.33A	210 W	695 W

Load Profile is given below:

Load	KVA	Power Factor
Load-1	20	0.56
Load-2	20	0.87
Load-3	27	0.98
Load-4	10	0.59
Load-5	10	0.69

All loads are supplied by the distributor each segment is of 20m length with $0.0145\Omega/KM$.

Calculate the total losses in the system.

Roll No:	
-----------------	--

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2017

Program: B Tech Electrical Engineering
Subject (Course): Distribution Management
Course Code: ELEG-481
Semester – VII
Max. Marks : 100
Duration : 3 Hrs

Course Code: ELEG-401	Dura	uon : 5 mrs
No. of page/s: 2		
Attempt all questions	Section A	(5*4)
Q1. (CO5) Discuss in details about the w	wheeling power banking concept.	(4)
Q2. (CO2) Explain in detail about the Po	ower System Blackout with its impact or	n economics and
environment.		(4)
Q3. (CO7) Explain in detail the TOD (T	Time of Day) method for reducing maxir	num demand on
the system		(4)
Q4. (CO5) Explain four important aspec	ts of Indian Electricity Act-2003	(4)
Q5. (CO3) An industrial consumer have	ying a maximum demand of 100 kW n	naintains a load
factor of 60%. The tariff rates are I	Rs. 900 per kVA of Maximum Demand	per annum plus
Rs. 1.8 per kWh of energy consum-	ed. If the average power factor is 0.8 la	gging, calculate
the total energy consumed per annu	um and annual electricity bill. Also wor	kout the overall
cost per kWh consumed.		(4)
Attempt all questions	Section B	(4*10)
Q6. (CO5) Explain the important feature	es of Indian Electricity Act-1910.	(10)
O7. (CO4) A 4 Pole 415V 3Phase, 50	Hz induction motor runs at 1440 rpm	at 0.88 lag and

Q7. (CO4) A 4 Pole 415V 3Phase, 50Hz induction motor runs at 1440 rpm at 0.88 lag and delivers 10.817kW. The stator loss is 1060W, and friction and windage losses are 375W. Calculate (i) Slip(ii) Rotor Copper Loss (iii) Line Current (iv) Efficiency of motor. (10)

- **Q8.** (**CO1**) Discuss in detail various methods of voltage control in transmission and distribution networks of Power System. (10)
- **Q9.** (**CO6**) Find (i) the maximum demand (ii) daily energy consumption (iii) load factor of a supply system having following loads.

Type of Load	Maximum Demand (kW)	Load Factor (%)	Diversity Factor	Overall Diversity Factor
Domestic	2000	25	1.2	
Commercial	3000	30	1.1	1.3
Industrial	8000	70	1.25	

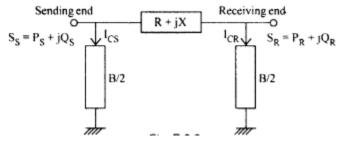
(10)

Attempt all questions

SECTION C

(2*20)

Q10. (CO4) A 35 kW induction motor has pf 0.9 and efficiency 0.9 at full load, power factor 0.6 and efficiency 0.7 at half load. At no load the current is 25% of full load current and power factor 0.1 Capacitors are supplied to make the line power factor 0.8 at half load. With these capacitors in circuit, find the line power factor at (i) full load and (ii) no load. (20)


Q11. Discuss in detail

- a. (CO1) Demand Response Communication network.
- b. **(CO7)** Energy Conservation
- c. (CO5) Indian Electricity Act-1948
- d. (CO6) Trends of Indian Tariff structure

(20)

OR

Q12. (CO1) A load of 15+j10 MVA is supplied with power from a generating station from a line at 110kV, 3 Phase 50Hz. The line is 100km long. The line is represented by π model with the parameters R=26.4 ohms, X=33.9ohm and $B=219*10^{-6}$. Voltage at generating station is 116kV. Determine the power supplied by the generating station.

(20)