

Q 11.	In EM wave (a) electrons produce magnetic field only (b) electron produce electric field only (c) time variation of electric field produces magnetic field and vice-versa (d) time variation of electric field guides the wave	1.5	$\mathrm{CO2}$
Q 12.	Displacement current appears because of (a) time varying electric field (b) time varying magnetic field (c) negative charge only (d) positive charge only	1.5	$\mathrm{CO3}$
Q 13.	The work done in displacing a charge 2C through 0.5 m on an equipotential surface is (a) zero (b) 4 J (c) 1 J (d) none of these	1.5	$\mathrm{CO3}$
Q 14.	Write down Stokes' theorem.	1.5	CO3
Q 15.	The phase velocity of de-Broglie wave associated with an electron is given by (a)E/p (b) λv (c) hc / λ (d) h / k	1.5	$\mathrm{CO4}$
Q 16.	The existence of matter wave is experimentally proved by (a) Raman (b) Davisson and Germer (c) de-Broglie (d) none of these	1.5	$\mathrm{CO4}$
Q 17.	Heisenberg uncertainty relation holds good for (a) microscopic and macroscopic particles (b) only microscopic particles (c) only macroscopic particles (d) none of these	1.5	$\mathrm{CO4}$
Q 18.	What is wave particle duality?	1.5	CO4
Q 19.	The energy levels of a particle in a box are (a) equally spaced (b) continuous (c) not-equally spaced (d) none of these	1.5	$\mathrm{CO4}$
Q 20.	Nanoscience can be represented when the size is of the order of a) few milimeter b) few nanometer c) few centimeter d) few kilometer	1.5	$\mathrm{CO5}$
	$\begin{gathered} \text { SECTION B } \\ (4 Q \times 5 M=20 \text { Marks }) \end{gathered}$ All questions are compulsory, Q 24. has an internal choice. Each Question carri Write very Short Answers/ Solve		
Q 21.	What is superposition principle of electrostatics?	5	CO2
Q 22.	Outline Maxwell's equations in differential form.	5	CO2
Q 23.	Explain Biot-Savart's Law with proper diagram.	5	CO 3
Q 24.	Discuss different types of optical fibers. OR Describe construction of holography.	5	CO1
$\begin{gathered} \text { SECTION C } \\ (2 Q \times 15 M=30 \text { Marks }) \end{gathered}$ - All questions are compulsory, Q 26. has an internal choice, Each Question carries $\mathbf{1 5}$ Marks			

- Write long answer/ Derive/ Solve

Q 25.	(a) Explain Ampere's Circuital law with proper diagram. Using Stoke's Theorem obtain the differential form of the Ampere's law. (b) Calculate the magnetic field (with direction) at a distance R from a infinite current (I) carrying wire.	15	CO3
Q 26.	(a) Derive time independent Schrodinger wave equation. (b) Calculate the lowest energy of an electron confined in a 1-D cubical box of each side $2 \AA$. OR (a) Explain Einstein's equation for photoelectric effect with proper explanation. (b) X-rays with $\lambda=2 \AA$ are scattered from a graphite bock. The scattered radiation is viewed at 90° to the incident beam. Estimate the Compton shift. (c) Discuss Heisenberg's uncertainty principle in quantum mechanics.	15	CO 4
$\begin{gathered} \text { SECTION-D } \\ (2 Q \times 10 M=20 \text { Marks }) \end{gathered}$ - All questions are compulsory, Q.No. 27 has an internal choice, Each Question carries $\mathbf{1 0}$ Marks - Write long answer/ Derive/ Solve			
Q 27.	Describe the construction and working of a Ruby laser by drawing a neat diagram and labelling the components used. OR Describe the construction and working of a $\mathrm{He}-\mathrm{Ne}$ laser system with proper diagram and labelling the components used.	10	CO1
Q 28.	(a) Mention any four differences between a classical computer and quantum computer. (b) Given $\|\psi\rangle=6\|0\rangle-5 i\|1\rangle$. Find its normalized state.	10	CO5

Constant	Standard Values
Planck's Constant (h)	6.63×10^{-34} Joule -sec
Permittivity of free space $\left(\varepsilon_{0}\right)$	$8.85 \times 10^{-12} \mathrm{Farad} / \mathrm{meter}$
Velocity of light (c)	$3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
Boltzmann constant $\left(k_{B}\right)$	$1.38 \times 10^{-23} \mathrm{JK}^{-1}$
Rest mass of an Electron $\left(m_{o}\right)$	$9.11 \times 10^{-31} \mathrm{~kg}$
Mass of the proton $\left(m_{p}\right)$	$1.67 \times 10^{-27} \mathrm{~kg}$
Charge of an electron (e)	$1.6 \times 10^{-19} \mathrm{C}$

