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ABSTRACT 

 

The dynamic behavior of double and triple link pendula considering both the 

lumped and distributed mass has been studied. The system of governing 

differential equations for double pendulum (DP) and triple pendulum (TP) is 

derived using the Euler- Lagrange (EL) approach. Effect of damping of pivots is 

also considered in the model. The governing equations are also derived in the 

terms of momenta and angular velocity without considering the damping to 

confirm the results obtained by the E-L approach. Chaotic behavior of these 

systems was investigated using time series plot, Poincare map and Lyapunov 

exponent. It is observed that bottom pendulum is most sensitive than other 

pendula. Further, tendency of chaotic behavior increases with degree of freedom 

(dof) for the same initial conditions. Nature of Poincare maps of the TP becomes 

more intricate in comparison to the DP. Interestingly, damping of pivots results in 

regular motion of the pendulum system. In other words, introduction of damping 

in the multiple pendula reduces the tendency of chaos. Moreover, there is no 

qualitative difference between the lumped and distributed pendulum systems as 

far as the dynamical behavior is concerned. All the observations and results are 

validated experimentally. The LQR technique was used to control inverted triple 

pendulum. The control technique was found to be effective. This is also valid for 

double pendulum 
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EXECUTIVE SUMMARY 

 

A pendulum is a highly nonlinear system used for validating control algorithms as 

well as dynamic model for variety of physical systems. In a pendulum either there 

can be free vibrations or forced vibration. The dynamic behavior of double and 

triple link pendula considering both the lumped and distributed mass has been 

studied under free vibration. The system of governing differential equations for 

Double Pendulum (DP) and Triple Pendulum (TP) is derived using the Euler- 

Lagrange (EL) approach. Effect of damping of pivots is also considered in the 

model. The governing equations are also derived in the terms of momenta and 

angular velocity without considering the damping to confirm the results obtained 

by the E-L approach. Chaotic behavior of these systems was investigated using 

time series plot, FFT Analysis, Poincare map and Lyapunov exponent. 

It is observed that bottom pendulum is most sensitive than other pendula. 

Further, tendency of chaotic behavior increases with Degree of Freedom (DoF) 

for the same initial conditions. Also the effect of mass and length has been studied 

and it can be verified that in case of DP chaotic nature is mainly because of 

second mass and length. With the increment of lowest mass or lowest length 

Lyapunov exponent becomes positive which is a sign of chaos. Poincare becomes 

irregular in nature as we increase the lowest mass and length. Also it is verified 

for both DP and TP that as going from lumped to distributed system Poincare 

become more regular in nature and chaotic nature increases. Nature of Poincare 
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maps of the TP becomes more intricate in comparison to the DP. Interestingly, 

damping of pivots results in regular motion of the pendulum system. In other 

words, introduction of damping in the multiple pendula reduces the tendency of 

chaos.  

The effect of frequency is also considered for SP, DP and TP and it can be found 

that that natural frequency of the linearized system increases from lumped to 

distributed system and also order of frequency will be like in case of top 

pendulum least one and Bottom Pendulum Highest one. Analysis of Linear 

stability is also being done for both Double and Triple Pendulum. Moreover, there 

is no qualitative difference between the lumped and distributed pendulum systems 

as far as the dynamical behavior is concerned. Also experimental analysis has 

been done for double and triple pendulum and it shows the chaotic behaviour. The 

LQR technique was used to control inverted triple pendulum. Using LQR the 

system stabilizes in less than 4 seconds. The control technique was found to be 

effective. This is also valid for double pendulum 
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CHAPTER 1 

INTRODUCTION 

The chapter describes the introduction to nonlinear systems and corresponding 

dynamic analysis and procedures. In the chapter an attempt is made to understand 

the dynamical behavior of nonlinear systems by obtaining differential equation 

based mathematical model. A brief insight into formation and evolution of 

differential equation and corresponding dynamical behavior is presented in this 

chapter. The objective of this research work is presented at the end of the chapter. 

 1.1 INTRODUCTION TO DYNAMICAL SYSTEM 

A system is a combination of different interacting components or parts 

that is perceived as a single entity. An electric motor, an airplane and biological 

unit such as the human arm are examples of systems. A system is characterized by 

two properties, which are as follows; 

1. The interrelations between the components that are contained within the 

system. 

2. The system boundaries that separate the components within the system from 

the components outside. 

           The parts or components making up the system may be clearly or vaguely 

defined. These parts are connected through each other through a particular set of 

variables, called the states of the system, that completely determine the 
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behaviorof the system at any given time .A dynamical system is a system whose 

state continuously changes with respect to time. 

 Specifically, the state of a dynamical system can be regarded as an information 

storage or memory of several past system events. Once the flow of a dynamical 

system describing the motion of the system starting from a given initial state is 

given, dynamical system theory can be used to describe the behavior of the 

system states over time for different initial conditions. The initial condition for the 

system should be well known for obtaining the dynamic trajectory i.e. identifying 

the behavior at any future point of time. Hence, the state of a dynamical system at 

a given time is uniquely determined by the state of the system at the initial time 

and the present input to the system. In other words, the state of a dynamical 

system in general depends on both the present input to the system and the past 

history of the system. 

A dynamical system can be represented in terms of mathematical model 

by using set of differential equation in continuous time and discrete equation in 

discrete time consisting states, input and output of a given physical system. The 

key theoretical tool in the description of dynamics is a state space or phase space 

description of the behaviour of the system.  

In dealing with a system, the effect of external quantities upon the 

behavior is focused. The external quantities act as the inputs to the system. The 

condition or the state of the system  is described by the state variables. The state 

variable provides the information that, together with the knowledge of the system 

inputs, enables us to determine the future state of the system. “A dynamical 
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system consists of a set of possible states, together with a rule that determines the 

present state in terms of past states”.  

On dynamical system modeled by a set of ordinary differential equations 

   ̇                        ………          (1.1) 

                              (1.2)  

together with p functions 

                                                             (1.3) 

Where the system model state is   =                . The system 

input is                      and the system output is 

                       

In vector notation of the above system model has the form  

 ̇                                (1.4) 

                         (1.5) 

 Where                                     are vector 

valued functions [1]. 

System stability is characterized by analyzing the response of a dynamical 

system to small perturbations in the system states. Specifically, an equilibrium 

point of a dynamical system is said to be stable if, for sufficiently small values of 

initial disturbances, the perturbed motion remains in an arbitrarily prescribed 

small region of the state space. More precisely, stability is equivalent to continuity 

of solutions as a function of the system initial conditions over a neighborhood of 

the equilibrium point uniformly in time. If, in addition, all solutions of the 
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dynamical system approach the equilibrium point for large values of time, then 

the equilibrium point is said to be asymptotically stable. 

Since most of the physical systems are inherently nonlinear in nature and 

nonlinearity occur because of input constraints (saturation, dead band), Kinematic 

Effect, Gyroscopic Effects (rotational motion) and geometric constraints. 

However nonlinear system can exhibit a very rich dynamical behavior such as 

multiple equilibria, limit cycles, bifurcations, jump resonance phenomena and 

Chaos makes the study of nonlinear system difficult. Pendulum is a highly 

nonlinear system. The dynamics of simple pendulum, double pendulum and triple 

pendulum is analyzed for lumped and distributed mass both.  

1.1.1 AUTONOMOUS AND NONAUTONOMOUS SYSTEM 

The equation of motion were written as a system of equation 

.

( , )x f x u          (1.6) 

where ( ,q)x q  is the state of the system. The parameters of the mechanism and 

the environment are denoted as u . These parameters include the link lengths, 

masses and the distance between walls. A system of ordinary differential 

equations is autonomous when it does not depend on time (or another independent 

variable). In contrast, a system is non-autonomous when it does depend on time. 

In Eqn. (1.6) since the right hand side does not include time it is an autonomous 

system. A non-autonomous system is of the form 

.

( , , )x f x u t ;   ,x t     n
 x   ,     (1.7) 
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A nth-order time-periodic non-autonomous system with period T i.e., f(t) = f( t + 

T0) can always be converted into an (n+1)
th 

order autonomous system of 

differential equations. 

 

1.2 TYPES OF DYNAMIC MOTIONS 

There are three classic types of dynamic motions which are relevant to our 

climbing mechanism. 

(1) Equilibrium (fixed point) - The notion of fixed points (also called 

stationary points or critical points or equilibrium points) in state space plays a key 

role in understanding the dynamics on nonlinear systems. If the system stat at one 

of these fixed point, it stays at that fixed point for all time. Since the time 

derivatives of the state space variable are zero at the fixed point, those variables 

cannot change in time [25]. For a one dimensional state space there are three fixed 

points. 

(a) Nodes (Sinks) - Fixed points that attract nearby trajectories. 

(b) Repellers (Sources) - Fixed points that repel nearby trajectories. 

(c) Saddle Points - Fixed Points that attracts trajectories on one side will repel 

them on the other. 

(2) Periodic motion or a limit cycle - With periodic motion the pendulum 

repeats its behaviour at regular intervals. In the simplest case, the period of the 

motion will coincide with the period of the forcing. The motion of the pendulum 

will either periodic or chaotic. In state space with two or more dimensions, it is 

possible to have cyclic or periodic behaviour. This very important kind of 
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behaviour is represented by closed loop trajectories in the state space. A trajectory 

point on one of these loops continues to cycle around that loop for all time. These 

loops are called limit cycle if the cycle is isolated, that is if the trajectories nearby 

either approach or are repelled from limit cycle [25].    

(3) Quasi-periodicity and chaos - The quasi periodicity involves 

competition, in general between two or more independent frequencies 

characterizing the dynamics of the system. This occurs in (at least) two kinds of 

system. 

(i) A nonlinear system with a natural oscillation frequency, driven by an external 

periodic force. 

(ii) Nonlinear systems that spontaneously develop oscillation at two frequencies 

as some parameter of the system are varied.  

 The quasi-periodic is used to describe the behaviour when the two frequencies 

are incommensurate (i.e. Frequency ratio is irrational) because, in fact, the 

system’s behaviour never exactly repeats itself in that case [25]. If the two 

frequencies are incommensurate, the Poincare points will never (in principle) 

repeat. Indeed, the time behaviour of a quasi-periodic system can look quite 

irregular. The theory underlying the quasi-periodic route to chaos [54] tells us 

only that this scenario is likely to lead to chaotic behaviour; not that is must.  

System shows the chaotic behaviour when moving from simple pendulum to 

multiple pendulums. Chaos is “aperiodic long term behavior in a deterministic 

system that exhibits sensitive dependence on initial conditions” [3]. Sensitive 
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dependence to initial condition occurs when two very close initial conditions 

diverge exponentially from each other  

 

1.3 TOOLS FOR THE MEASUREMENT OF CHAOS 

For the measurement of chaotic behaviour following tools are used. 

 (i) Time-series plot – Time series either of the angular displacement or the 

angular velocity as a function of time is familiar geometrical devices and provides 

another picture of the motion. This is the simplest technique to see the evidence of 

chaos. In that case, two trajectories with very slight difference in initial value 

show considerable separation after a certain time in time-series plot. 

(ii) Phase-plot (Displacement-velocity plot) - The motion of a pendulum is 

conveniently displayed graphically in the plane of its phase variable, angle and 

angular velocity. The characteristic points or curves in these diagrams are called 

“attractors" because irrespective of initial conditions, all trajectories are 

asymptotically attracted to them. 

 (iii) Fast Fourier Transform - Chaotic motion contains an infinite number of 

components and therefore Fourier analysis is also an important tool.  

(iv) Poincare-Map - The Poincare section is obtained by removing one space 

dimension. In the case of three variables, the Poincare section is a plane of 

function and its derivative. The Poincare plane has to be chosen in such a way that 

trajectories will intersect it several times. If the motion is periodic (non chaotic), 

the trajectory will cross the Poincare plane repeatedly at the same point. Chaotic 
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motion means that despite the fact that the motion is deterministic it never repeats 

itself, however there will be a dense set of points in the Poincare section filling a 

certain area of this plane. Poincare sections are useful when analyzing chaotic 

systems, as they make it easier to understand their dynamics. It is very important 

to construct Poincare sections intelligently to be able to visualize the dynamics of 

chaotic systems [27]. 

(v) Lyapunov exponent - The Lyapunov exponents are the average rate of 

contraction or expansion near the periodic orbit. Knowing how the local 

Lyapunov exponent varies in space allows one to identify regions of an attractor 

with good or poor predictability for small initial errors.  

The Lyapunov exponents can reveal if indeed there is an exponential 

relationship between the flows of two very close initial conditions. In general, for 

an n-dimensional dynamical system, there are n Lyapunov exponents. To check 

for sensitivity of initial conditions, only the largest Lyapunov exponent is of 

interest. The method for finding this largest Lyapunov exponent is very similar to 

finding the Lyapunov exponent of a one-dimensional map which is explained 

next. 

 Assume P is a Poincar´e map of a 1-D system. Let    and          be two 

nearby initial points on the flow, not necessarily in steady state. After one 

iteration of a map the points are separated by 

    = P(          - P(  )            

where    = 
  

  
. The local Lyapunov exponent λ at is   
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To obtain the global Lyapunov exponent, an average of the local Lyapunov 

exponent over much iteration must be taken 

            
 

 
    

   

   
  

This is similar to calculating the eigenvalues of the linearized Poincar´e map  

Whereas eigenvalues are usually calculated at a point in state space, such as a 

fixed point, Lyapunov exponents are usually geometrically averaged along the 

orbit. 

 

 1.4 LAGRANGE EQUATION OF MOTION 

Consider a mechanical system with ‘n’ degrees of freedom, locally 

represented by n generalized configuration (position) coordinates 

1, 2,( ........ )nq q q q .In classical mechanics the following equations of motion are 

derived 

. i

i
i

d T T
Q

dt qq

 
    

   

,  i ϵ n      (1.8) 

Here ( , )T q q , with 
. . . . .

1 2 3( , , ,...... )nq q q q q  the generalized velocities, denotes the 

total kinetic energy of the system, Qi are the generalized active forces, which act 

on the system. Usually the forces Qi are decomposed in to a part which are called 

conservative forces, i.e. forces that are derivable from potential energy, and a 
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remaining part Qe

i ,  i ϵ n, consisting of dissipative and generalized external 

forces. 

( ) e

i i

i

V
Q q Q

q


  


 i ϵ n,       (1.9) 

With V(q) being the potential energy function. Defining the Lagrangian function 

0( , )L q q  as ( , ) ( )T q q V q , arrives at the Euler Lagrange equations 

0 0 e

i

i i

L Ld
Q

dt q q

 
 

 
, i ϵ n,       (1.10) 

From Eqn. (1.10) a control system is obtained by disregarding dissipative forces 

and interpreting the external forces Qe

i  in Eqn. (1.9) as input or control variables

iu . 

If some degree of freedom can be directly controlled, then control system obtains 

0 0
, 1,........

0, 1....

i

i i

u i kL Ld

dt q q i k n

  
   

    
      (1.11) 

With 1,......, ku u  are the controls. 

In general, for a mechanical system of n degrees of freedom with a Lagrangian 

.

( , , u)L L q q depending directly on u, in the absence of other forces, the equation 

of motion 

. .

.

( , ,u) ( , ,u)
0

i
i

d L q q L q q

dt qq

 
 



, i ϵ n,     (1.12) 

Eqn. (1.11) can be regarded as special case of Eqn. (1.12) by taking in Eqn. (1.12) 

the Lagrangian 
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.

0

1

( , ,u) ( , )
n

m m

m

L q q L q q q u


        (1.13) 

Eqn. (1.13) known as a Lagrangian control system [3]. 

 

1.5 HAMILTONIAN MECHANICS 

 Systems or models with no dissipation are called conservative systems or 

Hamiltonian systems. The term conservative means physical properties such as 

the angular momentum, total mechanical energy remain constant in time. 

Hamiltonian systems comprise a class of dynamical systems in which some 

quantity (typically energy) is constant along the system's trajectories [1, 2]. In the 

Hamiltonian formulation of classical mechanics, the time evolution of a system is 

described in terms of set of dynamical variable, which give position and momenta 

of the system [5]. There is another description of the dynamics of the system by 

means of generalized coordinates iq  and another quantity the so called 

generalized momenta ip . 

From the Lagrangian control system Eqn. (1.12), the generalized momenta can be 

defined as 

( , , )i

i

L
p q q u

q





, i ϵ n,       (1.14) 

The Hamiltonian function ( , , )H q p u as the Legendre transform of 
.

( , , u)L L q q , 

1

( , , ) ( , , )
n

i i

i

H q p u p q L q q u


  ,      (1.15) 

Where q and p are related by Eqn. (1.14). 
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It is clear that with Eqn. (1.14) and (1.15) the Euler-Lagrange Eqn. (1.12) 

transform in to the Hamiltonian equations of motion 

.

.i

i

H
q

p






 , i

i

H
p

q


 


,  i ϵ n     (1.16) 

The quantity H is called the Hamiltonian. The Eqn.(1.16) known as Hamiltonian 

control systems. The advantage of Eqn. (1.16) in comparison with Eqn. (1.12) is 

that Eqn. (1.16) immediately constitutes a control system in standard state space 

variable [3]. 

 

1.6 GENERAL PROCEDURE TO GET THE HAMILTONIAN 

EQUATIONS 

The procedure for receiving the Hamilton equations, can be shortly 

summarized in the following algorithm 

1.  Write the Lagrange function in Cartesian coordinates L T V   

2. Choose the generalized coordinates 1, 2,( ........ )nq q q q according to the 

constraints. 

3. Express the kinetic energy T and potential V energy by the generalized 

coordinates q  and 
.

q  

4. Find the generalized momenta 1 2( , ,....... )np p p p using the basic formulae

i

i

L
p







. 
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5. Express 
.

q  by p , q  and write Hamiltonian as a function of p and q using the 

formulae
.

i iH p q L  . If our coordinates do not depend explicitly on time, 

then the Hamiltonian is just the integral of energy H = T + V 

6. Write the canonical Hamiltonian equations. 

 

1.7 OBJECTIVES 

The main objective of the work is to see the dynamical behaviour of the 

multiple link pendula. The modeling of double and triple pendulum is obtained 

using Lagrangian and Hamiltonian based approach for lumped and distributed 

system. The simple pendulum shows periodic motion under free vibration 

whereas double to triple pendulum shows quasi periodic to chaotic behaviour. As 

the system shows the chaotic behaviour so all the tools for the measurement of 

chaos like Poincare’, Lyapunov Exponent, Time series analysis, Fast Fourier 

Transform etc. have been discussed in detail. The mass and length dependent 

behavior on double pendulum is calculated. Also the effect of damping is also 

taken in to account. An optimal based LQR control approach is used for 

stabilizing the triple link inverted pendulum on cart.  

 

1.8 OUTLINE OF THE CHAPTERS 

Chapter 1 presents the introduction to system theory and basic equation 

for the modelling of the system. The Lagrange and Hamiltonian based approach is 

discussed for the dynamics of pendulum.  
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Chapter 2 presents the literature survey and what is final outcome of the literature 

survey. 

Chapter 3 is focusing on the how to obtain the dynamics of SP, DP for lumped 

and distributed system.  

Chapter 4 presents the dynamics and control for TP for lumped and distributed 

system. 

Chapter 5 presents the results and discussion. Results on the mass and length 

dependent behaviour will be discussed in detail for double pendulum. The effect 

on the fundamental frequency has been shown when go from lumped to 

distributed system in case of Double and triple pendulum. Also the Stability 

output of TP has been shown.  

Chapter 6 presents the conclusion and future scope
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CHAPTER 2 

LITERATURE SURVEY 

The chapter describes the literature survey that being carried out in understanding 

the concept of dynamics and control of multiple pendula. Modelling is obtained 

with the help of Lagrangian and Hamiltonian Mechanics reported in the literature.    

 

2.1 LITERATURE REVIEW 

Modern development in the field of mechanics, mathematics and related 

numerical calculation technique allow more exact modelling of the real time 

dynamic phenomenon that are exhibited  by various physical  objects. Nonlinear 

dynamics is the study of time-evolving systems governed by equations where 

superposition fails [3]. The behavior of a non-linear system differs considerably 

from a linear system and non-linear systems are found to show periodic, a-

periodic, quasi-periodic & chaotic dynamical behavior. These aspect of non-

linearity are easily identified in dynamics of simple and multiple pendula systems. 

A mechanical pendulum with single or double Degree of Freedom (DoF) is 

widely used for validating control algorithms as well as dynamic model for 

variety of physical systems .The inverted pendulum IP is most widely used 

system from the control point of view and it has various application in the area of 

engineering and science [4]. The instability of the pendulum in its inverted state 

can be removed by applying rapid vertical oscillatory forcing to its pivot point. 
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This phenomenon had been discovered in early 20th century by Stephenson 

[5].Many research papers have discussed the oscillations of a damped driven 

Pendulum. Here are some examples; Blackburn et al [6] studied the stability and 

Hopf bifurcation in an inverted pendulum, Smith et al [7] investigated the 

behaviour of an inverted pendulum through experimental measurements, Kalmus 

[8] worked on a driven inverted pendulum experiment using a speaker, Michaelis 

[9] used an electric jigsaw to drive an inverted pendulum and study its behaviour 

through stroboscopic photos; Acheson et al [10] compared the stability of an 

inverted pendulum from theoretical models and experimental approaches. Vela 

work [11] shows that nonlinear time varying control systems can also be given an 

exponential representation means that  intuition and analysis from linear control 

theory may provide the control engineer with the needed background to construct 

and analyze stabilizing controllers for nonlinear systems.  

 Fig. 2.1 is going to use for showing the study that being carried out the 

whole literature. The pendulum as a mechanical system can be applied as a free 

oscillation or forced oscillation. The modelling for double and triple pendulum 

under free oscillation has been obtained for lumped and distributed system. In 

certain literature [32-33] modelling is there but for forced oscillation. More 

mathematically, it can be thought of as the type of motion executed by a 

dynamical system containing a finite number of incommensurable frequencies 

[21]. No literature has been found for the pendulum under free oscillation in case 

of triple pendulum. Main challenges are in obtaining the exact modelling of the 
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triple pendulum and for that Euler - Lagrange and Momenta based approach is 

used for lumped and distributed system.  

 

 

Fig. 2.1 Summery of the literature using Block Diagram 

 

The dynamics of a double pendulum can be described with 4 variables, the 

two angles and their corresponding (angular) velocities, which span the four 

dimensional phase space of the system [13]. Kolmogorov-Arnold-Moser (KAM) 

tells us that at lower energies, the function is integrable (it has as many conserved 

quantities as there are degrees of freedom in the system) [14]. From the 
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theoretical evidence, it has been hypothesize that the behavior of a double 

pendulum varies from regular motion at low energies, to chaos at intermediate 

energies, and back to regular motion at high energies [15].The notion of fixed 

points or equilibrium points in state space plays a key role in understanding the 

dynamics of nonlinear systems.  

Control of mechanical systems is currently among one of the most active 

fields of research because of the diverse applications of mechanical systems in 

real-life. Though, the study of mechanical systems goes back to Euler and 

Lagrange in the 1700's, it was not until 1850's that mechanical control systems 

came to the picture in regulation of steam engines. On the other hand, 

theoretically challenging nature of analysis of the behavior of non-linear 

dynamical systems attracted many mathematicians to study the detail analysis of 

dynamic and control systems as a result, the efforts of engineers and scientists 

together led to creation of nonlinear dynamics theories [17, 18]. 

The inverted pendulum is a type of under actuated mechanical systems 

that have fewer control inputs than configuration variables. Underactuated 

systems [41] appear in a broad range of applications including, Aerospace 

Systems, Robotics, Marine Systems, Mobile Systems Flexible Systems and 

Locomotive Systems. The “under actuation" property of under-actuated systems 

is due to the following four reasons: (i) dynamics of the system(e.g. aircraft, 

spacecraft, helicopters, underwater vehicles, locomotive systems with-out 

wheels), ii) by design for reduction of the cost or some practical purposes (e.g. 

satellites with two thrusters and flexible -link robots), iii) actuator failure (e.g. in a 
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surface vessel or aircraft), iv) imposed artificially to create complex low-order 

nonlinear systems for the purpose of gaining insight in control of high-order 

Underactuated systems[16]. 

A Double Pendulum (DP) is an interesting dynamical system since it 

shows chaotic motion [19, 20, 25]. Notably, experimental and numerical studies 

have been carried out of such a system considering the change in initial value of 

amplitude and angular velocity of the DP [20]. It is observed that a DP shows 

periodic behaviour at low energy, transforms to quasi-periodicity at intermediate 

energy level and chaos at higher energy level finally again periodic motion as 

energy of the system increases further [21].  Despite significant study on the 

chaotic dynamics of the DP, there is no reported study in literature how the mass 

and length of a DP influences its chaotic behaviour. Such a study is important 

from controlling and optimizing dynamical systems based on double pendulum 

for instance double arm robots [20, 22,23].In the fast Fourier transform (FFT) 

analysis of the nonlinear system quasi-periodic scenario comes in to the picture 

because two or more frequencies involves in the dynamics of the system. The 

periodic doubling behaviour leads to bifurcation and chaos. 

The state space dimensionally is determined by the number of variables 

needed to specify the dynamical state of the system. A state space and a rule for 

following the evolution of trajectories starting at various initial conditions 

constitute what is called a dynamical system [26]. The mathematical theory of 

such systems is called dynamical system theory.  
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Chaos is a physical phenomenon in which a dynamical system shows 

random motion and the results depends on initial conditions. Chaos is basically a 

manifestation of non-linearity in the dynamical system. However, all non-linear 

systems do not show chaotic behaviour. A condition for chaos is that the 

differential equations governing the dynamical system should contain non-linear 

terms. Moreover, it should be expressible in at least three or more phase variables 

[20]. Lyapunov exponent is generally used to characterize the chaos of a 

dynamical system. For instance, if the average value of Lyapunov exponent is 

negative then the system is non chaotic. Lyapunov exponent if positive, then it 

shows chaotic behaviour. Linear stability analysis of the DP shows that its two 

natural frequencies depend on mass and length of each pendulum in the system 

[19]. Largest Lyapunov Exponents gives us the information on the divergence of 

two close trajectories [23]. MATLAB software is used to evaluate the Lyapunov 

exponent. Further it is to be noted that natural frequency of a pendulum also 

depends on the initial condition of oscillation for instance amplitude. Numerical 

integration must be used to complement analytical work because non-linear 

differential equations can almost never be exactly solved analytically and can be 

solved using the Runge -Kutta method [24]. 

 The dynamics for Double Pendulum as a lumped system [26] is obtained 

then go for the distributed DP. Lumped systems are those system in which mass is 

concentrated at one point where as in case of distributed system mass is 

distributed uniformly. Also the mass and Length dependent behaviour also 

studied in detail [28]. As going further to Triple Pendulum (TP) then dynamic 
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analysis is further challenging task .For the TP for lumped and distributed system 

study has been done and experimentally verified. In 2001, Laser Interferometer 

Gravitational Wave Observatory (LIGO) was slated to update their facility by 

housing each mirror on the lowest bob of a quadruple pendulum to reduce thermal 

noise. These developments have produced scientific interest in the dynamics of 

triple pendulum [30, 31]. The study of a triple link system is a highly non-linear, 

multi-variable, higher order, unstable system can contribute to the development of 

walking robots, flexible space structures, and automatic aircraft landing system, 

biped locomotive machines since it can be considered a simplified model of the 

human standing on one leg.  

In the paper, a triple link inverted pendulum mounted on a cart that can 

move horizontally is controllable and can be stabilized in the upward position 

with a single control input [32, 33].  A design of robust control system to balance 

a TP mounted on a cart was considered in Medrano Cerda in 1997. The controller 

design is there based on discrete time linear regulator theory that was 

implemented by robust observer. The relative stability and disturbance were 

investigated using Frequency response method [34]. A single input feedback 

controller for a TP was designed in 1998 by Elthomy using nonlinear optimization 

technique turned out to be very effective. Based on the gains generated by such 

nonlinear optimization, a custom built TP was successfully stabilized in 

experimental rig [33].  In 2003 the controllability of damped TP was investigated. 

The work focuses on cancelling pole and zero that appears in the transfer function 

of an uncontrollable system [36].  
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A lot of work has been done on stabilizing the TP [42, 43]. Optimal based 

control is one of the simplest technique for stabilizing all the parameter of TP 

[38]. A Linear Quadratic Regulator (LQR) based control technique is used for 

controlling the Triple link inverted pendulum system [37]. The performance index 

or cost function is minimized in LQR control technique. Necessary condition for 

optimality like Hamiltonian, optimal control, state and costate system, closed loop 

optimal control, Matrix Differential Ricatti equation keep in for obtaining the 

control law [37, 42]. 

The dynamic modelling and behaviour of TP for lumped and distributed 

system has been developed. Experimentally for lumped triple pendulum system 

some application has been discussed [45, 48] but not experimentally verified for 

the distributed one. The chaos on DP and TP system has many applications [49, 

50] and details are given in robot manipulator.  

 

2.2 CONCLUSION FROM LITERATURE SYRVEY 

 As seen from the literature survey that the various article has been 

presented on the concept of dynamics and control simple and double pendulum 

under free and forced oscillation. As far as triple pendulum distributed system is 

concern there is not much literature available. In some of the paper for TP 

dynamics is given for lumped system for not for distributed system under free 

oscillation. It is founded in the literature that detailed nonlinear dynamic analysis 

of TP is not available for lumped and distributed system with experimental 
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verification. The effect of damping is also not found in the literature. In the 

literature also it is not discussed that what changes occur in the dynamics and 

Frequency when moving from lumped to distributed system. It is also clear that 

effect of mass and length on the pendulum not found. As the  multiple link  

pendulum shows chaotic behaviour so main emphasis on the parameter for 

measuring chaos like Poincare Map, Lyapunov Exponent, Time series analysis. 

For controlling the Triple Link Inverted Pendulum LQR based technique is used 

for controlling all the parameter of TLIP. 
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CHAPTER 3 

DYNAMICS OF SIMPLE AND DOUBLE PENDULUM 

 
The chapter describes the mathematical modelling for obtaining the 

dynamics of simple and double pendulum. Lagrangian and Hamiltonian based 

approach is used for obtaining the governing differential equations of simple and 

double pendulum. 

 

3.1 THE SIMPLE PENDULUM 

 The simple pendulum consists of a point mass m, attached to an infinitely 

light rod of length l .There is no damping force. The angle θ is the angular 

displacement of the pendulum from the vertical position.  

 

  Fig. 3.1(a)    Fig. 3.1(b) 

Fig. 3.1 The simple pendulum 

A simple pendulum is a two degree of freedom system as motion takes place in 

the ( , )x y plane only but it can reduce to easily one degree of freedom system. 

Forall the time the rod length can be represented by 2 2x y l  . As 
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2 2y l x  , so y dependent on x coordinate only as length l is a constant term. 

   

The coordinate position of the pendulum 

sinx l  , cosy l           (3.1) 

The time derivative of the Eqn. (3.1) 

cosx l  , siny l           (3.2) 

The Lagrange ( L ) is defined as the difference between Kinetic energy T and 

Potential Energy V 

2 21
(1 cos )

2
L T V ml mgl           (3.3) 

The generalized momentum can be obtained from Eqn. (3.3) 

2

.

L
p ml 




 


         (3.4) 

From Eqn. (3.4)    can be expressed by p  

.

2

p

ml
            (3.5) 

Hamiltonian as a function of p  and   

.

H p L            (3.6) 

Substituting the Eqn. (3.3) and Eqn.(3.4) in (Eqn. 3.6) Hamiltonian (H) 

2

2
(1 cos )

2

p
H mgl

ml
            (3.7) 

Angular Velocity and Momentum can be calculated as follows 
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2

H p

p ml



 


, sin
H

p mgl 



   


      (3.8) 

Differentiating the first equation in system Eqn. (3.8) and substituting in the 

second, the Eqn. (3.9) can be obtained as 

sin 0
g

l
  

         (3.9) 

Because of the term sin  the above formula is nonlinear in nature. Therefore 

solving the Eqn. (3.9) explicitly is not easy.  However for small value of  , sin  

reduces to θ  then Eqn. (3.9)  changes to 0
g

l
   , where 

2

0 g l , is 

ɷ
0
 called fundamental or natural frequency of the system. 

3.2 PHASE PLANE  

A convenient way to understand the qualitative dynamics of dynamical 

system with state x  in 2  is the Phase Portrait of the system.  Phase plane is a 

technique of studying the behaviour of nonlinear system. Each value of θ gives a 

closed orbit of constant energy.  A Phase Portrait is a graphical representation of 

the trajectories of a dynamical system in the phase plane. 
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Fig. 3.2 Phase portrait of simple pendulum 

 

3.3 VECTOR FIELD OF SIMPLE PENDULUM  

 Vector field gives a vector pointing in the direction of the velocity at every 

point in phase space. Vector field having the following Properties. 

(1) The vector at any point in the state space is unique. 

(2) Two vector field lines can never intersect – except at the points where the 

magnitude of the vector x   becomes zero, that is, at the equilibrium points. 

As one moves away from the equilibrium point, the local linear approximation 

no longer remains valid. As a result, the lines that started as eigenvectors in the 

neighborhood of an equilibrium point will no longer remain straight lines. These 

curved lines are called invariant manifolds, which have the property that if an 

initial condition is placed on the manifold, its future evolution also remains on the 

same manifold. The stable and unstable eigenvectors at an equilibrium point are 

locally tangent to these manifolds. If the state point approaches an equilibrium 

point along an invariant manifold, it is called a stable manifold, and if the state 

moves away from an equilibrium point along an invariant manifold, it is called an 

unstable manifold [29]. Vector field of simple pendulum is oscillatory in nature 

and is towards the equilibrium point. 



47 

 

 

   Fig. 3.3 Vector Field of simple Pendulum  

 

3.3.1 THE FORCED DAMPED DRIVEN PENDULUM 

The single pendulum equation is nonlinear in nature. Despite its 

nonlinearity it does not show any chaotic behaviour. So the question is what 

conditions should be the sufficient condition so the nonlinear equation show the 

creation of chaos. A dynamical system with n ≥ 3 autonomous first order 

differential equations i.e. phase space must be at least three dimensional shows 

chaotic behaviour.  

3.3.2 EQUATION OF MOTION FOR FORCED DAMPED DRIVEN 

PENDULUM  

The equation of motion becomes  

.. .
2 sin sinn d db f t              (3.10)  
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Where df is driving force, n is natural frequency, b  is friction strength and d

is driving frequency. Eqn. (3.10) is the second order non autonomous differential 

equation. In order to analyze its properties; it can reduce to autonomous first order 

equations with variables. 

1

2

3

,

,

,d

x

x

x t













           (3.11) 

In these variables equations (3.11) takes the form  

1 2

2
2 2 1 3

3

sin sinn d

d

x x

x bx x f x t

x







   



         (3.12) 

The Eqn. (3.12) is 3-Dimensional system of autonomous ordinary differential 

equations. The condition of the appearance of chaos that dimension of phase 

space n ≥ 3 is satisfied. Hence it follows that Eqn. (3.12) is a good candidate to 

observe the chaotic behaviour. 

3.4 VECTOR FIELD OF FORCED DAMPED DRIVEN PENDULUM 

A vector field in the plane can be visualized as a collection of arrows with 

a given magnitude and direction each attached to a point in the plane. The vector 

field of damped driven pendulum is shown in fig. 3.4. It is clear from the fig. 3.4 

that vector fields are irregular in nature which leads to chaotic behaviour. 
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   Fig. 3.4 Vector field of damped driven pendulum 

3.5 THE POINCARE MAPPING  

 The Chaos is related to the sensitivity to initial conditions and the values 

of coordinates that never repeats itself. There are various techniques for the study 

of chaos but the method which simplifies the phase portrait is called Poincare 

mapping. Poincare considered the complex trajectories in phase space. Henri 

Poincare. Imagine a surface as shown in Fig. 3.5, called the Poincar'e section, at a 

suitable place in the state space such that the orbit intersects it.  
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Fig. 3.5 The Poincare section intersection  orbit 

Let us consider an Autonomous system consisting of ODE of first order 

 

1 1 1 2 3

2 2 1 2 3

3 3 1 2 3

( , , ),

( , , ),

( , , ).

x f x x x

x f x x x

x f x x x







          (3.13) 

The Poincar´e mapping reduces the trajectory of n dimensional phase space to n-1 

dimensional mapping. In Eqn. (3.13) trajectory of 3 dimensional phase space 

reduces to 2 dimensional phase space. Each time when the trajectory pierces 

Poincar´e section in downward direction, this point is marked on the cross section 

plane. The First point and second point represent two intersections (pierces). First 

Point can be treated as an initial condition of the Eqn. (3.13) to determine second 

point. 

  

3.6 POINCARE MAPPING OF FORCED DAMPED PENDULUM 
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Poincare mapping is applied for the forced damped pendulum described 

by Eqn. (3.10) in three-dimensional phase space 
1 2 3( , , )x x x .The third variable is 

proportional to time
3 dx t . 

Fig. 3.6 Poincare section, 
n  = 1, b  = 0.5,

df  = 1.2, 
d  = 2/3 

The mathematical model and dynamics of simple and forced Pendulum is 

obtained. In case of simple pendulum under free oscillation motion is regular 

whereas in the case of forced oscillation motion shows some kind of irregularity 

that can be seen from the vector field analysis. When simple pendulum is inverted 

then it became inverted pendulum which is inherently unstable in nature. Inverted 

Pendulum (IP) is a very common and interesting nonlinear system in the control 

applications. Unstable IP system is usually used to test performance of the 

different control algorithms. 

 

 

 

 



52 

 

3.7   THE DOUBLE PENDULUM 

In case of Double Pendulum (DP), two simple pendulums are attached to each 

other. The length and mass of the first link is l1, m1 and for the second link is l2, 

m2. The angle from the first and second link is  
1  and 

2 respectively.  

 

3.7.1 MODELLING OF DOUBLE PENDULUM  

The DP has two degree of freedom system described by 
1  and 

2 .This 

DP shows periodic and quasi-periodic motions coexisting together with chaotic 

motions. A similar procedure is followed to derive the system of non-linear 

equations. Assuming the pivot point is at the origin of the coordination system 

with the horizontal (x-axis) and the vertical (axis). The DP is assumed to be 

located in the fourth quadrant of the coordinate system. 

 

Fig. 3.7 (a)     Fig 3.7 (b) 

Fig3.7 Double Pendulum with Lumped Mass 

 

3.7.2 EQUATION OF MOTION 

The coordinate position of top pendulum is given by   
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 1 1 1sinx l  ,  1 1 1cosy l            (3.14)  

The coordinate position of bottom pendulum  

   1 1 1 2 2sin sinx l l   ,    1 1 1 2 2cos cosy l l        (3.15) 

And the   corresponding angular velocity is given by the equations 

Time derivative of the Eqn. (3.14) 

 1 1 1 1cosx l   ,  1 1 1 1siny l          (3.16) 

Time derivative of the Eqn. (3.15) 

   1 1 1 1 2 2 2cos cosx l l            (3.17)

   1 1 1 1 2 2 2sin siny l l            (3.18) 

Kinetic energy of the double pendulum in Fig.3.7 is given by the following 

equation 

2 2 2 2

1 2 1 1 2 2 2 2 1 2 1 2 1 2

1 1
( ) ( ) cos( )

2 2
K m m l m l m l l             (3.19)  

And the potential energy is 

1 2 1 1 2 2 2( ) cos cosV m m gl m gl                    (3.20)  

The Lagrangian -L K V  of two simply connected pendulums is given by 

the following equation 
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2 2 2 2

1 2 1 1 2 2 2

2 1 2 1 2 1 2 1 2 1 1

2 2 2

1 1
( )

2 2

cos( ) ( ) cos

cos

L m m l m l

m l l m m gl

m gl

 

    



   

  


    (3.21) 

The Lagrange equations of motion of the system can be obtained from the Eqn. 

(3.22) and Eqn. (3.21)   

0
i i

d L L

dt  

  
  

  
, 1,2i           (3.22) 

First Lagrange equation of motion        

2

1 2 1 1 2 1 2 2 1 2

2

2 1 2 2 1 2 1 2 1 1

( ) cos( )

sin( ) ( ) sin 0

m m l m l l

m l l m m gl

   

   

  

    
      (3.23)    

Second Lagrange Equation of Motion                

2 2

2 2 2 2 1 2 1 1 2 2 1 2 1 1 2

2 2 2

cos( ) sin( )

sin 0

m l m l l m l l

m gl

      



   

 
     (3.24) 

                                                                                                                                                         

Eqn. (3.23) and Eqn. (3.24) can be written in the following form  

11 1 12 2 1 0b b b              (3.25)

21 1 22 2 2 0b b b             (3.26)  

Where 
2

11 1 2 1( )b m m l  ,  

12 2 1 2 1 2cos( )b m l l    ,  
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2

1 2 1 2 2 1 2 1 2 1 1sin( ) ( ) sinb m l l m m gl       , 

2

22 2 2b m l ,  

21 2 1 2 1 2cos( )b m l l    ,  

2

2 2 1 2 1 1 2 2 2 2sin( ) sinb m l l m gl        

And the equation of momenta ip  of the DP is given by   i ip L       where

1,2 i   

2

1 1 2 1 1 2 1 2 2 1 2( ) cos( )p m m l m l l             (3.27)                                                                                                                        

2

2 2 2 2 2 1 2 1 1 2cos( )p m l m l l             (3.28)                                                                                                                       

And the Hamiltonian H K V   of the DP is given by 

2 2 2 2

1 2 1 1 2 2 2 2 1 2 1 2 1 2

1 2 1 1 2 2 2

1 1
( ) cos( )

2 2

( ) cos cos

H m m l m l m l l

m m gl m gl

     

 

    

  
   (3.29) 

Above equations can be used for the dynamic analysis of ouble pendulum.  

3.8 MODELLING OF DOUBLEPENDULUM WITH DISTRIBUTED MASS 

If 1c  and 2c are the mid points of the two length 1l and 2l of distributed mass 1m

and 2m .The value of 1c and 2c are respectively as follows 
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Fig.3.8 Double pendulum as a distributed system 

1 1
1 11 ( sin , cos ),

2 2

l l
c             (3.30) 

2 2
1 1 2 1 1 22 ( sin sin , cos cos )

2 2

l l
c l l              (3.31) 

The Kinetic Energy of the system 

2 22

1

. .
2 2

ci i i i

i

I m v
K E





           (3.32) 

And the Potential energy                

1 1 1 1 1 2
2 1 1 2 2 2 1

cos
. . ( cos cos / 2) ( )

2 2 2

m gl m gl l
P E m g l l m g l


           (3.33)  

The Lagrange of the system is defined as  

. . . .L K E P E  , substituting the value of K.E. and P.E. from Eqn. (3.32 and 3.33) 

respectively leads to Eqn. (3.34) 
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2 22 2 2 2
2 21 1 2 21 1 1 2 2 2

1 1 1 2 1 2 1 2

1 1 1 1 1 2
2 1 1 2 2 2 1

{ cos( )}
2 8 2 2 4

cos
( cos cos / 2) ( )

2 2 2

c cI Im l m l
L l l l

m gl m gl l
m g l l m g l

  
    


 

      

     

    (3.34) 

Where 
2

12

i i
ci

ml
I  , is the moment of inertia of the system. 

The Lagrange equation of motion can be obtained using the following formula 

0
i i i

d L L Q

dt   

   
   

   
, 1,2i          (3.35) 

Here Q is Rayleigh damping. 

2
21 2

1 1 2( )
2 2

c c
Q   



            (3.36) 

The matrix of the following form can be obtained from the eqn. (3.35) 

11 1 12 2 1 21 1 22 2 20& 0 c c d c c d               (3.37) 

Where coefficients are defined as follows 

2 2

11 1 1 1 2 14cc I m l m l   , 

12 2 1 2 1 2cos( ) 2c m l l    , 

21 2 1 2 1 2cos( ) 2c m l l    ,  

2

22 2 2 2 4cc I m l  .  
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1 2 1 2 2 1 2 1 2 2 1 2 1 2 1 2

1 1 1 2 1 1 1 2 1 2 2

sin( )( ) 2 sin( ) 2

sin 2 sin ( )

d m l l m l l

m gl m gl c c c

       

   

      

   
  

2 2 1 2 1 1 2 1 2 2 1 2 1 2 1 2

2 2 2 2 1 2

sin( )( ) 2 sin( ) 2

sin 2 ( )

d m l l m l l

m gl c

       

  

     

  
  

 

3.9 STABILITY ANALYSIS OF DP FOR LUMPED SYSTEM 

By separating the  and  term Eqn. (3.25 and 3.26) can be written as follows 

[ ]{ } [ ]{ } {0}M K            (3.38) 

Where 

11 12

21 22

,

,

b b
M

b b

 
  
 

 ,  
1

2

b
K

b

 
  
 

 

For linear stability analysis assuming sin ,cos 1       

2

1 2 1 2 1 2

2
2 1 22 2

( )m m l m l l
M

m l lm l

  
  
 

,
1 2 1

2 2

( ) 0

0

m m gl
K

m gl

 
  
 

,
1

2

{ }





 
  
 

 

The Eigenvalue of the Eqn. (3.38) is 

| [ ] [ ] | 0M K   , Assuming 1 2 1 2,m m m l l l     

2 24 2 0g g     

 1 236.57, 2.62           (3.39) 
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3.10 STABILITY ANALYSIS OF DP FOR DISTRIBUTED SYSTEM 

 By separating the  and  term Eqn. (3.37) can be written as follows 

[ ]{ } [ ]{ } {0}M K          (3.40) 

Where 

11 12

21 22

, c

,c

c
M

c

 
  
 

 ,  
1

2

d
K

d

 
  
 

 

For linear stability analysis assuming sin ,cos 1       

2
221 1

1 21 2 1

2

2 2 2
1 2 2

24

2 4

c

c

mm l
l lI m l

M
m m l

l l I

 
  

  
 


  

,
1

2

{ }





 
  
 

 

1 1
2 1

2 2

0

2

0 2

m gl
m gl

K m gl

 
 

 
 

 

The eigenvalues of the equation (3.40) is 

| [ ] [ ] | 0M K    Assuming 1 2 1 2,m m m l l l     

3 4

2 3 2
| [ ] [ ] | | |

2 2 3

g

M K m
g





 

 
 

    
   
 

 

That is 
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2 27 42 27 0g g     

1 251.62, 7.17    

Both the Eigen values are positive hence the system will be unstable in nature. 

3.11 CHAPTER SUMMARY 

 The chapter describes the modelling of single and double pendulum using 

energy based approach. The Modelling of double Pendulum is obtained for 

lumped and distributed system and final modelling is written in matrix form. The 

stability analysis also has been done. 
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CHAPTER 4 

 

DYNAMICS OF TRIPLE PENDULUM 

The chapter describes the modeling of triple pendulum for lumped and 

distributed system. The Euler-Lagrange and Lagrange formulation were used for 

the derivation of governing differential equations from two approaches. 

4.1 MODELLING OF TRIPLE PENDULUM  

The same method will be followed for formulating the Triple Pendulum 

(TP), as followed for Double Pendulum (DP).Triple pendulum is a three degree of 

freedom system having many applications in real life for instance robot 

manipulators, human body etc. 

 

Fig. 4.1 Triple Pendulum system with lumped mass 
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The coordinate position of top link 

 1 1 1sinx l  ,  1 1 1cosy l  ,           (4.1) 

The coordinate position of middle link 

   1 1 1 2 2sin sinx l l   ,    1 1 1 2 2cos cosy l l         (4.2) 

The coordinate position of bottom link 

     1 1 1 2 2 3 3sin sin sinx l l l     ,      1 1 1 2 2 3 3cos cos cosy l l l           (4.3) 

The time derivative of the Eqn. (4.1) 

 1 1 1 1cosx l   ,  1 1 1 1siny l             (4.4) 

The time derivative of the Eqn. (4.2)  

   1 1 1 1 2 2 2cos cosx l l              (4.5) 

   1 1 1 1 2 2 2sin siny l l               (4.6) 

The time derivative of the Eqn. (4.3)  

     1 1 1 1 2 2 2 3 3 3cos cos cosx l l l                (4.7) 

     1 1 1 1 2 2 2 3 3 3sin sin siny l l l                 (4.8) 

The kinetic energy of the triple pendulum of  Fig. 4.1 is given by the following 

equation 
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2 2 2 2 2 2

1 2 3 1 1 2 3 2 2 3 3 3

2 1 2 1 2 1 2 3 1 3 1 3 1 3 1 2 1 2 1 2

2 3 2 3 2 3

1 1 1
( ) ( ) ( )

2 2 2

cos( ) ( cos( ) cos( )

cos( ))

T Q m m m l m m l m l

m l l m l l l l

l l

  

           

   

      

    

 

      (4.9) 

And the potential energy is 

1 2 3 1 1 2 3 2 2

3 3 3

( ) ( ) (cos 1) ( ) (cos 1)

(cos 1)

V Q m m m gl m m gl

m gl

 



       


    (4.10) 

Lagrangian (L) for three serially connected inverted pendulums is given by the 

following Eqn. (4.11)        

2 2 2 2 2 2

1 2 3 1 1 2 3 2 2 3 3 3 2 1 2 1 2 1 2

3 1 3 1 3 1 3 1 2 1 2 1 2 2 3 2 3 2 3

1 2 3 1 1 2 3 2 2 3 3

1 1 1
( ) ( ) cos( )

2 2 2

( cos( ) cos( ) cos( ))

( ) (cos 1) ( ) (cos 1) ( ) (cos

L T V

m m m l m m l m l m l l

m l l l l l l

m m m gl m m gl m gl

      

           

  

  

      

     

        3 1)

   (4.11) 

First equation of momenta corresponding to 1   

2

1 1 2 3 1 1 2 1 2 2 1 2

1

3 1 3 3 1 3 1 2 2 1 2

( ) cos( )

( cos( ) cos( ))

L
p m m m l m l l

m l l l l

   


     


      


  

   (4.12) 

Second equation of momenta corresponding to 2  

2

2 2 3 2 2 2 1 2 1 1 2

2

3 1 2 1 1 2 2 3 3 2 3

( ) cos( )

( cos( ) cos( ))

L
p m m l m l l

m l l l l

   


     


    


   

    (4.13) 

Third equation of momenta corresponding to 3  
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2

3 3 3 3 3 1 3 1 1 3 3 2 3 2 2 3

3

cos( ) cos( )
L

p m l m l l m l l      



     


    (4.14) 

First equation of angular momenta 

1 2 1 2 1 2 1 2 3 1 3 1 3 1 3

1

3 1 2 1 2 1 2 1 2 3 1 1

sin( ) sin( )

sin( ) ( ) sin

L
p m l l m l l

m l l m m m gl

       


    


      


   

     (4.15) 

Second equation of angular momenta  

2 2 1 2 1 2 1 2 3 2 3 2 3 2 3

2

3 1 2 1 2 1 2 2 3 2 2

sin( ) sin( )

sin( ) ( ) sin

L
p m l l m l l

m l l m m gl

       


    


     


  

     (4.16) 

Third Equation of angular momenta 

3 3 1 3 1 3 1 3 3 2 3 2 3 2 3 3 3 3

2

sin( ) sin( ) sin
L

p m l l m l l m gl       



     


   (4.17) 

Hamiltonian is the total Energy of the system is given by combining Eqn. (4.9) 

and Eqn. (4.10) 

2 2 2 2 2 2

1 2 3 1 1 2 3 2 2 3 3 3

2 1 2 1 2 1 2 3 1 3 1 3 1 3

1 2 1 2 1 2 2 3 2 3 2 3 1 2 3 1 1

2 3 2 2 3 3 3

1 1 1
( ) ( )

2 2 2

cos( ) ( cos( )

cos( ) cos( )) ( ) cos

( ) cos cos

H m m m l m m l m l

m l l m l l

l l l l m m m gl

m m gl m gl

  

       

        

 

      

   

     

  

    (4.18) 

4.2 MODELLING OF TRIPLE  LUMPED PENDULUM USING EULER 

LAGRANGE APPROACH  

The same approach has been followed for  formulating triple pendulum as was  

for double inverted pendulum. Lagrangian has been  to derive the following 

equation. 
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Lagrangian for three serially connected inverted pendulums is given by the 

equation (4.11).Further modifying the above equations using the standard Euler-

Lagrange equation for three degree of freedom as 

11 1 12 2 13 3 1

2

11 1 2 3 1

12 2 1 2 1 2 3 1 2 1 2

13 3 1 3 1 3

1 2 1 2 1 2 1 2 3 1 3 1 3 1 3

3 1 2 1 2 1 2 2 1 2 2 1 2 1

0

( ) ;

cos( ) cos( )

cos( )

sin( ) sin( )

sin( ) ( )sin(

c c c d

c m m m l

c m l l m l l

c m l l

d m l l m l l

m l l m l l

  

   

 

       

       

   

  

   

 

    

    2

3 1 2 2 1 2 1 2 3 1 3 3 1 3 1 3

1 2 3 1 1

)

( )sin( ) ( )sin( )

( ) sin

m l l m l l

m m m gl



         



     

  

  (4.19) 

21 1 22 2 23 3 2

21 2 1 2 1 2 3 1 2 1 2

2

22 2 3 2

23 3 2 3 2 3

2 2 1 2 1 2 1 2 3 2 3 2 3 2 3

3 1 2 1 2 1 2 2 1 2 1 1 2 1 2

0

cos( ) cos( );

( )

cos( )

sin( ) sin( )

sin( ) ( )sin(

c c c d

c m l l m l l

c m m l

c m l l

d m l l m l l

m l l m l l

  

   

 

       

        

   

   

 

 

    

    

3 2 3 3 2 3 2 3 3 1 2 1 1 2 1 2

2 3 2 2

)

( )sin( ) ( )sin( )

( ) sin

m l l m l l

m m gl

         



     

 

  (4.20) 

                                                                                                                                                                             

31 1 32 2 33 3 3

31 3 1 3 1 3

32 3 2 3 2 3

2

33 3 3

3 3 1 3 1 3 1 3 3 2 3 2 3 2 3

3 1 3 1 1 3 1 3 3 2 3 2 2 3 2 3

3 3 3

0

cos( )

cos( )

sin( ) sin( )

( )sin( ) ( )sin( )

sin

c c c d

c m l l

c m l l

c m l

d m l l m l l

m l l m l l

m gl

   

 

 



    

     



  

 

 

       

         



  (4.21) 
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4.3 LINEAR STABILITY OF TRIPLE LUMPED PENDULUM 

Combining above three equations (4.19 – 4.21) and linearizing about the vertical 

position of all three pendulum as 

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

0

0

0

c c c d

c c c d

c c c d

  

  

  

   

   

   

         (4.22) 

Where all the constants are defined as  

2

11 1 2 3 1

12 2 1 2 3 1 2

13 3 1 3

1 1 2 3 1 1

21 2 1 2 3 1 2

2

22 2 3 2

23 3 2 3

2 2 3 2 2

31 3 1 3

32 3 2 3

2

33 3 3

3 3 3 3

( ) ;

( )

;

( )

( )

c m m m l

c m l l m l l

c m l l

d m m m gl

c m l l m l l

c m m l

c m l l

d m m gl

c m l l

c m l l

c m l

d m gl







  

 



  

 

 



 









 

It was assumed that 
1 2 3m m m m    and 1 2 3l l l l   , linearizing the equations 

for the TP under vertical condition i.e., 1 2 3     and   is small, then Eqn. 

(4.22) converts in to Eqn. (4.23) 

1

1 2 3 1

1

1 21 3 2

1

1 2 3 3

3 2 3 0

2 2 2 0

0

gl

gl

gl

   

   

   







   

   

   

         (4.23) 
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The Eqn. (4.23) can be represented in the following form 

[ ]{ } [ ]{ } {0}M K            (4.24) 

Where  M and  K  are defined as  

   2 ,

321 300

221 020

111 001

K mgM ml l

   
   
   
     





        (4.25) 

The eigenvalues of the equation (4.24) can be calculated as 

   
3 3 2

2 2 2 0

g l l l

l g lm l

l l g l

M K

  

  

  

  

  

 

 
    
 
 

      (4.26) 

That is  

3 3 2 2 2 39 18 6 0l gl g l g       , 

Hence the eigenvalue will be 

1

2

3

(3 3 cos 3sin ) 0.4158 ,

(3 3 cos 3sin ) 2.2943 ,

(3 2 3 cos ) 6.2899 ,

g

l

g

l

g

l

g

l

g

l

g

l

  

  

 

   

   

  

       (4.27)  

Where 
arctan 2

0.3184
3

   .  

All the above equations are independent of inertia of the system. It may be 

verified that frequency estimated by Eigenvalue analysis matches with the 

frequency obtained using FFT. Moreover, amplitude also matches with linearized 
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value.  For stance natural frequencies for the TP is 
01 0.4158g l , 

02 2.2943g l , 
03 6.2899g l . These results are consistent with the 

frequencies obtained using FFT. 

4.4 MODELLING OF TRIPLE PENDULUM FOR DISTRIBUTED MASS 

AND LENGTH 

If C1, C2 and C3 are the mid points of the lengths 
1l , 

2l and 
3l of 

distributed pendulum with mass 1m , 2m and  3m  respectively. If  1  is the angle 

from the first link, 2  is the angle from the second link and 3 is the angle from the 

third link.  

 

 

Fig 4.2 (a)    Fig. 4.2(b) 

Fig4.2-Triple pendulum with distributed mass 
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The coordinate value of C1, C2 and C3 will be described by the Eqn. (4.28)  

1 1
1 1

2 2
1 1 2 1 1 2

3 3
1 1 2 2 3 1 1 2 2 3

1 ( sin , cos ),
2 2

2 ( sin sin , cos cos )
2 2

3 ( sin sin sin , cos cos cos )
2 2

l l
C

l l
C l l

l l
C l l l l

 

   

     

 

   

     

    (4.28)
 

The Kinetic Energy of the TP 

2 23

1

. .
2 2

ci i i i

i

I m v
K E





 
         (4.29)

 

 

And the Potential energy of the system will be     
             

1 1 1
2 1 1 2 2

3 1 1 2 2 3 3

31 1 2
2 1 3 1 2

cos
. . ( cos cos / 2)

2

( cos cos cos / 2)

( ) ( )
2 2 2

m gl
P E m g l l

m g l l l

lm gl l
m g l m g l l


 

  

    

  

           (4.30)

 

The Lagrange of the system is defined using the Eqn. (4.29) and Eqn. (4.30)  

. . . .L K E P E   

2 22 2 2 2
2 21 1 2 21 1 1 2 2 2

1 1 1 2 1 2 1 2

2 2 2
2 2 2 23 3 3 3 3

1 1 2 2 1 2 1 2 1 2

1 1 1
1 3 1 3 3 1 2 3 2 3 2 3

2 1 1

{ cos( )}
2 8 2 2 4

{ 2 cos( )
2 2 4

cos
cos( ) cos( )}

2

( cos

c c

c

I Im l m l
L l l l

I m l
l l l l

m gl
l l l l

m g l

  
    

 
     


       



      

     

    

 2 2 3 1 1 2 2 3 2

31 1 2
2 1 3 1 2

cos / 2) ( cos cos cos / 2)

( ) ( )
2 2 2

l m g l l l

lm gl l
m g l m g l l

     

     
    (4.31) 
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Where 
2

12

i i
ci

ml
I  , I is the moment of inertia of the system. 

The Lagrange equation of motion can be obtained using the following formula 

0
i i i

d L L Q

dt   

   
   

   
   1,2,3i       (4.32) 

Here Q is Rayleigh Damping. 

2
2 231 2

1 1 2 2 3( ) ( )
2 2 2

cc c
Q     



    
       (4.33) 

It may be noted that 1c , 2c and 3c are the constants related with frictional damping 

of top, middle  and bottom pivots about which the three pendula are rotating. 

The matrix of the following form can be obtained by combining the 1 , 2 , 3 and  

constants  

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

0

0

0

C C C d

C C C d

C C C d

  

  

  

   

   

   
         (4.34) 

The coefficients 11C , 12C , 13C , 1d , 21C , 22C , 23C , 2d , 31C , 32C , 33C , 3d  are defined in 

the Appendix A.  

4.5 LINEAR STABILITY ANALYSIS OF TRIPLE DISTRIBUTED 

PENDULUM  

The Eqn. (4.30) can be represented in the following form 

[ ]{ } [ ]{ } {0}M K            (4.35) 
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Assuming that mass and length are equal so mass 
1 2 3m m m m   and length

1 2 3l l l l   , same method is used as applied in section (4.3). 

Where  M and  K  are defined as  

   
2

5 3 1 500

3 5 / 2 1 030
2

1 1 1/ 2 00

,
2

1

c

C

c

I
ml mgl

KM I

I

   
   
   
  



 

   

     (4.36) 

The eigenvalues of the equation (4.25) can be calculated as 

    0M K   , and the eigenvalues of the system will be 

1

2

3

4.75714

29.43

105.039













           (4.37) 

The magnitude of eigenvalues will be higher in case of distributed system 

comparing to the lumped system.   

4.6 MODELLING OF TRIPLE LINK INVERTED PENDULUM ON CART 

The TLIP shown in Fig. 4.3  shows that M is  Mass of the cart, mi  - Mass 

of the i
th

 link, li
 - distance from the lower position sensor to the center of gravity 

of the  i
th

 link, 
iL  - Total length of the i

th
 link, iI  - Mass moment of inertia of the 

i
th

 link about its center of gravity, r  - Cart’s position from the middle of the rail 

track, i  - Angle of the i
th

 link from the vertical position, cC   Dynamic friction 

coefficient between the cart and the track, iC  - Dynamic friction coefficient for 

the i
th

 link, j - Coulomb friction coefficient for the j
th

 link. 
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                           Fig. 4.3 Triple link Inverted pendulum system on cart 

 

The system nonlinear dynamics equations can be given in the following form 

.. . .

( ) ( , ) ( ) ( , )F q q G q q q H q L q u       (4.38) 

   

Where 

1 2 1 3 2 4 3

9 1 10 11 1 2 12 1 3

18 2 19 1 2 20 21 2 3

28

 A               A cos( )         A cos( )        A cos( )

A cos( )    A                    A cos( - )   A cos( - )
( )

A cos( )   A cos( - )   A                  A cos( - ) 

A cos(

F q

  

    

    


3 29 1 3 30 2 3 31)   A cos( - )   A cos( - ) A        

 
 
 
 
 
 

     (4.39) 
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. . .

5 6 1 1 7 2 2 8 3 3

. .

.
13 14 1 2 2 15 16 1 3 3

.

22 1 2 1 23

 A  A sin( )                  A sin( )                       A sin( )

0     A                                A sin( - ) +A     A sin( - )
G( , )

0     A sin( - ) +A        

q q

     

     

  


.

24 25 2 3 3 26

. .

33 1 3 1 35 2 3 2 36 32

    A                  A sin( - ) +A

0     A sin( - )            A sin( - ) +A                    A    

  

     

 
 
 
 
 
 
 
  

    (4.40)  

  

             

  

1

2

3

r

q






 
 
 
 
 
  ,

17 1

27 2

34 3

0

sin( )
( )

sin( )

sin( )

A
H q

A

A







 
 
 
 
 
  ,

1 1 1

1 2 2

1 3 3

( )

( )
( , )

( )

( )

s r rK u sign r N

sign N
L q u

sign N

sign N

 

 

 



 

 

 

 
 
 
 
 
 

    (4.41) 

 

Where u is the control input and Ks is the overall systems input. The system 

parameters, as given in the appendix matrix A, are determined either by the direct 

measurements or from the experimental data [33]. 

0        0          0          0        1          0          0          0

0        0          0          0        0          1          0          0

0        0          0          0        0         

A 

 0          1          0

0        0          0          0        0          0          0          1

0      -7.6  -0.156  -0.0005 -4.9   0.0005   -0.0005   0

0     38.9    -23.9    -0.07   11.11 -0.0046 0.0087  -0.0037

0   -37.03   82.75   -2.01  -10.55  0.0087  -0.0234  0.0253

0  -1.7       -52.8    71.99   -0.49  -0.0037  0.0253   -0.4

 
 
 
 
 
 
 
 
 
 
 
  

      (4.42) 

           

    
0

0

0

0
B=

0.903

2.02

1.91

0.09

 
 
 
 
 
 
 
 
 
 
 
  

           (4.43) 
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The Ai is the systems constants given in the appendix B. 

 

4.6 CHAPTER SUMMARY 

 

The chapter describes the modelling of triple pendulum using Euler-Lagrange and 

momenta based approach. Modelling of triple Pendulum is obtained for lumped 

and distributed system both and verified from both the technique. Modelling is 

written finally in matrix form. From the matrix form also the linear stability 

analysis has been done. Modelling of triple link inverted pendulum on cart is also 

discussed in the chapter. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 The chapter explains the MATLAB simulation and experimental 

observations. It presents the mass and length dependent behaviour of double 

pendulum. The effect of damping on the dynamics of double and triple pendulum 

is discussed. Double and triple pendulum shows chaotic behaviour so all the tools 

for the measurement of chaos like Time series analysis, FFT, Poincare and 

Lyapunov exponent is also shown which validate the experimental setup. In the 

dynamics of DP and TP angles are started  from 10 degree and goes to 90 degree 

and same  phenomenon are using in experimental setup. The optimal control 

technique is used for control of triple link inverted pendulum. The simulation is 

carried out on MATLAB 12 .0 in mathematical window editor. The differential 

equations are simulated numerically in MATLAB using ode 45 solver. 

 

5.1 MASS AND LENGTH DEPENDENT BEHAVIOUR OF DOUBLE 

PENDULUM 

 The differential Eqn. (3.23) & (3.24) are simulated numerically in 

MATLAB using ode 45. All simulations are carried out for a fixed initial 

condition i.e. 1 2 1 2( , , , )p p  = (0.2,0.2828,0,0)  for mass and length effect. To 

understand the mass and length chaotic behaviour of double pendulum time series  
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of angular velocity of the two pendulums, Poincare map and the average value of 

Lyapunov exponent are plotted. 

Fig. 5.1 presents the plots concerning the time series (angular velocity), 

Poincare map and Lyapunov exponent for
1 1.0 kgm  ,

2 1.0 kgm  , 
1 1.0 m l  and 

2 1.0 ml  , the Hamiltonian energy 28.62JE   .  It is obvious from the plot Fig 5.1 

(a) that angular velocity of both pendula is periodic and both are in phase.  

Moreover, corresponding Poincare map is also regular as evident in plot Fig 5.1 

(b) of the same Fig 5.1. Also the average Lyapunov exponent e  is found to be 

0.1607  which is negative. As mentioned earlier, dynamical system with negative 

exponent does not show the chaotic motion.  

 

Fig 5.1 (a) Time series analysis
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Fig. 5.1(b) Poincae Map 

 

 

 

 

 

 

 

 

 

Fig. 5.1(c) Lyapunov Exponent 

Fig. 5.1 presents (a) Time series (b) Poincare map (c) Lyapunov exponent for

1 1m  , 2 1m  , 1 1l  and 2 1l  , Hamiltonian 28.62E   . 
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If the mass of the top pendulum is increased to 
1 5m   while other parameters were 

considered the same as earlier, now the energy corresponding to Hamiltonian 

increased to 67.04E   . Time series plot of angular velocity of Fig 5.2 (a) show 

that the motion is now quasi-periodic as there are two time period in the motion. 

And the corresponding Poincare map shows to be regular but with large area of 

null. The average Lyapunov exponent 0.1086e   is negative. This value of e is 

larger than in Fig.5.2(c). Thus it may be concluded that chaotic tendency of the 

DP increased with mass of the top pendulum. 

 

Fig 5.2 (a) Time series analysis 
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Fig. 5.2 (b) Poincae Map 

 

Fig. 5.2(c) Lyapunov Exponent 

Fig.5.2 presents (a) Time series (b) Poincare map (c) Lyapunov exponent for 

1 5m  , 2 1m  , 1 1l  and 2 1l  , Hamiltonian 67.04E   . 

Now in case of change in magnitude of the mass of the bottom pendulum i.e.,

2 5m  , the time series Fig.5.3 (a) shows that the top pendulum is showing period 

oscillation while the bottom pendulum is random. The chaotic behavior is also 
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clear in Fig. 5.3 (b) where Poincare not in regular in shape it is clearly irregular in 

nature. The value of average Lyapunov exponent is 0.0399e  . As noted earlier 

that positive value of the average Lyapunov exponent results in chaotic 

oscillations.  It may be concluded from fig. 5.3 that the bottom makes the DP 

more chaotic than the top pendulum. 

 

 

Fig 5.3 (a) Time series analysis 
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Fig. 5.3 (b) Poincae Map 

 

Fig. 5.3 (c) Lyapunov Exponent 

Fig. 5.3 presents (a) Time series (b) Poincare map (c) Lyapunov exponent for  

1 1m  , 2 5m  , 1 1l  and 2 1l   for Hamiltonian 104.68E   . 

After seeing the effect of mass, it becomes interesting to know how arm length of 

pendula affects its chaotic dynamics. Length of the top pendulum was changed 

from 1 1l   to 1 3l  . The result from the time series in Fig. 5.4(a) shows that the 
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bottom pendulum is showing quasi-periodic oscillation while the top pendulum is 

still periodic. The value of average Lyapunov exponent is equal to 0.0991 . It is 

concluded that increasing arm length of the top pendulum results in quasi-periodic 

motion. 

 

 

 

Fig 5.4 (a) Time series analysis 
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Fig. 5.4 (b) Poincae Map 

 

 

Fig. 5.4 (c) Lyapunov Exponent 

 

Fig.5.4 presents (a) Time series (b) Poincare map (c) Lyapunov exponent for 1 1m   

, 2 1m  , 1 3l  and 2 1l  , Hamiltonian 67.04E   . 



84 

 

Finally, arm length of the bottom pendulum was also changed in the simulation 

for
2 3l  . The value of average Lyapunov exponent is 0.0234e  .The results in Fig. 

(5.5) shows that DP is ultimately moving towards the chaos. 

 

 

Fig 5.5 (a) Time series analysis 

 

 

Fig. 5.5 (b) Poincare Map 
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Fig. 5.5 (c) Lyapunov Exponent 

Fig.5.5 presents (a) Time series (b) Poincare map (c) Lyapunov exponent  for

1 1m  , 2 1m  , 1 1l  and 2 3l  , 47.44E J  . 

The summary of the above simulations is presented in the Table 5.1. 

    TABLE 5.1 (Summary of mass and length dependent behaviour of DP)   

Mass (Kg) and length (m) of 

each pendulum 
Lyapunov exponent e  

and Hamiltonian 

energy (Joule)E  

Chaotic/non-chaotic 

behavior 

1 1m  , 2 1m  ,
1 1l   

2 1l   

0.1607e    

28.62E J   
Periodic 

1 5m  , 2 1m  , 1 1l   

2 1l   

0.1086e    

67.04E J   

Quasi-periodic 

1 1m  , 2 5m  , 1 1l   

2 1l   

0.0399e   

104.68E J   

Chaos 

1 1m  , 2 1m  , 1 3l   

2 1l   

0.0991e    

67.04E J   

Quasi-periodic 

1 1m  , 2 1m  , 1 1l   

2 3l   

0.0234e   

47.44E J   

Chaos 
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Thus it can be concluded that there is an optimal combination of mass and arm 

length of the DP at which chaotic tendency of the system will be minimum and 

maximum.     

 5.2 TIME SRIES OF DOUBLE PENDULA AND TRIPLE PENDULA 

The time series plot of Fig.5.6 (a) shows that for a small change (10
-9

) in 

initial conditions ( 2,0, 2,0)   and 9( 2 10 ,0, 2,0)  .It is clear from the fig 

5.6 (a) that initially both the trajectories are same but after some time 12-13 

second in case of top and bottom pendulum both the trajectories deviates from 

each other and that can be seen easily. In case top pendulum deviation is less 

where as in case of bottom pendulum deviation is more. Thus the bottom 

pendulum is more chaotic than the top pendulum. The change in sudden 

behaviour of nonlinear systems may give rise to the complex behaviour called 

Chaos and this phenomenon can be seen in fig. 5.6(a) where with the change of 

10
-9 

in the initial condition after sometime around 12 -13 sec trajectories separates 

from each other. The time series analysis of triple pendulum is shown in fig. 5.6 

(b). Hence the system can chaotic and this can be verified from the other tools for 

the measurement of chaos. 
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Fig.5.6(a) Time series plot for top and bottom double pendulum for two 

initial conditions. 

 

Fig. 5.6 (b) Time series for triple pendulum 

Fig. 5.6 Time series analysis for double and triple Pendulum 

 

5.3 FFT ANALYSIS 

 FFT analysis is one of the tool for the measurement of chaos so FFT 

analysis has been done for the Double and Triple pendulum for verifying the 

Chaotic behaviour. 
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5.3.1 FFT ANALYSIS OF DOUBLE PENDULUM 

If a system shows periodic doubling [52] or tripling that is a sign of chaos 

that can be seen from the following figure 5.7. FFT analysis for DP with lumped 

mass system is shown in Fig. 5.7 (a) in which two frequencies can be seen and the 

values of these two frequencies are 0.36 and 0.88 Hertz respectively for top and 

bottom link. 

 

 

  Fig. 5.7 (a) FFT Analysis of DP with lumped mass at π/10 Degree 

 

If the angle increased to π /4 then in place of two frequency  it shows many 

frequency (4 to 5 frequency) as can be seen from Fig. 5.7 (b).  
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 Fig. 5.7 (b) FFT analysis of DP with lumped mass at π /4 degree 

 

If the angle increased further then multiple frequency can be seen from fig. 5.7 

(c).  

 

 

 

 

 

 

 

 

Fig. 5.7 (c ) FFT analysis of DP with lumped mass at π /2 Degree 

 

FFT analysis for DP with distributed mass system is shown in Fig. 5.8 (a) in 

which two frequencies can be seen and the values of these two frequencies are 
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0.38 and 0.92 Hertz respectively for top and bottom link which is higher from 

lumped system. 

 

 

 

 

 

 

 

Fig. 5.8 (a ) FFT analysis of  DP with distributed mass at π /10 Degree 

 

If the angle increased to π /4 then in place of two frequency  it shows many 

frequency ( 5 to 6 frequency) as can be seen from fig. 5.8 (b).  

 

 

Fig. 5.8 (b ) FFT analysis of  DP with distributed mass at π /4 Degree 
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If the angle increased further to π /3 then multiple frequency can be seen from fig. 

5.8 (b). 

 

Fig. 5.8 (c ) FFT analysis of  DP with distributed mass at π /3 Degree 

5.3.2 FFT ANALYSIS OF TRIPLE PENDULUM 

FFT analysis for TP with lumped mass system is shown in Fig. 5.9 (a) in 

which three frequencies can be seen and the values of these three frequencies are 

0.32, 0.75 and 1.25 Hertz respectively for top, middle and bottom link. 

 

 

Fig. 5.9 (a ) FFT analysis of TP with lumped mass at π /10 degree 
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If the angle increased to π /4 then in place of three frequency  it shows many 

frequency (6-7 frequency) as can be seen from fig. 5.9 (b).  

 

Fig. 5.9 (b ) FFT analysis of TP with lumped mass at π /4 degree 

 

If the angle increased further then multiple frequency can be seen from fig. 5.9 

(c). 

 

Fig. 5.9 (c ) FFT analysis of TP with lumped mass at π /2 degree 
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FFT analysis for TP with distributed mass system is shown in Fig. 5.10 (a) in 

which three frequencies can be seen and the values of these three frequencies are 

0.34, 0.86 and 1.63Hertz respectively for top, middle and bottom link and it is 

higher than triple pendulum with lumped system. 

 

Fig. 5.10 (a ) FFT analysis of  TP with distributed mass at π /10 degree 

 

If the angle increased to π /4 then in place of three frequency  it shows many 

frequency (6-7 frequency) as can be seen from fig. 5.10 (b).  
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Fig. 5.10 (b) FFT analysis of  TP with distributed mass at π /4 degree 

If the angle increased further then multiple frequency can be seen from Fig. 5.10 

(c). 

 

Fig. 5.10 (c) FFT Analysis of  TP with Distributed Mass at π /2 Degree 

So it can be seen clearly from the FFT analysis that with the increase in small 

angle chaotic tendency increases. Also going from lumped to distributed system 

frequency increases and it is maximum in case of bottom pendulum. Based on fig. 

5.7 (a), 5.8 (a), 5.9 (a) and 5.10 (a) following table 5.2 can be made. 
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TABLE 5.2 FREQUENCY OF LUMPED AND DISTRIBUTED SYSTEM 

Types of Pendulum Lumped System 

Frequency 

Distributed System 

Frequency 

Simple Pendulum 0.49 0.61 

Double Pendulum 0.36 

0.88 

0.38 

0.92 

Triple Pendulum 0.32 

0.75 

1.25 

0.34 

0.86 

1.63 

 

From the table it is clear that  

1-Natural frequency of the linearized system increases from lumped to distributed 

system. 

2- Order of the frequency: Top<Middle< Bottom Pendulum.  

5.4 POINCARE ANALYSIS  

The numerical analysis of the pendulum will involve the concept name 

Poincare sections, which are created as follows. Whenever a trajectory meets 

some "stopping condition," all variables (aside from that used to determine the 

condition) are plotted. This is repeated for qualitatively different trajectories. The 

resulting Poincare section is a map rather than a vector field; it has one dimension 

less than the phase space. Different Poincare has been obtained from the dynamic 

analysis of double and triple pendulum. 
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5.4.1 POINCARE OF DOUBLE PENDULUM 

 Fig. 5.11 (a), (b) shows the Poincare map for Double pendulum for 

lumped and distributed system at initial condition for π /10 degree. It is clear from 

the fig. 5.11 (a), (b) that although the Poincare is symmetrical but for distributed 

system it shows some irregularity.    

 

  Fig. 5.11 (a)     Fig. 5.11 (b)  
 

 

Fig. 5.11 (a) and (b) DP with Lumped and Distributed system at starting 

point y0 = [π /10; π /10; 0; 0]; 

Fig. 5.12 (a), (b) shows the Poincare map for Double Pendulum for lumped and 

distributed system at initial condition for π /4 degree. It is clear from the fig. 5.12 

(a),(b) that with the increase in small angle (going from π /10  to π /4)  Poincare 

shows irregularity.  
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  Fig. 5.12 (a)     Fig 5.12 (b) 

Fig. 5.12 (a) and (b) DP with lumped and distributed at y0 = [π /4; π /4; 0; 0]; 
 

Fig. 5.13 (a), (b) shows the Poincare map for Double pendulum for lumped and 

distributed system at initial condition for π /2 degree. It is clear from the fig. 5.13 

(a),(b) that with the further increase in  angle (going from π /4  to π /2)  Poincare 

shows completely irregular shape.  

 

    

 

  
 

 

 

 

 Fig. 5.13 (a)     Fig 5.13 (b) 

 

Fig. 5.13 (a) and (b) DP with lumped and distributed at y0= [π /2; π /2; 0; 0]; 
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5.4.2 POINCARE OF TRIPLE PENDULUM 

Fig. 5.14 (a), (b) shows the Poincare map for Triple Pendulum for lumped 

and distributed system at initial condition for π /10 degree. It is clear from the 

figure 5.14 (a), (b) that for lumped system it shows some regular shape and for 

distributed system it is not regular one.  

 

 

 

 

 

 

 

 

Fig. 5.14 (a)     Fig 5.14 (b) 

Fig. 5.14 (a) and (b) TP with lumped and distributed at 

 y0= [π /10; π /10; π /10; 0; 0; 0]; 

 

Figure 5.15 (a), (b) shows the Poincare map for Triple pendulum for lumped and 

distributed system at initial condition for π /4 degree. When comparing the fig. 

5.12, it is clear that going from double pendulum to triple pendulum Poincare 

become more irregular.  
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Fig. 5.15 (a)     Fig 5.15 (b) 

Fig. 5.15 (a) and (b) TP with lumped and distributed at 

 y0 = [π /4; π /4; π /4; 0; 0; 0]; 

 

With the further increase in angle to π /2 Poincare becomes completely 

irregular and that is a sign of chaotic behaviour. 

 

  

 

 

 

 

 

 

Fig. 5.16 (a)     Fig 5.16 (b) 

Fig. 5.16 (a) and (b) TP with lumped and distributed at 

 y0 = [π /2; π /2; π /2; 0; 0; 0]; 
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5.5 EFFECT OF DAMPING ON THE DYNAMICS OF DP AND TP 

In case of double pendulum with distributed system Rayleigh damping 

comes in to the picture and the effect of damping can be seen from the Eqn. 

(3.36).It is clear from the fig. (5.17)  that magnitude will lie in the range of -0.2 to  

0.2 and this is constant throughout the time when damping is zero. 

 

Fig 5.17 (a) Dynamics of DP at [0.2; 0.28; 0; 0] starting point  

without damping when mass and length are unity       

                                            

 

 

 

 

 

 

F 

 

 

5.17 (b) Dynamics of DP at starting point [0.2; 0.28; 0; 0] with 

damping (C1=0.1, C2=0.1) when mass and length are unity 
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With the introduction of small damping (C1=0.1, C2=0.1) magnitude decreases 

with time and it tries to make the system stable. 

With the increase in damping coefficient C1=1.0, C2 =1.0, initially the magnitude 

is  -0.1 to 0.2  but 18-20 second it tends to zero means output completely settle 

down.  

 

 

 

 

 

 

 

Fig 5.17 (c) Dynamics of DP at [0.2, 0.28, 0, 0] starting point with higher 

damping (C1=1.0, C2 =1.0) when mass and length are unity 

 

It can be seen clearly that damping reduces the chaotic behaviour. 

 

5.6 EFFECT OF DAMPING ON THE DYNAMICS OF TP 

In case of triple pendulum with distributed system Rayleigh damping 

comes in to the picture and the effect of damping can be seen from the Eqn. (4.24) 

and Eqn. (4.25). It is clear that magnitude is around -0.5 to 0.5 throughout the 

time when no damping is provided.  
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Fig. 5.18 (a) Dynamics of TP at [π /6, 0, π /6, 0, π /6, 0] starting point 

without damping   when mass and length are unity 

 

With the increase in damping coefficient c1=c2=c3==1, initially the magnitude is 

(-0.4 to 0.4) but as the time passes it decreases with time.  

 

 

Fig. 5.18 (b) Dynamics of TP at [π /6, 0, π /6, 0, π /6, 0] starting point with 

damping when mass and length are unity When c1=c2=c3==1 
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5.7 LQR BASED CONTROL OF TRIPLE INVERED PENDULUM ON 

CART  

The plant is linear time invariant and the state space equation of the plant is 
.

X AX Bu              (5.1) 

 

It can make the performance index J achieve the minimum value 

 

0

( )T TJ X QX u Ru dt


 
           (5.2) 

Where Q is a semi definite matrix, R is a positive definite matrix, Q and R are the 

weighting matrixes of state variable and input variables respectively [8].For the 

smallest performance index function. At first Hamilton function is constructed, 

derivation of this was obtained and makes it equal to zero, which can determined 

the optimal control rate: 

 
1( ) ( ) ( )Tu t Kx t R B Px t  

            (5.3) 

 

Where P is the only positive definite symmetric solution of which meets the 

Riccati Eqn. (5.4) as 

 
1PA A P PBR 0T TB P Q              (5.4) 

 

In the design of the controller, one of the key problems is to select weight matrix 

Q and R in the quadratic performance indexes. For the Triple link inverted 

pendulum system, several different weighting matrices were tried and tested. The 

elements of the final Q matrix are larger than the elements of the R matrix. This 

selection translates into a controller that is more sensitive to the states of the 

system than the control input. The logic behind this choice is that since the main 

design criterion is stability, therefore the system states should dictate stability. 
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The elements of the Q and R matrices of the LQR selected for the system under 

consideration are: 

 

Q=diag([ 400 6000 700 0 0  140 0 0.1]);R=1 
 

Therefore the optimal feedback gain matrix is  
 

1.0e+003 * [-0.0200   -0.3296    0.8522   -3.5432   -0.0458   -0.1442   -0.0777   -0.4105]K   

 

The Eigen value of system Matrix A and closed loop system matrix Ac is given 

below in the following table 5.3. 

 

TABLE 5.3 (EIGEN VALUE OF A AND AC ) 
 

 

S. no Eigen value A Eigen value Ac 

1 0 -25.7123 

2 9.8691 -9.6201 

3 8.1493 -8.8233 

4 4.3265 -8.0303 

5 -10.4277 -6.1828 + 1.0041i  

6 -8.6358 -6.1828 - 1.0041i  

7 -6.3749  -1.2164 + 0.9812i  

8 -2.2345 -1.2164 - 0.9812i  

     

 

The Eigen values listed in table 5.3, it is clear that for the system matrix A, it is 

unstable in nature and after adding gain K, the new Eigen value of Ac are stable 

in nature. 

Fig.5.19 (a) & 5.19 (b) shows the cart position and velocity of the system 

respectively. It may be seen in Fig. 5.19 (a) & 5.19 (b) that the cart stabilizes after 
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going through initial transition. Similarly, Fig. 5.20 (a) & 5.20 (b), Fig. 5.21 (a) & 

5.21 (b), and Fig. 5.22 (a) & 5.22 (b)  present the plots related with angular 

displacement and angular velocity of the bottom link, middle link and bottom link 

of the TLIP. These plots also confirm that like cart, the links also stabilize with 

time.  At the same time, it is obvious that settling time is very small. It is less than 

4 seconds in almost all the cases which is a very good sign the efficacy of the 

LQR controller. In all simulations the systems was stable, conforming the LQR 

properties of the control system. 

 

 

 

 

 

 

 

Fig 5.19 (a) Cart Position               Fig .5.19( b)  Cart  Velocity 

Fig. 5.19 Cart Position and Cart Velocity 
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Fig. 5.20 (a) First link, angular         Fig. 5.20 (b) First link, angular 

displacement            velocity     

Fig. 5.20 First Link angular displacement and angular velocity 

 

  

Fig 5.21 (a) Second link,    Fig 5.23 (b) Second link, 

angular displacement                   angular velocity 

Fig. 5.21 Second Link angular displacement and angular velocity 
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Fig 5.22 (a) Third link,   Fig 5.22 (b) Third Link, 

angular displacement     angular velocity 

Fig. 5.22 Third link angular velocity 

 

All the parameter of the system settles down in less than 4 seconds. Simulation 

results clearly show the effectiveness of the proposed controller.  

 

5.8 EXPERIMENTAL OBSERVATION OF DOUBLE AND TRIPLE 

PENDULUM 

 The setup of double and triple pendulum for distributed mass is shown in 

fig.(5.23, 5.24) respectively at different angle.  Initially at smaller angle (around 

10-15 degree) experimental setup shows the regular motion but with the slight 

increase in the angle (30 degree or higher) both double and triple pendulum 

motion goes purely randomly.  



108 

 

  

 

 

  

 

 

 

 

Fig 5.23 Experimental setup of double Link at different angle 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.24 Experimental setup of triple Link at different angle 
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The same result has been obtained with the dynamic analysis of double and triple 

pendulum which validates the experimental observation. 
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CHAPTER 6 

CONCLSUSION AND FUTURE SCOPE 

6.1 CONCLUSIONS 

The modelling of double and triple link pendulums for lumped and 

distributed system is carried out and also validated with experimental observation. 

The dynamic analysis has been done and following conclusions were drawn from 

the present study. 

(1) It is observed that the bottom pendulum is most sensitive than other 

pendulum in both systems i.e., DP and TP.  

(2) Tendency of chaos increases with degree of freedom for the same initial 

conditions.  

(3) Poincare maps of the TP become more intricate in comparison to the DP.  

(4) Damping of pivots results in regular motion of the pendulum system. In 

other words, introduction of damping in the multiple pendulums reduces the 

tendency of chaos. 

(5) Moreover, there is no qualitative difference between the lumped and 

distributed pendulum systems as far as the dynamical behavior is concerned.   

Experimentally the dynamics of the double and triple pendulum has been 

observed.
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(6) The LQR technique was used to control inverted triple pendulum. As triple 

inverted Pendulum is an inherently unstable system. The control technique was 

found to be effective.  

 

6.2 FUTURE SCOPE 

1. More experiments on DP and TP dynamical systems to gain insight 

into the chaotic behavior the multiple pendulums. 

2. Also to design and develop the LQR based control systems so these 

simulation results can be verified. 

3. Explore the more possibility for practical applications of the multiple 

pendulums. 
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APPENDIX A 

The coefficients for triple pendulum for distributed system are defined as follows.  
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Appendix B 

The system constants for triple link inverted pendulum are defined as follows. 
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