Name						
Enro	Name: Enrolment No:					
	UNIVERSITY OF PETROLEUN	M AND ENERGY STUDIES				
	End semester Examin	nation, Dec 2023				
Programme Name:B. Tech. (Biotech)Semester		Semester : V				
Course Name: Bioreactor Design and analysisTime						
Course Code: HSBT3002Max. MarkNos. of page(s): 02		Max. Marks : 100				
	ructions : Assume any missing data. Draw the	diagrams, wherever necessary.				
111501	SECTION-A (20 Q× 1)					
	(Answer all the questions)					
		Marks				
1	What is the chemical reaction rate?	1.5	CO1			
2	What are different types of ideal reactors?	1.5	CO1			
3	What is order of the reaction?	1.5	CO1			
4	What is molecularity of the reaction?	1.5	CO1			
5	What is the general unit of rate of reaction?	1.5	CO1			
6	What is the unit of reaction rate constant for a first or	rder system? 1.5	CO1			
7	What is the difference between uni and bimolecular	reactions? 1.5	CO1			
8	How does catalyst act in enhancing the rates of react	ions? 1.5	CO1			
9	What are other parameters that control conversion w	hich does not go to completion? 1.5	CO1			
10	What is time constant of the reactor?	1.5	CO1			
11	What way ideal and real reactor differ?	1.5	CO1			
12	What is the ideal characteristic of a plug flow reactor	? 1.5	CO2			
13	What are the reasons for non-ideality in CSTR?	1.5	CO2			
14	Give an example of homogeneous reaction?	1.5	CO2			
15	What is non elementary reaction?	1.5	CO2			
16	Is the order of reaction can be a fraction?	1.5	CO2			
17	Define space time.	1.5	CO2			
18	$2A + B - K \rightarrow C$. what is the rate of formation of pro-	oduct C of this elementary reaction? 1.5	CO2			
19	For CAO=10 mol/lt and CA=2 mol/lt, what is the con	nversion x? 1.5	CO2			
20	Give an example of catalytic reaction?	1.5	CO2			

	SECTION-B (4 $Q \times 5M = 20$ marks) (Answer all the questions)			
21	Derive performance equation of an ideal plug flow reactor.		CO1	
22	Derive performance equation of a fed batch reactor with stream B entering and contents of A residing in the reactor.			
23	We plan to replace our present mixed flow reactor with one having double the volume. For the same aqueous feed (10 mol A/liter) and the same feed rate find the new conversion.	5 CO2		
	The reaction kinetics are represented by $A \rightarrow R$, $-r_A = kC_A^{1.5}$ and present conversion is 70%.			
24	Brief the importance of mass transfer in the bioreactor and processing of broths.	5	CO3	
	SECTION-C (2 $Q \times 10M = 20$ marks) (Answer all the questions)			
25	An aqueous feed containing A (1 mol/liter) enters a 2-liter plug flow reactor and reacts			
	away (2A \rightarrow R, -r _A = 0.05 C ² mol/liter s).		0.00	
	(a) Write the performance equation of PFR.	10	CO2	
	(b) Find the outlet concentration of A for a feed rate of 0.5 liter/min.			
26	Explain the importance of instrumentation and control of a biological process with			
	(a) appropriate flow sheet	10	CO3	
	(b) Use the control diagram to explain the process control.			
	SECTION-D (2 Q× 15M = 30 marks)			
	(Answer all the questions)			
27	(a) A first order liquid phase reaction A \rightarrow P is conducted in a PFR of volume 5			
	Lts. The volumetric flow rate is 1 Lt/min with an initial concentration of A as 5			
	mol/Lt. Find the exit concentration of A if the rate constant is 0.46 /min.	15	CO2	
	(b) In a batch reactor the reaction A $\cdots \rightarrow$ P occurs. The conversion of A after 2			
	minutes is 67% and after 20 minutes is 80%. Find the order of the reaction.			
28	(a) Discuss about the factors that lead to the non-ideality in reactors.			
	(b) Discuss RTD, State of aggregation and earliness and lateness of mixing in the non-		CO3	
	ideal behavior of a reactor with suitable diagrams and explanations.			