Optimization of Tribological Performance of hBN/ Al₂O₃

<u>Nano-</u>

Particles

By Aanchal Gupta Kritika Sharma Vibhor Ahlawat

College of Engineering University of Petroleum & Energy Studies Dehradun

CONTENTS

ACKNOWLEDGEMENT ABSTRACT

1. INTRODUCTION

1.1 Problem Statement	
1.2 Background	
1.3 Review of Literature	

2. OBJECTIVE

3. METHODOLOGY AND WORKING ALGORITHM

4. PART I: PURE CASTOR OIL TESTING

4.1 Why Castor Oil?	
4.2 Chemical Properties	
4 3 Experimental Results	

5. PART II: AFTER ADDING Al₂O₃/ hBN NANOPARTICLES

5.1 Design Parameters	
5.2 Taguchi Methods	
5.3 Experimental Results	

6. CONCLUSIONS AND RESULTS

Bibliography References

ACKNOWLEDGEMENT

It is a pleasure to thank all those great many people who helped, supported and encouraged us during this project work.

Firstly, We express our sincere gratitude to Prof. Yashvir Singh, our guide and mentor who carefully and patiently lent his valuable time and effort to give us directions with attention and care.

It is a great honour to do this project in this esteemed institution, and we would extend our gratefulness to Dr. Suresh Kumar Lalwani, Associate Dean, Prof. Yashvir Singh, Professor and other faculty members of Mechanical and Electronics department, who have shared their vast knowledge and experience during our stay.

We would also like to appreciate the consideration of the Project coordinator, our faculties and colleagues who enabled us to balance our work along with this project. It was their supportive attitude that inspired us to do such an efficient and apposite work.

We are indebted to those people across the globe who have shared their knowledge and perspectives in the form of online tutorials, forums and other resources which helped us to a great extent whenever we faced obstacles.

We wish to avail this opportunity to express a sense of gratitude and love to all our friends and family for their unwavering support and strength during the progress of our report.

ABSTRACT

The purpose of this study is to determine the optimal design parameters and to indicate which of the design parameters that are statistically significant for obtaining a low coefficient of friction (COF) with hexagonal boron nitride (hBN) and alumina (Al2O3) nanoparticles, dispersed in Castor oil. Design of experiment (DOE) was constructed using the Taguchi method, which consists of L9 orthogonal arrays. Tribological testing was conducted using a four-ball tester according to ASTM standard D4172 procedures. According to the analysis of signal-to-noise (S/N) ratio and analysis of variance (ANOVA), COF and wear scar diameter were reduced significantly by dispersing several concentrations of hBN nanoparticles in conventional diesel engine oil, compared to without nanoparticles and with Al2O3 nanoparticle additive.

1. INTRODUCTION

1.1 Problem Statement

The purpose of this study is to determine the optimal design parameters and to indicate which of the design parameters that are statistically significant for obtaining a low coefficient of friction (COF) with hexagonal boron nitride (hBN) and alumina (Al₂O₃) nano particles, dispersed in Castor oil.

1.2 Background

Nano particles can be considered as modern lubricant additives. They present several major advantages over organic molecules that are currently used as lubricant additives. Their nanometer size allows them to enter into the contact area like molecules. They are immediately efficient; even at ambient temperatures. Therefore, no induction period is necessary to obtain interesting tribological properties. Various types of nanoparticles were used to prepare nano lubricants, including polymers, metals, and organic and inorganic materials.

1.3 Review of Literature

Studies reported that copper (Cu) nanoparticle used as oil additives can improve the anti-wear, load-carrying, and friction-reduction performance of SJ 15W/40 gasoline engine oil. This was in agreement with several other authors' work, where they use nanoparticles of zirconia/silica (ZrO3/SiO2) composite, copper oxide (CuO), titanium oxide (TiO2), and nano-diamond as oil additives. Even the addition of a low concentration of nanoparticle (between 0.2% and 3% vol.) into lubricating oil is sufficient to improve tribological properties.

2. OBJECTIVES

- > Study and analysis of physical properties of engine oil
- Variance of wear and tear

3. METHODOLOGY AND WORKING ALGORITHM

- Tribological testing will be conducted in three phases, namely:
- > 1^{st} phase : pure castor oil testing for flash point, pour point, etc.
- > 2^{nd} phase :testing on pin on disc after adding Al₂O₃/hBN nanoparticles .
- Primary and secondary data are collected through experimentation and research papers.

4. PHASE I: PURE CASTOR OIL TESTING

4.1 Why Castor Oil?

- Vegetable oils, due to their good lubricity and biodegradability are attractive alternatives to petroleum-derived lubricants
- Castor oil has better low temperature viscosity properties and high temperature lubrication than most vegetable oils
- It is a useful lubricant in jet, diesel, and race car engines.[[]

4.2 Chemical Properties

Flash point: 229°C Pour point: -24°C Fire Point: 449°C Density : 961 kg/m³ Dynamic Viscosity (at 10° C) : 2420 cP

4.3 Experimental Results

Graph for viscosity (cP) at 10 degree C, as measured by Rheometer

The viscosity of castor oil by experimental methods is obtained to be approx 2220 cP, verifying the observational values.

		Meas. Pts.	Time	Viscosity	Shear Rate	Torque	Strain	Temperature	Shear Stress	Torque	Status
			[5]	[cP]	[1/s]	(mNm)	[%]	[°C]	(Pa)	[mNm]	0
		10	120	2,190	10	0.284	117,000	10.9	21.9	0.284	
		11	132	2,220	10	0.288	129,000	11	22.2	0.288	
lame:	castor oil 1	12	144	2,230	10	0.29	141,000	11	22.3	0.29	
Sample:	castor oil	13	156	2,220	10	0.288	153,000	11.1	22.2	0.288	
	100 CON	14	168	2,240	10	0.291	165,000	11.1	22.4	0.291	
perator:	NoLogin	15	180	2,220	10	0.289	177,000	11	22.2	0.289	
Remark:	text2	16	192	2,210	10	0.287	189,000	11.2	22.1	0.287	
esult:		17	204	2,240	10	0.291	201,000	11.2	22.4	0.291	
		18	216	2,210	10	0.288	213,000	11.2	22.1	0.288	
lethod:	RheolabQC SN8139443:	19	228	2,230	10	0.29	225,000	11.2	22.3	0.29	
уре:	Measuring Data	20	240	2,240	10	0.291	237,000	11.3	22.4	0.291	i.
7 Current	Measurement										
- Ourrent	Loop Measurement	2 1001		-							

Graph obtained for viscosity vs. time at 40 degree C.

		Meas. Pts.	Time	Viscosity	Shear Rate	Torque	Strain	Temperature	Shear Stress	Torque	Status
			[5]	[cP]	[1/s]	(mNm)	[%]	[°C]	[Pa]	[mNm]	0
		10	120	440	10	0.0572	119,000	40.3	4.4	0.0572	M-
		11	132	394	10	0.0512	131,000	40.3	3.94	0.0512	M-
ame:	castor oil 2	12	144	426	10	0.0553	143,000	40.3	4.26	0.0553	M-
ample:	castor oil	13	156	406	10	0.0527	155,000	40.3	4.06	0.0527	M-
		14	168	390	10	0.0506	168,000	40.2	3.9	0.0506	M-
perator:	NoLogin	15	180	451	10	0.0585	180,000	40.3	4.51	0.0585	M-
emark:	text2	16	192	400	10	0.052	192,000	40.3	4	0.052	M-
esult:		17	204	470	10	0.061	204,000	40.2	4.7	0.061	M-
ooun.		18	216	431	10	0.056	216,000	40.3	4.31	0.056	M-
ethod:	RheolabQC SN8139443:	19	228	409	10	0.0531	228,000	40.3	4.09	0.0531	M-
ype:	Measuring Data	20	240	428	10	0.0556	240,000	40.3	4.28	0.0556	M-
Current	Measurement										Ш.,
Current	Loop Measurement										

5. PHASE II: AFTER ADDING Al₂O₃/ hBN NANO-PARTICLES

5.1 Design Parameters

	1	2	3
hBN (vol %)	0	2%	4%
Al2O ₃ (vol %)	0	3%	6%
Sliding Velocity (rpm)	300	600	900
Load (N)	50	100	150

5.1 Taguchi Methods

Taguchi designs are used for robust parameter design, in which the primary goal is to find factor settings that minimize response variation, while adjusting (or keeping) the process on target. Taguchi designs provide a powerful and efficient method for designing products that operate consistently and optimally over a variety of conditions.

5.2 Experimental Results

	Taguchi D	esign		×
Type of Design C 2-Level Design 3-Level Design 4-Level Design 5-Level Design Mixed Level Design	(2 to 31 factor (2 to 13 factor (2 to 5 factors (2 to 6 factors (2 to 26 factor	rs) rs) ;) ;) rs)		
Number of factors: 4	•	Display Availa	ble Designs	
		Designs	Factors	
		Options		
Help		ОК	Cancel	

	Taguc	hi Design - Design	×
Runs	3 ** 0	olumns	
L9 L27	3 ** 3 **	4 4	
Add a	signal factor f	or dynamic characteristics	
Help		ОК	Cancel

• 🗙		Worksheet 1 ***																		
C20 ^	C19	C18	C17	C16	C15	C14	C13	C12	C11	C10	C9	C8	C7	C6	C5	C4	C3	C2	C1	÷
																D	С	В	Α	
																1	1	1	1	1
																2	2	2	1	2
																3	3	3	1	3
																3	2	1	2	4
																1	3	2	2	5
																2	1	3	2	6
																2	3	1	3	7
																3	1	2	3	8
																1	2	3	3	9
																2 2 3 1	3 1 3 1 2	2 3 1 2 3	2 2 3 3 3	5 6 7 8 9

A *pin on disc tribometer* consists of a stationary "pin" under an applied load in contact with a rotating disc. The pin can have any shape to simulate a specific contact, but spherical tips are often used to simplify the contact geometry. Coefficient of friction is determined by the ratio of the frictional force to the loading force on the pin.

The pin on disc test has proved useful in providing a simple wear and friction test for low friction coatings such as diamond-like carbon coatings on valve train components in internal combustion engines.

	Worksheet 1 ***														• X					
+	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20 ^
	Α	В	С	D	COF															
1	1	1	1	1	0.0756															
2	1	2	2	2	0.0997															
3	1	3	3	3	0.1567															
4	2	1	2	3	0.0884															
5	2	2	3	1	0.1365															
6	2	3	1	2	0.1501															
7	3	1	3	2	0.0666															
8	3	2	1	3	0.0970															
9	3	3	2	1	0.1560															

The S/N ratio used for this type response was given by:

$$S/N = -10\log_{10}\left(\sum \left|\frac{y^2}{n}\right|\right)$$

Where, n is the number of measurement values in a test and y is the measured value in the test.

+	C1	C2	C3	C4	C5	C6
	hBN (vol%)	AI2O3 (vol%)	Sliding Vel (rpm)	Load (N)	COF	S/N ratio
1	1	1	1	1	0.0756	18.6112
2	1	2	2	2	0.0997	18.6223
3	1	3	3	3	0.1567	20.3004
4	2	1	2	3	0.0884	20.3501
5	2	2	3	1	0.1365	18.0361
6	2	3	1	2	0.1501	16.9004
7	3	1	3	2	0.0666	17.6900
8	3	2	1	3	0.0970	20.5400
9	3	3	2	3	0.1560	16.7500

	A	nalyze Taguchi D	esign	×
C5 C6	COF S/N ratio	Response data are	in:	
	1	Graphs	Analysis	Terms
	Select	Analysis Graphs,.,	Options	Storage
	Help		ОК	Cancel

UPES

Worksheet 1 ***											
+	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11
	Α	В	С	D	COF	S/N ratio	PSNRA1	PMEAN1	PSTDE1	PLSTD1	
1	1	1	1	1	0.0756	18.6112	-2.93973	9.3434	13.1066	2.57312	
2	1	2	2	2	0.0997	18.6223	-2.91729	9.3610	13.0975	2.57242	
3	1	3	3	3	0.1567	20.3004	-2.87620	10.2286	14.2437	2.65632	
4	2	1	2	3	0.0884	20.3501	-2.93484	10.2192	14.3272	2.66216	
5	2	2	3	1	0.1365	18.0361	-2.87883	9.0863	12.6569	2.53820	
6	2	3	1	2	0.1501	20.5400	-2.88335	10.3450	14.4178	2.66847	
7	3	1	3	2	0.0666	17.6900	-2.94490	8.8783	12.4616	2.52265	
8	3	2	1	3	0.0970	16.9004	-2.91059	8.4987	11.8818	2.47501	
9	3	3	2	1	0.1560	16.7500	-2.84850	8.4530	11.7337	2.46247	

ANOVA is statistically based, used for detecting differentials occurring in the average performance of groups of items tested. ANOVA helps in formally testing the significance of all main factors and their interactions by comparing the mean square against an estimate of the experimental errors at specific confidence levels.

Two-way ANOVA: S/N ratio versus hBN (vol%), Al2O3 (vol%)

```
     Source
     DF
     SS
     MS
     F
     P

     hBN (vol%)
     2
     1.2963
     0.64815
     0.19
     0.836

     Al2O3 (vol%)
     2
     2.0154
     1.00772
     0.29
     0.762

     Error
     4
     13.8461
     3.46152
     10011
     0.19
     0.836

     S = 1.861
     R-Sq = 19.30%
     R-Sq(adj) = 0.00%
     0.00%
     0.00%
     0.00%
```

E

<

W											
Ŧ	C1	C2	C3	C4	C5	C6	C7				
	hBN (vol%)	AI2O3 (vol%)	Sliding Vel (rpm)	Load (N)	COF	S/N ratio	RESI1				
1	1	1	1	1	0.0756	18.6112	-0.80603				
2	1	2	2	2	0.0997	18.6223	-0.97730				
3	1	3	3	3	0.1567	20.3004	1.78333				
4	2	1	2	3	0.0884	20.3501	1.68197				
5	2	2	3	1	0.1365	18.0361	-0.81440				
6	2	3	1	2	0.1501	16.9004	-0.86757				
7	3	1	3	2	0.0666	17.6900	-0.87593				
8	3	2	1	3	0.0970	20.5400	1.79170				
9	3	3	2	3	0.1560	16.7500	-0.91577				

6. <u>CALCULATIONS AND RESULTS</u>

The chemical properties of castor tested so far have experimental values as:

Flash point: 229°C Pour point: -24°C Fire Point: 449°C

Density : 961 kg/m³ Dynamic Viscosity (at 10° C) : 2420 Cp

According to the category of the performance characteristic, a greater S/N value corresponds to a better performance. Therefore, the optimal level of COF parameters is the level with the greatest S/N value. Based on the analysis of the S/N ratio, the optimal COF for the vol.% contribution was obtained as 2 vol.% AlO3 and 3 vol.% hBN.

Bibliography

- Wu, Y.Y., Tsui, W.C., Liu, T.C., 2007. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives, Wear 262, p. 819.
- Xiaodong, Z., Xun, F., Huaqiang, S., Zhengshui, H., 2007. Lubricating properties of Cyanex 302-modified MoS2 microspheres in base oil 500SN, Lubr. Sci. 19, p. 71.
- Liu, G., Li, X., Qin, B., Xing, D., Guo, Y., Fan, R., 2004. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface, Tribol. Lett. 17, p. 961.
- Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., Kim, S.H., 2009. Understanding the role of nanoparticles in nano-oil lubrication, Tribol Lett. 35, p. 127

REFERENCES

- http://www.sciencedirect.com.scihub.org/science/article/pii/S1877705813020390
- <u>http://www.wikipedia.org</u>
- http://ducom.com/2014/product-update-universal-high-temperature-tribometer/

Submitted By:

- Aanchal Gupta
 R880211064
 8650953448
 aanchalg07@gmail.com
- Kritika Sharma R880211026 9927173354 <u>krtksharma5@gmail.com</u>
- Vibhor Ahalawat R880211058 8650139707 vibhor.ahalawat@yahoo.com

