Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2023

Course: Genetic Engineering & Omics Program: Integrated BMSc Microbiology Course Code: HSMB3013

Semester : V Duration : 3 Hours Max. Marks: 100

Instructions: Carefully read and attempt all questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	The restriction endonuclease is having a defense mechanism in the	1.5	CO1
	bacterial system against foreign DNA such as viruses. But how it		
	is able to protect its own DNA?		
	a) By methylation of bacterial DNA by restriction enzyme		
	b) By methylation of foreign DNA by restriction enzyme		
	c) By phosphorylation of bacterial DNA by restriction enzyme		
	d) By phosphorylation of foreign DNA by restriction enzyme		
Q 2	Recall the name of enzyme which removes RNA from RNA-DNA	1.5	CO1
	hybrid.		
Q 3	Type II cuts the sequence in the following way	1.5	CO1
	a) Within the recognition sequence		
	b) At 100-1000 nucleotides away from the recognition sequence		
	c) At 27-30 nucleotides away from the recognition sequence		
	d) It cuts randomly		
Q 4	The specificity of an enzyme is affected by the concentration of	1.5	CO1
	buffer/high glycerol used. This phenomenon is termed as:		
	a) star activity		
	b) specificity elevation		
	c) concentration gradient effects		
	d) diamond activity		
Q 5	Which of the following is the correct nomenclature of a restriction	1.5	CO1
	enzyme obtained from the first activity of strain R of Escherichia		
	coli?		
	a) ECOR1		
	b) EscRI		
	c) EcorI		
	d) EcoRI		
Q 6	Phosphatases refer to	1.5	CO1
	a) the enzymes which add phosphate group at the end of the DNA		
	molecule in the place of hydroxyl group		

	 b) the enzymes which hydrolytically remove phosphate group from the DNA molecules and replace them with hydroxyl group c) the enzymes responsible for removal of phosphate group from the DNA molecules and replace them with hydrogen d) the enzymes responsible for replacing hydrogen in the DNA molecules with the phosphate group 		
Q 7	If high copy number is there, the replication is called as and if low copy number is there the replication is called as a) stringent, relaxed b) relaxed, stringent c) relaxed, relaxed d) stringent, stringent	1.5	CO1
Q 8	Thermostable DNA polymerases are very important in PCR. How are they obtained? a) They are obtained by heating the bacteria manually over high temperatures b) They are isolated from extremely stable thermophilic bacteria which are often found growing in oceanic vents c) They are found everywhere in nature d) They are obtained by genetically modifying the E. coli bacteria with thermal stability property	1.5	CO1
Q 9	 Which of the following enzyme is said as reverse transcriptase? a) DNA dependent DNA polymerase b) RNA dependent RNA polymerase c) RNA dependent DNA polymerase d) DNA dependent RNA polymerase 	1.5	CO1
Q 10	IPTG stands for	1.5	CO1
Q 11	 Template independent polymerases are the enzymes which add a) They only add a single nucleotide b) They only add a string of nucleotides and not a single nucleotide c) Terminal transferase adds a series of nucleotides at the 3' end without a template d) Taq polymerase adds a single nucleotide at the 5' end of the PCR product 	1.5	CO2
Q 12	 Alkaline Phosphatase is used at times and the vector is treated with it. Choose the incorrect statement. a) It removes 5' terminal phosphate group from nucleic acids b) The 5' phosphate group is required for the ligation to take place c) Two phosphate bonds should be formed for the complete ligation to take place d) The ligation between vector and insert won't take place 	1.5	CO2
Q 13	The ligation reaction is more efficient in which case? a) Blunt end ligation	1.5	CO2

ns ctor True or False. ttiple cloning site is present on Explain nt in lacZ gene? enzyme bonsible for cleaving t elements ed as X-gal s pink coloured dye iment, the cells are plated on ns antibiotic resistant genes, X-	1.5 1.5 1.5 1.5	CO2 CO2 CO2 CO2
ctor True or False.Itiple cloning site is present onExplainnt in lacZ gene?enzymebonsible for cleavingt elementsed as X-gals pink coloured dyeiment, the cells are plated onns antibiotic resistant genes, X-	1.5	CO2 CO2
ctor True or False.Itiple cloning site is present onExplainnt in lacZ gene?enzymebonsible for cleavingt elementsed as X-gals pink coloured dyeiment, the cells are plated onns antibiotic resistant genes, X-	1.5	CO2 CO2
Explain nt in lacZ gene? enzyme bonsible for cleaving t elements ed as X-gal s pink coloured dye iment, the cells are plated on ns antibiotic resistant genes, X-	1.5	CO2
nt in lacZ gene? enzyme bonsible for cleaving t elements ed as X-gal s pink coloured dye iment, the cells are plated on ns antibiotic resistant genes, X-		
nt in lacZ gene? enzyme bonsible for cleaving t elements ed as X-gal s pink coloured dye iment, the cells are plated on ns antibiotic resistant genes, X-		
bonsible for cleaving t elements ed as X-gal s pink coloured dye iment, the cells are plated on ns antibiotic resistant genes, X-	1.5	<u> </u>
t elements ed as X-gal s pink coloured dye iment, the cells are plated on ns antibiotic resistant genes, X-	1.5	<u> </u>
ed as X-gal s pink coloured dye iment, the cells are plated on ns antibiotic resistant genes, X-	1.5	<u> </u>
s pink coloured dye iment, the cells are plated on ns antibiotic resistant genes, X-	1.5	<u> </u>
iment, the cells are plated on ns antibiotic resistant genes, X-	1.5	<u> </u>
ns antibiotic resistant genes, X-	1.5	CO2
-		202
ich of the following would		
DNA		
DNA		
wing genomic DNA		
t of DNA polymerase which	1.5	CO2
protease lacks 3' -> 5'		
nce every 256 bp. True/False	1.5	CO2
t having an origin of	1.5	CO2
rector would not take place		
the vector, both the daughter		
the cell		
Section D		
XJWI = 20 WIAIKS)		
nucleotide kinase in genetic	5	CO1
nucleotide kinase in genetie	5	
ucleases with reference to	5	CO1
	5	
-	5	CO1
		CO1 CO2
_	5	
	DNA DNA aving genomic DNA at of DNA polymerase which protease lacks 3' -> 5' nce every 256 bp. True/False t having an origin of rector would not take place the vector, both the daughter is observed the cell Section B x5M=20 Marks) mucleotide kinase in genetic ucleases with reference to ring. omers and neoschizomers. d replacement vector. Section C	DNA aving genomic DNA at of DNA polymerase which protease lacks 3' -> 5' nce every 256 bp. True/False 1.5 at having an origin of t having an origin of the cell Section B x5M=20 Marks) Index solution of the second sec

(2Qx15M=30 Marks)					
Q 1	A) A gene encoding for a novel protein needs to be cloned with a	10+5	CO2		
	pUC vector. Develop rDNA process for this objective and				
	explain how do you select positive recombinants?				
	B) Define proteomics. Explain why proteomics needed when				
	genomics is there?				
Q 2	A) Define Restriction Enzymes? Differentiate between different	2+8+5	CO3		
	types of restriction enzymes.				
	B) Distinguish between adapters and linkers.				
Section D					
(2Qx10M=20 Marks)					
Q 1	Explain in detail about sanger's Dideoxy method (enzymatic	10	CO3		
	method) of DNA sequencing with using a sequence				
	5'ATGCTAGCATACGATGAT3"				
Q 2	Define genomics. The third-year class of Integrated B.MSc. in the	2+8	CO3		
	school of Health Sciences at UPES has been tasked with re-				
	sequencing the bacterium E. coli genome, using the shotgun				
	approach to genome sequencing. give a detailed account of how				
	they would go about this project.				