Name: Enrolment No:			
UPES Supplementary Examination, December 2023 Course: Remedial Mathematics Semester : I Program: Int. BMSC Microbiology/N \&D/Clinical Research, BT Biomedical/Biotechnical, B.Sc. FND/Microbiology/Clinical Research Duration : 3 Hours Course Code: BP106RMT Max. Marks: 100 Instructions: All questions are compulsory.			
S. No.	Section A Short answer questions/ MCQ/T\&F (20Qx1.5M= 30 Marks)	Marks	COs
Q 1	The order of Matrix A is 4×4 and B is 4×3 the order of $A B$ is: a. 1×3 b. 4×3 c. 3×3 d. 3×4	1.5	$\mathrm{CO1}$
Q2.	The cofactor of 4 in $\left[\begin{array}{lll}1 & 2 & 3 \\ 5 & 4 & 2 \\ 3 & 2 & 1\end{array}\right]$ is: a. 0 b. -8 c. 8 d. -4	1.5	CO1
Q3.	Find the order of A^{T} if the matrix $A=\left(\begin{array}{ccc}2 & -3 & 5 \\ 1 & 6 & 9\end{array}\right)$	1.5	CO1
Q4.	Check whether the following matrix is invertible: $\left[\begin{array}{ccc} 2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4 \end{array}\right]$	1.5	CO1
Q5.	If $A^{2}-A+I=O$ then inverse of then the inverse of A is: a. $I-A$ b. $A-I$ c. A d. $A+I$	1.5	CO1

Q6.	The slope of a line $a x+b y+c=0$ is: a. $\frac{a}{b}$ b. $-\frac{a}{b}$ c. $\frac{c}{b}$ d. $-\frac{c}{b}$	1.5	CO2
Q7.	The lines $3 x+4 y=9$ and $6 x+8 y=15$ are parallel: a. True b. False	1.5	CO2
Q8.	Find the distance of $(5,12)$ from the origin.	1.5	CO2
Q9.	Write the condition for two lines to be perpendicular.	1.5	CO2
Q10.	$\int_{0}^{2}\left(x^{2}+2\right) d x$ is equal to: a. $\frac{24}{3}$ b. $\frac{25}{3}$ c. $\frac{26}{3}$ d. $\frac{27}{3}$	1.5	CO2
Q11.	$\int_{0}^{\pi} \sin ^{2} x d x=$ a. $\frac{\pi}{2}$ b. $\frac{\pi}{4}$ c. 2π d. 4π	1.5	CO2
Q12.	If $f(x)=x^{4}+5 x^{3}-11 x^{2}-45 x+60$ then find $f^{\prime \prime}(x)$.	1.5	CO3
Q13.	Write the formula of $\frac{d}{d x}(u v)$ where $u \& v$ are the functions of x.	1.5	CO3
Q14.	$\frac{d}{d x}(\sin x \cos x)$ is equal to: a. $\cos ^{2} x+\sin ^{2} x$ b. $\sin ^{2} x-\cos ^{2} x$ c. $\cos ^{2} x-\sin ^{2} x$ d. $-2 \cos ^{2} x$	1.5	CO3
Q15.	If $f(x)=\frac{e^{x}}{x^{2}}$ then, $f^{\prime}(1)$ is: a. e b. $-e$ c. $2 e$ d. $-2 e$	1.5	CO 3
Q16.	If $u \& v$ are two functions of x then write the formula for integration of $u v$.	1.5	CO2
Q17.	Integration of $x e^{x}$ is given by: a. $e^{x}(x+1)$ b. $-e^{x}(x+1)$	1.5	CO2

	c. $e^{x}(x-1)$ d. $x e^{x}$		
Q18.	Define upper triangular matrix.	1.5	CO1
Q19.	Find the value of $\lim _{x \rightarrow 8} \frac{x^{2}-64}{x-8}$	1.5	CO1
Q20.	The function $f(x)=x^{3}-4 x^{2}+4 x+3$ defined on $[-1,3]$ has: a. Minimum value -6 at $x=-1$ b. Minimum value 6 at $x=3$ c. Minimum value 3 at $x=2$ d. None of these	1.5	CO3
$\begin{gathered} \text { Section B } \\ (4 \mathrm{Qx5M}=20 \text { Marks) } \end{gathered}$			
Attempt any 4 questions out of 5.			
Q 1	Find the equation of a line passing through the point $(3,-2)$ and perpendicular to the line $x-3 y+5=0$.	5	CO2
Q 2	Show that the points $A(-3,-3), B(3,3) \& C(-3 \sqrt{3}, 3 \sqrt{3})$ are the vertices of equilateral triangle.	5	CO2
Q 3	Evaluate $\frac{d y}{d x}$ when $y=\left(3 x^{4} e^{x}+5\right)$	5	CO3
Q 4	Evaluate the Laplace transform of $\left(t^{2}+4 t+2\right) e^{3 t}$	5	CO3
Q 5	Evaluate $I=\int \frac{x}{x^{2}-1} d x$	5	CO3
All qu	$\begin{gathered} \text { Section C } \\ \text { (2Qx15M=30 Marks) } \end{gathered}$ tions are compulsory Q1 has internal choice.		
Q 1	A pharmaceutical company produces three medicines using ingredients A, B and C. One unit of P requires 1,2 and 3 units of A, B and C respectively. One unit of Q requires 2,3 and 2 units of A, B and C respectively. One unit of R requires 1,2 and 2 units of A, B and C respectively. The number of units available for ingredients A, B and C are 8,14 and 13 units respectively. Using the matrix method, determine the number of units of each medicine to produce to utilize completely the available resources. OR Bacteria increases at the rate proportional to the number of bacteria present. If the original number N doubles in 4 hours, find how many hours the number of bacteria will be $16 N$.	15	CO4
Q 2	Evaluate the integral I using the method of partial fractions $I=\int \frac{x+4}{\left(3+2 x-x^{2}\right)} d x$	15	CO 3

All	$\begin{gathered} \text { Section D } \\ \text { (2Qx10M=20 Marks) } \end{gathered}$		
Q 1	Find the equation of the line which passes through the point $(3,4)$ and the sum of its intercept on the axes is 14 .	10	CO2
Q 2	Apply Cramer's rule to solve the following system of equations: $\begin{gathered} x+y+z=6 \\ y+3 z=11 \\ x-2 y+z=0 \end{gathered}$ OR Determine whether the matrix A is invertible or not. If it is invertible then apply adjoint method to find the inverse of matrix A: $\mathrm{A}=\left[\begin{array}{ccc} 2 & 6 & 3 \\ 4 & -1 & 3 \\ 1 & 3 & 2 \end{array}\right]$	10	CO1

