CHAPTER-3
MODEL SELECTION IN SHALE GAS RESERVOIRS

3.1 RESERVOIR MODEL.:
In this study, a Dual Porosity Model has been proposed for constructing a reservoir

simulation model for shale gas reservoir. Same as the normal Dual Porosity Model, in this

model, the shale gas reservoir contains Matrix and natural fractures along with hydraulic

fractures. As the natural fractures are not uniform throughout the shale reservoir, the assumption

of gas flow from matrix to natural fracture will not be applicable in all the cases. Based on

intensity of natural fracture the effective matrix permeability will be enhanced. In order to

overcome this situation, In present work matrix pores and natural fractures as single porous zone

and the hydraulic fractures as the second porous zone have been assumed Based on aforesaid

assumption, a reservoir model has been developed. The following are the assumptions that are

considered while developing this model.

1) The flows of gas from the matrix to hydraulic fracture and then from hydraulic fracture to
horizontal well bore.

2) Only single phase flow (only gas flow) in the matrix.

3) Two phase flow (Gas + Water) in the hydraulic fracture is assumed.

4) No gas is flown directly from the matrix to the horizontal well bore.

5) The only source of gas for wellbore is the hydraulic fracture.

The pictorial representation of the model is shown in Figure 3.1
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Figure 3.1: Reservoir Model representing the flow of gas from matrix to hydraulic
fractures and from hydraulic fracture to well bore.
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3.2 Mass Balance Equation for Gas Flow in the Matrix:

The pictorial representation of gas flow in the matrix is as in Figure 3.2
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Figure 3.2: Schematic representation of gas flow from matrix to fracture.
3.2.1 Assumptions:-

1) Flow of water in the matrix is negligible.

2) Considering the process as Isothermal Process i.e. Constant Temperature.

3) Gas flow through matrix has been considered to be of Darcy type with incorporation
of Klinkenberg effect for slippage or non-viscous flow or molecular flow through tiny
pores.

4) Since natural fractures are believed to be discrete, they do not significantly contribute
to gas flow on regional scale by themselves. Their effect can be incorporated in the
matrix effective permeability or porosity.

3.2.2 Mass Balance Equation:

In the present work the free gas in the matrix and the adsorbed gas in the matrix for
developing mass balance equation have been considered.
The control volume of the matrix is: - Ax*Ay*Az.(Negative sign indicates the gas flow is

in negative x,y and z directions).
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Mass balance equation is given as,
Mass of free gas in — Mass of free gas out+ Mass of gas desorbed/generated=Mass rate of

change of gas (free & adsorbed) in the control volume.

= -(Ugmxpgm|x+AxAyAZ)-(_Ugmxpgm|xAyAZ)+(_Ugmxpgm|y+AyAxAZ)-

.  A((AxAyAZ.(1-0m).Pm-PgsVa )
_Ugmypgm|yAxAZ (_‘Ugmngm|Z+AZAXA3/)-(_‘Ugmngm|ZAXAZY)I At

_ A((AxAyAz.(1—(Z)m).pm.pgs.Va+AxAyAz.®m.ngpgm) S 1

At

Where, V, = V, =V,
V.= Remaining adsorbed gas volume at standard conditions.
V; = Desorbed gas volume.

v, = Langmuir Volume i.e. maximum volume of gas adsorbed per unit mass of rock in

volume.

Now, dividing equation 1 by(AxAyAz), we got

= (_Ugmx Pg|x+Ax+Ugmx Pg|x)J_(_vymy Pg|y+Ay+Ugmy ple’) + (_Ugmz Pg|z+Az+Ung Pg'z) +
Ax Ay Az

A(((l_wm)-Pm-Pgs-Vd) A(((l_Qjm)-Pm-Pgs-Va"'@m-ngPgm )

e > 2.
At At
Now taking limit for Ax, Ay, Az and At --- 0, the equation can be written as
= d(VgmyPgm) + a(vgmypgm) (VgmzPgm) _  O((1=0m)-Pm-PgsVatPm-SgmPgm |
ax ay * az - at
a[((l_wm)-Pm-Pgs-Vd]
o e e -2 3.

Now considering Darcy’s Law

_-kA dP
Aox=— 2z
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For x-direction,

Gas Volume_ (—k.Ay.Az) 0(Ppy)
time u ax

(Ax.Ay.Az) _ (—k.Ay.Az) 3(Py)
t - u ax

we _ () P
t  u  ax

Displacement

But velocity (v, )=

time

Displacement(Ax)

= time (t) =

Vgmax
Now substituting time (t) in equation 4, | got

_ ~km krg 0(Pm)

Vg, = e - for x-direction.

_ ~km krg 0(Pm)

Uy = » P — -> for y-direction.

_ —Kkm krg 0(Py)
v, ==
mz I‘lg dz

................ - for z-direction.
Where,

k,,= Effective matrix permeability.

km= koo (1 + %) ; including klinkenberg Effect.
k.= Equivalent liquid permeability of matrix.

S,= Gas Saturation in rock pore = constant.( S;=1).
pgs= Standard gas density = constant.

pm= Rock density = constant.

V4= standard volume of desorbed gas per unit rock mass.

Now substituting all the above terms in equation 3, we get
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—km krg 8(Pm) ) (‘km krg 6(Pm) ) (‘km krg 6(Pm) )
a( iy ax Pgm + N—ug oy Pom Ny oz Pom

ax ay az

=

a[((1_Qjm)-Pm-Pgs-Va"'@m-ngpgm] _ a[((l_wm)-Pm-Pgs-Vd]
at at '
—km krg 3(Pm) ) (‘km krg 6(Pm) ) (‘km krg 8(Pm) )
a( Hg ax Pam n 0 Hg ay rgm n 9 Ky 5z Pom - g (@®m Pgm)
ax 3y az Im at

(-9 V - V) ((1-0,)Va)
pmpgs ( It L4 ) - pmpgs% """""""""""""""""""""""""" - 5.

From energy of state,

Formation volume factor (Bg) = Pgsc
QAcPgm

Where,

BTU
Ft3’

a.= Volume Conversion Factor = 5.6145

pgsc= Density of gas at standard conditions.

pgm= Density of gas in the Matrix.

Now, substituting pg., in Eqn 5, we get

3 km krg 8(Py) Pgsc 3 km krg 8(Py) Pgsc 3 km krg a(Pm) Pgsc al o Pgsc
= Kg ax acB Kg ay acB WUg az %cBg _ g m acBy
ax dy az T YOm at
A((1-9m)(V1L— Va)) ((1-0m)(Va))
PmPgs It t PmPys T a9t TTTTTTTTTTTTTTTTmTTmmmTmmmmTmmmmmmmmmmmeT ~> 6.

Now multiplying Eqn 6 with bulk volume i.e. AX.Ay.Az
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6( km Bc krgAx a(Py) pgsc>
=

3 km Be krgAy a(Pm) Pgsc
Kg 9x %cBg

Lg dy “CBg

p Ax + 3y Ay +
a<km Bckrga, 8(Pm) Pgsc) 6( M)
Wg 9z agp _ &cB a (1_om)(V -V )
0z Thzl = VpSg = VoPmPys ( ot v,
A((1-0m)(Va)) >
prmpgs ot T e 7.
Where 8, = Transmissibility conversion factor = 1.127 SC;: —.
Now consider the R.H.S in equation 7,
o HA-0w V- V) _ 3(A-8m) (V)
at B at
( - ) 4 (1-0,) ( )
- [V M +(1-g,,) L) a((Va)) a;’tm ________________________________ >3,
= Consider,m
OPm

o((v) _° ((XLZ—P}";))

Opm OPm

a((PLiT;m)> _ a((Pm-(PL+Pm)_1))
VL Opm - VL Ovm

[ 1
= V, [(PL+ Pt + Py "’((PLaJ;Pm) )]
' -1 I
= Vy [(P+B) ™+ By ((PL+Pm)2)]
1 P
=W (P +Pp) h (PL+Pm)2]
o P
(Pp+Pp)?
a((Va))_ PLVL

pm  (PL+Pm)?

From literature, @,,= @,ecm Pm=Fo),
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0Pm
= m- Cm
0(1-0r) _ B _
= 9Py 0Pn =~ D Cm
Now substituting ag(;/a)) and a(;;@m) in equation 8, we get
A((1-0m)(VL=Va)) _ PLVy ] 9pm
< DA = [Va(= B ) + (1 = B) oty | B e >0,
Considering the term
o((1 - 0,)(Va))
ot
= 6((1—®m)(Vd)) _ 6((1—®m)(Vd)) IPm
at - Pm ac
_(y, 3(a-em) _ (V) 9pm -
= {VdT +(1—-0n) m} T e ~10.
Va=V,-Vy
— _ Vi Pm
L ptp,
_ ViPL
T PL+Py

Vi Py,
Awv)_ a<<PL+Pm>>
OPm - OPm

3(((PLVL)(PL+4%n)_1))
0Pm

PLVy
(Pr+Pp)?
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From equation 10,

N0 V) S PLvy Ipm
0] = (1 () + (1= 0) (- o)} 52

_{_ _PiVy Plvy }apm
_{ (PL+Pm)2+(Z)m(PL+Pm)2 Va®nCm at

(1-0)(VL— V) and ((1-0m)(V D)
at at

Substituting 2 in Eqn 7, We get

6( km Be kTyAy a(Pm) Pgsc)

6( km Bc krgAx a(Py) Pgsc)
=

g ax  acp, Kg 9y  acp
Ax g
Jx + dy Ay +
km BcKrga, 8(Pm) Pgsc
a( Hg oz “cBg —VpSgmPgscPmCm
Az|= - prmpgscc)mcm (Vd - V;z) +
dz acBg

2PV LV (1-0m)| Opm
(PL+P)? at

The above equation represents the flow of gas in the matrix.

The above equation is a non-linear PDE equation which has to be solved to determine the

variation of pressure with time.

The following relations are used for calculatingK,,, iy, pgsc,Bg,Cim,Va and Vg.(which will

vary with respect to pressure)
i b
Klinkenberg Effect (K,) = Kaarcy (1 + i)
Where, Klinkenberg Coefficient ( by)= 12.639Kqrc, >>°.
Viscosity (ug) is calculated by using the following correlation

g\ _ 2 3 2 3 2
In (Tpr “—‘j)—ao+a1 Pyrtay Py tazP,, +Tpr(a4 + asPyy + agPy” + a; By, )+Tpr (ag +

2 3 3 2 3
a9Ppr + alOPpr + i Ppr )+Tpr (a12 + a13Ppr + a14Ppr + ais Ppr )
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Density of gas at standard conditions (pgs)

I:> p - PSCMLI
95€ " ZgcRTsc

Gas formation volume factor (By):
B, =0.02827%.
P

Now, for solving the equation 11 for the entire reservoir, the reservoir is divided into

several blocks i.e matrix blocks. In this model we have divided the entire reservoir into

9*9*9 3D reservoir as shown in Figure 3.3.
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Figure 3.3: Schematic view of the 3D Reservoir.

3.2.3 Discretization Method:

The developed equation representing the gas flow in the matrix blocks is a nonlinear partial
differential equation (PDE). For discretization of this nonlinear PDE, finite difference method

has been used.

39



i,j+ 1
(i+1/2)* T
Ay
l i-1,i T IT i T i+,
G-"2) T
L1
y 0) -

- AX
I_.(_) (i- '/2) @i+ )
o I f

Figure 3.4: Discretization and notation indication for a 3D pressure equation

By applying finite difference method, the equation 11 can be written as

= < km Bc krgAx  Pgsc i) n+1 n+k1 < km Bc krgAx  Pgsc i) n+k1
l+1] kK Yij, L],
Hg AcBg Ax i+ ik Hg AcBg Ax i—l,
2 2
+1 ) km Bec krgAy Pgsc 1 (Pn+1 n+1 _
-1jk acg. Ay Lj+1k — P; ik
g l]+—
km BckrgAy  pgsc 1 (Pn+1 Pn+1 ) km ﬁc krgAz Pgsc 1 (Pn+1
P—g aCB Ay 1 i) k 1 k acp Az i,j,k+1
l]——k Jk+=
km Bckrgdz p 1
n+1 mectrgetz gsc n+1 n+1 -
Pl]k < U @ E) (Pl]k Pl]k 1)
g ¢Bg ij, k——
n+1i_pn
—VpSgmPgscPmem 2P ViVp(1-01) (Plj k ~Pij, k)
-V (Vg —V) +—— | - -2 12.
[ acBy bpmpgscc)m m( d a) (PL+P)? At

As we have chosen the spatial discretization terms at new time interval i.e. (n+1), the applied

finite difference method can be considered has implicit finite difference method.

Be krg Pgsc
Mg AcBy

Considering transmisibility(T,,) = in all-direction
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Eqn 12 becomes

= M Pn+1 Pn+1 _

Ax S 1 i+1,7,k i,jk

i+=j.k
KmAyT
+ ( mey yy)
Ay

>/
ayr )

KomAxTgx prtl _
Ax L1, i,jk
L—E,],k

L)

n+1 n+1
l]+1k l]k

(KmAyTyy) _n_+1 Pn+1 ) + (KmAZng) n+l _ pn+ly _
Ay il Lk 1k Az i,j,k+% i,jk+1 i,jk
= ]
KmAZTHZ n+1 n+1 _ _Vbsgmpgscwmcm
Pl] k PL] k-1 -
Az i,], k—— acBy
2P,V vy (1=, (PR =Pl
(PL+P)? At
Writing eqn 13 in the following form
n+1 n+1 n+1 n+1
= A l+1]k l]k) A (Pl]k_ 1]k)+ﬂ l]+1k
n+1 n+1 n+1 n+1 n+1
P 1k)+ﬂ (Pl]k+1 l]k)l Pl]k Pl]kl l]k(
,j,k+2 2
where,

KmAxT
% (T,
i3]k ax Jidsjk

KmAxT
Mo (TR
=gk ax o Ji-cjk
A o =( KmAyTgy)
Bijtzk A itk
KmAyT
Ag,, 1 :( A gy) 1
L—zk Yo Jij—k
KmAzTgZ
Ag._ 1 = 1
l,],k+5 AZ i'j'k_|_E

KmAzTgZ
Ag : 1 = 1
1,],k—5 AZ i'j'k_E

—_ |=VbSgmpgscPme
X',j = [ gmPgsc®mCm vbpmpgsc(Z)mCm (Vy

acBg

-V, +

2PLVLVp(1-0m)

(PL+P)?

- prmpgsc

(Z)mcm (Vd - V;z) +

----------------- > 13
e > Ag o (Pl =
— Pljx)
--------------- > 14
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Eqn 14 can be written as

By j i Pl 1+ Si jaPIE it Wi PILY it G jac PIRE+ Ei s PSS kot Ny j s PR et A j i Pliies =
7 ——— >15.
Where,

Bi,j,k = 7\g

Lk
Si,j,k = 7\g .
Lk

Wi,j,k: A

i—5jk

Ci,j,k =- Ag_ 1 + 7\g

1.
i3k =51k

+ 7\g + 7\g + Ag + Ag Xk

Lj+3k ij-2k Likts ik

Ei,j,k: 7\g

1Lt
1+5,],k

Ni,j,k: 7\g

L1
1,]+5,k

Ai,j,k: 7\g

o1
1,],k+5

Qiji= (—Xijk) P

Equation 15 is applied for the entire reservoir in the N;*N,*N; 3D Reservoir. The obtained

equations are solved by coding using JAVA.

In this case, the well bore is placed horizontally in the 5" layer and the gas will flow from the
adjacent matrixes to the wellbore. The schematic representation of this model is shown in
Figure 3.5.

104

Figure 3.5: Schematic Representation of Wellbore in the 5 Layer from Top.
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The detailed input properties of the shale reservoir are listed in the table 3.1

Table 3.1: Parameters used for determining the gas flow in the matrix.

Parameter Value Units
Matrix Dimensions. 1166*293*5.55 ft
Matrix Porosity. 0.07
Matrix Permeability. 0.0002 mD
Reservoir Temperature. 240 °F
Reservoir Thickness. 50 ft
Horizontal Wellbore. 9000 ft
Length
Wellbore Diameter 1 ft
Wellbore Pressure 100 psi
Reservoir Pressure 3800 psi
Fracture Spacing 1 ft
Gas specific gravity 0.68
Gas Composition: CH, = 0.85

c0, = 0.08

N, =0.04

H,5=0.03.
3.3 Algorithm:

The developed nonlinear partial differential equation is compiled using JAVA for
determining the pressure variation in the matrix blocks during gas production from shale
reservoirs. Figure 3.6 represents the algorithm, used for solving the nonlinear PDE for gas flow

inside the matrix.
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Declaration of Matrix Variables.

days, minimum no of days is 1 interval.

Calculation of total no of intervals.

\
Input the values of pressure, temperature, Langmuir volume, langmuir pressure,

ks, pws and different gas compositions

of the wellbore.

A\ 4

@, no of hydraulic fractures, height of fractures and length
of wellbore is taken as input.

Each block of the reservoir (9%9*9) is given the
pressure value as an input initially.

y
A wellbore at the center Z parallel to Z axis is created
by putting the wellbore pressure to it.
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Declaration of array coefficients for Matrix.

The array coefficients are
calculated based on if the
indicated position comes in
wellbore, above and below the
wellbore or other.

If time is VES
less tha_n the N
total time
interval
_ TN
The Pressure Values are printed in
output file.

The coefficients are
accordingly placed in the
matrix using the position

indexing variables, then the
matrix multiplication is
carried out to find the array
of pressures of the blocks for
time interval (t+1).

End of
Matrix
Code

Bg,Z and pressure values for each

The excel file is generated with p,

Figure 3.6: Algorithm representing the procedure for solving the gas flow in the matrix.

The derived nonlinear partial differential equation for flow of gas in the matrix is

compiled using JAVA programming language and the code is attached in ANNEXURE-I.

45



