Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Systems Biology Program: B.Tech Biotechnology Course Code: HSBT3005 Semester : V Duration : 3 Hours Max. Marks: 100

Instructions: Attempt all questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	What is the primary goal of systems biology?	1.5	CO1
-	a. To study individual molecules in isolation		
	b. To understand the complex interactions within biological systems		
	c. To focus exclusively on genetics		
	d. To develop new pharmaceutical drugs		
Q 2	Which of the following is not a key component of systems biology?	1.5	CO1
	a. Data analysis and modeling		
	b. Reductionism		
	c. Experimental validation		
	d. Integration of biological information		
Q 3	Which term refers to the study of how genes are turned on or off in	1.5	CO1
	response to different signals or conditions?		
	a. Structural biology		
	b. Functional genomics		
	c. Comparative genomics		
	d. Synthetic biology		
Q 4	In a systems biology approach, what is the significance of	1.5	CO1
	"crosstalk" between different omics fields?		
	a. It indicates a lack of integration in the research.		
	b. It represents communication between cells.		
	c. It reveals how different biological components interact and		
	influence each other.		
	d. It describes the competition for funding in biological research.		
Q 5	What is the role of a cofactor in enzyme-catalyzed reactions?	1.5	CO2
	a. It is a competitive inhibitor of the enzyme.		
	b. It enhances the substrate binding affinity of the enzyme.		
	c. It is an alternative name for an enzyme.		
	d. It increases the enzyme's turnover number.		

Q 6	What is the primary function of NAD+ (nicotinamide adenine dinucleotide) in biochemical pathways?	1.5	CO2
	a. To serve as a substrate in ATP synthesis		
	b. To transfer high-energy electrons during redox reactions		
	c. To stabilize enzyme-substrate complexes		
	d. To act as a structural component of enzymes		
Q 7	Which of the following is an example of post-transcriptional gene	1.5	CO2
	regulation in eukaryotes?		
	a. DNA methylation		
	b. Histone acetylation		
	c. Alternative splicing		
	d. Promoter binding		
Q 8	What is the term for a small RNA molecule that can regulate gene	1.5	CO2
-	expression by binding to mRNA and preventing its translation?		
	a. siRNA (small interfering RNA)		
	b. miRNA (microRNA)		
	c. lncRNA (long non-coding RNA)		
	d. snRNA (small nuclear RNA)		
Q 9	Which of the following is an example of epigenetic regulation of	1.5	CO3
-	gene expression?		
	a. Alternative splicing		
	b. DNA methylation		
	c. Translation initiation		
	d. Exon skipping		
Q 10	In eukaryotes, how do miRNAs achieve specificity in targeting	1.5	CO3
-	specific mRNAs for regulation?		
	a. By binding to a wide range of mRNA sequences		
	b. By perfectly complementary base-pairing with the target mRNA		
	c. By recognizing specific sequences in the 5' cap of the target		
	mRNA		
	d. By partial base-pairing with the target mRNA, often involving the		
	3' UTR		
Q 11	What term describes the metabolic pathway that breaks down fatty	1.5	CO3
Z	acids into acetyl-CoA through a series of beta-oxidation reactions?		
	a. Glycolysis		
	b. Gluconeogenesis		
	c. Fatty acid oxidation		
	d. Citric acid cycle		
Q 12	Gene Ontology (GO) is a widely used resource for annotating genes	1.5	CO3
	and gene products. What are the three main branches of GO that		
	categorize gene functions?		
	a. Cellular compartment, molecular function, and gene expression		
	b. Structural domains, metabolic pathways, and transport processes		
	c. Biological process, cellular component, and molecular function		

	d. Transcription factors, kinases, and ligand binding		
Q 13	In pathway analysis using tools like DAVID, what does the term	1.5	CO4
	"enrichment score" represent?		
	a. The statistical significance of a gene's expression level		
	b. The percentage of genes in a dataset that are annotated to a		
	specific pathway		
	c. The degree to which a set of genes is overrepresented in a		
	particular pathway		
	d. The expression level of a gene in a given biological sample		
Q 14	In pathway analysis, what is the primary goal of identifying	1.5	CO4
	"significant pathways"?		
	a. To determine the shortest pathways in a network		
	b. To identify pathways with the highest number of genes		
	c. To understand the biological processes that are most relevant to a		
	specific dataset		
	d. To predict the regulatory genes in a pathway		
Q 15	Gene Ontology terms often include hierarchical relationships	1.5	CO4
	between more general and more specific terms. What type of		
	structure does this represent?		
	a. Directed acyclic graph (DAG)		
	b. Linear regression model		
	c. Hierarchical tree structure		
	d. Correlation matrix		
Q 16	Which mathematical modeling technique is used to analyze the	1.5	CO4
	behavior of genes in biological networks and predict their		
	interactions?		
	a. Structural equation modeling		
	b. Network analysis		
	c. Multiple regression analysis		
	d. Time series analysis		
Q 17	StochSim is a software tool used for stochastic modeling in systems	1.5	CO5
	biology. What does "stochastic modeling" refer to in this context?		
	a. Modeling based on deterministic equations		
	b. Modeling that ignores random fluctuations in biological systems		
	c. Modeling that takes into account probabilistic events and random		
	variability		
	d. Modeling of only simple linear systems		
Q 18	Which of the following software tools is best suited for simulating	1.5	CO5
	the behavior of a large-scale biochemical network with stochastic		
	interactions between molecules?		
	a. eCell		
	b. Virtual Cell		
	c. StochSim		
	d. BioNetS		

Q 19	Quantitative modeling of E. coli metabolism often involves the use	1.5	CO5
QI	of metabolic flux analysis. What does "metabolic flux" refer to in	1.5	005
	this context?		
	a. The rate of substrate utilization in a bacterial culture		
	b. The flow of water through bacterial cell membranes		
	c. The rate of chemical reactions within metabolic pathways		
	d. The distribution of bacteria in a colony		
Q 20	Which type of modeling approach is commonly used to predict the	1.5	CO5
-	impact of gene deletions or mutations on E. coli metabolism?		
	a. Genome sequencing		
	b. Structural biology analysis		
	c. Constraint-based modeling		
	d. Protein structure prediction		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	Explain the significance of omics technologies in the field of	5	CO1
Q I	systems biology.	5	001
Q 2	Describe the main features and functionalities of pathway databases	5	CO2
Q 2	like DAVID, Gene Ontology, and Pathway Miner	5	002
Q 3	Discuss how genome-scale models can be used to predict cellular	5	CO3
X 5	behavior under different growth conditions, nutritional	5	005
	environments, or genetic perturbations.		
Q 4	Describe the key features and tools provided by eCell for simulating	5	CO4
ΥT	and visualizing cellular processes.	5	004
	Section C: Case study		
	(2Qx15M=30 Marks)	1	
Q 1	Consider a scenario where a medical team is faced with a	15 marks	CO2
	challenging case of a newly diagnosed diabetes patient. The	(5 marks	
	patient's condition is complex, as it involves the interplay of genetic	each)	
	factors, lifestyle choices, and the gut microbiome. The team decides		
	to employ GSMs to develop a personalized approach to manage the		
	patient's diabetes effectively. The model predicts the patient's		
	optimal dietary choices and exercise routines for blood glucose		
	control, considering individual genetic variations. It identifies key		
	metabolic pathways and potential drug targets for developing		
	personalized pharmaceutical interventions. This helps healthcare		
	professionals track the patient's progress and make informed		
	decisions about treatment adjustments.		
	Based on your understanding of GSM, answer the following		
	questions		

			1
	A) What types of data should be collected and integrated to create the personalized genome-scale model for the diabetes patient in		
	this case?		
	B) Explain the process of constructing a personalized genome-		
	scale model.		
	Discuss how personalized GSM provides valuable insights into the		
	patient's diabetes management:		
Q 2	Metabolic pathway analysis is a powerful tool in biotechnology,	15 marks	CO4
	allowing researchers to manipulate and optimize cellular processes.	(5 marks	
	Enzyme engineering involves the modification of enzymes to	each)	
	enhance their catalytic properties. Imagine a biotechnology		
	company that specializes in the production of a high-value		
	compound, such as a biofuel, pharmaceutical precursor, or specialty		
	chemical. They are facing challenges in optimizing the metabolic		
	pathway responsible for compound production. Several strategies		
	can be employed to enhance the efficiency of the pathway such as		
	modify enzymes within the pathway to improve their catalytic efficiency, maintain low substrate and product concentrations to		
	alleviate feedback inhibition and maintain reaction equilibrium,		
	utilize enzyme inhibitors or genetic modifications to mitigate the		
	effects of feedback inhibition, etc.		
	Based on your understanding of metabolic pathway analysis, answer		
	the following questions:		
	A) Explain how the company identifies bottlenecks or limitations		
	within the pathway that hinder efficient compound production.		
	What analytical methods or data are used for this?		
	B) Explain the strategies used to optimize the overall metabolic		
	pathway.		
	C) How might this optimized pathway impact the production of the		
	target compound in various applications?		
	Section D		
0.1	(2Qx10M=20 Marks)	10	CO2
Q 1	a) Explore the synergy between omics technologies, biochemical kinetics, and genome regulation in systems biology.	10	CO3
	b) Describe how quantitative data from omics can be integrated		
	with biochemical kinetic models to create comprehensive		
	models of biological systems.		
Q 2	a) Highlight the challenges in mathematical representation and	10	CO5
	network analysis in cell biology, such as data integration, model	±v	
	validation, and parameter estimation.		
	b) Reflect on the potential impact of advances in mathematical		
	modeling and network analysis on fields like cancer biology,		
	drug development, and regenerative medicine.		