LIST OF TABLES

l	Table 1.1	Various Generations of Biofuels, Classified on the	
		Basis of Their Production Technologies	11
2	Table 3.1	Fatty Acid Composition and Important Properties	
		of Straight Jatropha curcas Oil	46
3	Table 3.2	Comparison of different Catalysis Techniques	51
4	Table 3.3	Chemical and Physical Properties of Hydrogenated	
		oil, FAME and EN 590 Diesel	59
5	Table 3.4	Various properties of Jatropha biodiesel in varying	
		blends with petroleum diesel	60
6	Table 4.1	Effect of temperature deviation on microalgae	
		growth rate	71
7	Table 4.2	Effect of Changes in Nitrogen Concentration on	
		Lipid Yield of Microalgae	75
8	Table 4.3	Comparison of open and closed systems for algae	
		cultivation	84
9	Table 4.4	Comparison of Inorganic and Organic flocculants.	102
10	Table 4.5	Comparison of Two step/ Conventional and One	
		step/Direct Transesterification	112
11	Table 4.6	Comparison of properties of biodiesel, diesel fuel	113
		and ASTM standard	
12	Table 5.1	Various Parameters Considered for Study	141
13	Table 5.2	Various Calculation Methods	146
14	Table5. 3	Energy Share and CO ₂ Emissions from each	
		Feedstock in Production of 0.875 MT of Fertilizer	149
15	Table5. 4	Total Yield Per Hectare for Initial Five Years from	
		Jatropha Plantation in the Identified Site	151
16	Table5. 5	Energy Use during Various steps of Oil Processing	1
		via Transesterification for converting it into Green	

		diesel	153
17	Table 5.6	Energy Use during Various steps of Oil Processing via Hydrogenation for converting it into Green	
		diesel	153
18	Table 5.7	The total energy uses during various steps of green	155
		diesel production from Jatropha seed cake	
19	Table 5.8	Stage wise Energy input/output and CO ₂ emissions	
		per hectare during first five years of Jatropha life	
		cycle (for oil processing via	
		transesterification)	157
20	Table 5.9	Stage wise Energy input/output and CO ₂	
		Emissions per hectare during first five years of	
		Jatropha Life Cycle (for Oil Processing via	
		Hydrogenation)	158
21	Table5.10	NEB values of the Compared Studies	161
22	Table5.11	Stage wise Energy input/output and CO ₂ emissions	
		per hectare during first five years of Jatropha life	
		cycle (for oil processing via Hyrogenation)	162
23	Table5.12	Capital Cost Investment over 20 years, for Green	
		Diesel Production from Jatropha	165
24	Table5.13	Operational Cost Investment over 20 years, for	165
		Green Diesel Production from Jatropha	
25	Table5.14	Total invest over 20 years, for Green diesel	165
		production from Jatropha	103
26	Table 6.1	Various parameters considered for study	174
27	Table 6.2	Various calculation methods	174
28	Table 6.3	Based on the Reactor Type and Configuration,	176
-		Biomass Production over 5 years	
		Biomass Production over 5 years	179

29	Table 6.4	Composition of the Biomass Obtained from	
		Culture of Microalgae	180
30	Table 6.5	Nutrient requirement based on the biomass	
		composition	181
31	Table 6.6	The Total Energy Input during Microalgae Culture	
		in the Various Reactors	182
32	Table 6.7	CO ₂ and NO _x Emissions due to Fertilizer and	
		Electricity use during Microalgae Culture	183
33	Table 6.8	Energy Requirements for Flocculation Followed	
		by Belt Drying	185
34	Table 6.9	Energy requirements for Flocculation Followed by	
		Centrifugation and Belt Drying	187
35	Table6.10	Energy Requirements for Centrifugation Followed	
		by Belt Drying	189
36	Table6.11	Energy Requirements for Oil Extraction from	192
		Microalgae by Bligh and Dyer Method	
37	Table6.12	Energy Requirements During Oil Processing via	
		Hydrogenation	194
38	Table6.13	Energy Requirement During Pyrolysis of Dry	
		Biomass and Oil Up-gradation via Hydrotreating	196
39	Table6.14	Energy Requirement during Hydrothermal	198
		Liquefaction Wet Biomass and Oil Up-gradation	
		via Hydrotreating	
40	Table6.15	Total Green diesel, Energy Content, & CO2	
		Emissions obtained over Five years span from	
		Microalgae	200
41	Table6.16	Stage wise Energy input/output, NEB and NER	200
		over 5 years	•••
		J	201

42	Table6.17	Total CO ₂ Emissions over 5 years from the	
		Different Routes	202
43	Table6.18	Capital Cost Investment over 20 years, for Green	
		Diesel Production from Algae	205
44	Table6.19	Operational Cost Investment over 20 years, for	
		Green Diesel Production from Algae	205
45	Table6.20	Total invest over 20 years, for Green diesel	
		production from Jatropha	205
46	Table7. 1	Comparison of Different Agronomical practices &	
		Challenges through entire Life Cycle of Jatropha	
		and Algae	208
47	Table7. 2	Comparison to Find out the Technical Viability of	
		Jatropha and Algae as An Energy Crop for Green	
		diesel Production	209
48	Table7. 3	Comparison of Jatropha and Algae along their Life	
		Cylce for Green diesel production, to find out their	
		Environmental Acceptability as an Energy Crop	210
49	Table7. 4	Comparison of Jatropha & Algae, find out their	
		economic competitiveness for Green diesel	
		production	211