Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Geostatistics **Program: B.Tech Mining Course Code: GSEG 327**

Max. Marks: 100

Instructions: Answer all questions. However, there are internal choice in some questions.

SECTION A						
S. No.		Marks	СО			
Q 1	Define the term 'Semivariogram' with suitable sketch diagram	5	CO1			
Q 2	Why Spherical model is considered to be the more appropriate model for data modelling?	5	CO1			
Q 3	Differentiate between autocorrelation and correlation coefficients with example	5	CO2			
Q 4	Justify the statement that sample data collected for geostatistical modelling is required to be normally distributed	5	CO2			
SECTION B						
Q 5	Draw a semivariogram for a lag distance of 5,10,15 units for the data value of distances (1,2,3,4,550) with semivariances of (2,4,6,8,100) respectively	10 CO3				
Q 6	How Geostatistics plays an important role in surface generation of Mineral prospective map?	10	CO3			
Q 7	Find the correlation coefficient between Cr and Ni in a given set of observations from mineral potential area considering linear relationship. Ni (ppm) Cr (ppm) 5 4 10 6 15 9 20 10	10	CO4			
Q 8	Evaluate the thiessen polygon method (Triangulated Irregular network) of interpolation with sample data OR Develop a statistical method for tonnage estimation with suitable example	10	CO4			
Q 9	Find out the value at unknown location from given figure using Inverse Distance	20	CO5			

Semester: VI Time 03 hrs.

Weightage (IDV distance. Evalua known points. 0 10 Demonstrate th	Weightage (IDW) method considering that weightage is inversely proportional to distance. Evaluate the effect of changing the power of distance on weightage of known points.				
figure, Take loc Y	figure, Take location (1,4) as unknown point for manipulation.				
5 -	• •	Values:			
1	(1,5) (4,5)	at $(1,5)$ observe = 100			
4	(3,4)	at $(3,4)$ observe = 105			
3-	(12)	at $(1,3)$ observe = 105			
2 —	(1,3)	at $(4,5)$ observe = 100	20	CO5	
	•	at $(5,1)$ observe = 115			
	1 2 3 4 5 X				
	OR				
Critically exam	Critically examine the various fitting model available in Kriging. Evaluate the key difference of Block kriging probalistic kriging Non-linear kriging Universal				
kriging from Or	dinary kriging				
	***END**				